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Enactive metaphoric approaches to randomness

Daniela Díaz-Rojas and Jorge Soto-Andrade

CIAE and Department of Mathematics, Faculty of Science, University of Chile, Santiago, Chile, sotoandrade@u.uchile.cl 

Our work aims at developing means to facilitating the 
access to stochastic thinking, especially for non-mathe
matically oriented learners. To this end, we draw on 
metaphoric and enactive approaches to the teaching 
and learning of randomness. More precisely, we report 
on a challenging didactical situation implemented in 
various classrooms, with students and prospective and 
practicing teachers, concerning problem posing and 
solving in the context of randomness that is approached 
through enactive metaphoring. The findings suggest 
that this sort of approach allows non-mathematically 
oriented learners to make sense of and abduct otherwise 
inaccessible mathematical notions and facts. 

Keywords: Enaction, metaphor, randomness, embodiment, 

waiting time.

INTRODUCTION    

We are concerned about facilitating the access to sto-
chastic thinking and its practice and appreciation by 
the learners as one way to make sense of the world. 
We are especially interested in approaches that might 
be meaningful and helpful for “general” non-math-
ematically oriented students in school, college and 
university. 

The approaches we develop relay on metaphoring, en-
action, embodied and situated cognition. Our main hy-
pothesis is that most students – especially those with 
no special mathematical skills – can think mathemat-
ically if they enact first suitable didactical situations, 
involving problem posing and solving.  Here enacting 
is meant in the most literal sense, as when enacting a 
role, bodily, on stage. In this way they may notice and 

“see” facts or relations that they may have trouble see-
ing in an abstract or symbolic setting. We put this into 
practice here in the context of probabilistic and statis-
tical thinking, with challenging tasks like figuring out 
the expected waiting time for success in a dichotomic 
success-failure random experiment. Of course even 

learners with no probabilistic background can tackle 
this sort of task in a pure experimental statistical way, 
calculating the average waiting time for an increas-
ingly larger number of repetitions of the experiment. 
Many of them may become sensitive nevertheless to 
the fact that they are calculating blindly without being 
able to anticipate, i.e., to “see” beforehand, what value 
the experimental average will be close to. We also 
aim at fostering the development of this sensitivity as 
an antidote to the common misconception of mathe-
matics as just rote formula applying and calculating. 
These approaches have been tested with students and 
teachers with various backgrounds, ranging from ele-
mentary and secondary school students to university 
students majoring in science and humanities and to 
prospective and in service elementary and secondary 
school teachers.   

THEORETICAL FRAMEWORK: METAPHORS, 
DIDACTICAL SITUATIONS AND ENACTION    

Metaphors in cognitive science 
and mathematics education  
Widespread agreement has been reached in cognitive 
sciences that metaphor serves as the often unknow-
ing foundation for human thought (Gibbs 2008; Soto-
Andrade 2014) since our ordinary conceptual system, 
in terms of which we both think and act, is fundamen-
tally metaphorical in nature (Johnson & Lakoff, 2003)

We find remarkably theory-constitutive metaphors 
that do not “worn out” like literary metaphors and 
provide us with heuristics and guide our research 
(Boyd, 1993; Lakoff & Núñez, 1997). We might even 
claim metaphorically that a theory is just the unfold-
ing of a metaphor! Recall the “tree of life” metaphor 
in Darwin’s theory of evolution or the “encapsulation 
metaphor” in Dubinsky’s APOS theory (Soto-Andrade, 
2014). In what follows we will use the metaphorical 
approach as a meta-theory to describe the other the-
oretical frameworks we will use. 
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In mathematics education proper it has been pro-
gressively recognized during the last decade (Araya, 
2000; Chiu, 2000; English, 1997; Johnson & Lakoff, 
2003; Lakoff  & Núñez, 2000; Presmeg, 1997; Sfard, 
2009, Soto-Andrade, 2006, 2007, 2013 and many oth-
ers) that metaphors are not just rhetorical devices, 
but powerful cognitive tools, that help us in build-
ing or grasping new concepts, as well as in solving 
problems in an efficient and friendly way. See also 
Soto-Andrade (2014) for a recent survey. We make 
use of conceptual metaphors (Lakoff  & Núñez, 2000), 
that appear as mappings from a “source domain” into 
a “target domain”, carrying the inferential structure 
of the source into the one of the target, enabling us 
to understand the latter, usually more abstract and 
opaque, in terms of the former, more down-to-earth 
and transparent.  Our metaphoric approach to the 
learning of mathematics emphasizes their “poietic” 
role, that brings concepts into existence (“reification” 
in the terms of Sfard, 2009). For instance we may bring 
the concept of probability into existence when, stud-
ying a symmetric random walk on the integers, we 
see the walker splitting into 2 equal halves instead of 
going equally likely right or left (Soto-Andrade, 2013).

Didactical situations 
The theory of didactical situations (Brousseau, 1998) 
might be described as an unfolding of the emergence 
metaphor for mathematical content: mathematical 
concepts or procedures we intend to teach should 
emerge in a suitable challenging situation the learn-
er is enmeshed in, as the only means to “save his life”. 
No real learning is possible if mathematical concepts 

“come out of the blue” or are “airborne” from Olympus.         

Metaphors play an important role in didactical sit-
uations, that we describe with the help of a “voltaic 
metaphor”: Key metaphors are likely to emerge, as 
sparking voltaic arcs, in and among the learners, 
when enough “didactical tension” builds up in a di-
dactical situation for them. Typically this happens 
when students try hard and long enough, interacting 
with each other, to solve a challenging problematic 
situation. Suddenly a key metaphor to solving the 
problem emerges in one – or several – of them. Of 
course, to have the students sustain and endure the 
necessary didactical tension, is not an easy task in 
most classrooms... 

Enaction 
An unfolding metaphor for enaction is Antonio 
Machado’s poem (Thompson, 2007; Malkemus, 2012):

“Caminante, son tus huellas el camino, y nada más; 
caminante, no hay camino, se hace camino al andar” 
[Wanderer, your footsteps are the path, nothing else; 
there is no path, you lay down a path in walking]. 

Indeed Varela had already metaphorized enaction 
as the laying down of a path in walking (Varela, 1987, 
p. 63), when he introduced the enactive approach in 
cognitive science (Varela, Thompson, & Rosch, 1991).  
In his own words: “The world is not something that 
is given to us but something we engage in by moving, 
touching, breathing, and eating. This is what I call 
cognition as enaction since enaction connotes this 
bringing forth by concrete handling” (Varela, 1999, 
p. 8). 

Enaction in mathematics education may be traced 
back to Bruner (1953), who introduced it as “learning 
by doing”. In fact he described enactive representation 
of a domain of knowledge (or a problem therein) as 
a set of actions appropriate for achieving a certain 
result, in contrast with iconic representation, where 
summary images or graphics are employed, or symbol-
ic representation, based on symbols and their syntax.  
Later Bruner’s ideas were successfully implemented 
and diffused via Singapore’s CPA (Concrete-Pictorial-
Abstract) methodology.  For recent significant theoret-
ical and practical developments of enaction in the field 
of education, which highlight the role of the teacher 
as an enactive practitioner acting in situation and 
prompt us to focus on the ways of being that can be 
fostered in the classroom rather than just monitoring 
the specific mathematical knowledge generated, see  
Masciotra, Roth, & Morel (2007) and Proulx & Simmt 
(2013).

ENACTIVE METAPHORIC APPROACHES 
TO MATHEMATICAL NOTIONS: 
THE EXPECTATION OF A WAITING TIME  

We have discussed elsewhere (Soto-Andrade, 2013) an 
enactive metaphoric approach to the case of a sym-
metric 2D random walk (Brownie’s walk). Here we 
will address the case of an important and ubiquitous 
family of random variables, to wit waiting times, and 
their expected values. The simplest case is that of the 
waiting time for success in a dichotomic success-fail-
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ure random experiment, with success probability p 
and failure probability q. We specialize here to the 
simplest case  p = q =½, that can be modeled, or meta-
phorized, by tossing a coin and waiting for heads.   

Methodology
The task (rather a problematic situation) proposed to 
the undergraduate students described below, was to 
figure out how long (how many tosses) they had to wait 
to get heads when tossing a coin. They had not been 
exposed to probability and statistics at the University 
and they were invited not to recall what they had 
heard about probability and statistics at school (where 
the subject is badly taught anyway). So   they tackled 
this “impossible question” essentially bare handed. 
Notice that figuring  out a sensible answer for our 
impossible question with no definite answer, is part 
of the task.  We have then an “open task” that becomes 
stepwise more precise through the interactive work of 
the students (see a priori analysis below), accordingly 
with the enactive approach where problems are not 

“out there” waiting to be solved but are co-constructed 
by the cognitive subject and the world (Varela, 1987, 
1999). It is our aim that the students learn to explore 
when tackling a problematic situation and then to con-
jecture and “see” beforehand ways of solution instead 
of blindly calculating the sum of an infinite series or 
computing an average over many repetitions.   

Our experimentation regarding this task was carried 
out in the classroom with: 

a.	 1st year University of Chile students majoring in 
social sciences and humanities, from 2011 to 2014 
(1 semester mathematics course, averaging 60 
students per semester). 

b.	 25 University of Chile students enrolled in an 
optional one semester course in Post Modern 
Mathematics, majoring in mathematics or in 
pedagogy in physics and mathematics, in 2012.    

c.	 40 University of Chile prospective physics and 
mathematics secondary school teachers (one se-
mester probability and statistics course) in 2014.

Students were observed by the authors during inter-
active 90 minute work sessions. They did group work 
splitting usually into two groups of no more than 20 
each.    

We describe now the mathematical analysis and the 
a priori and a posteriori analyses of this experimen-
tation in the sense of didactical engineering (Artigue, 
2009).  

The mathematical situation    
Notice that the experiment of flipping a coin until 
you get heads can be looked upon   as a symmetric 
random walk on a truncated binary tree (you begin 
at the root and turn right if you get heads and to the 
left if you get tails, stopping when you get heads the 
first time), so that the question “How long will I have 
to wait for heads?” becomes “How long will it take the 
walker to get to one of the absorbing ends of the tree?” 
So flipping a coin or walking on the tree, are each one 
a metaphor for the other. 

Since the random variable T = “waiting time for heads 
when flipping a coin” takes values n with probabili-
ties 1/2n , its expectation E(T) is given by the series 

. Adding terms diagonally one can show that this 
series coincides with the geometric series , whose 
sum is 2.   

The challenge we address below is whether the stu-
dents could enactively “see” this result without calcu-
lating the corresponding series (symbolic approach, 
rather unfriendly for many) or averaging over an in-
creasing number of repetitions of the experiment (sta-
tistical approach, also unfriendly for many). Notice 
that most students, and teachers, do not usually see 
another way to tackle the problem, besides the theo-
retical-symbolic one and the empirical-statistical one!

The didactical situation: Tentative script 
and a priori analysis of the enactment 
The teacher flips a coin once and asks for interesting 
exploratory questions. Very likely some students 
suggest to flip it again. Various interesting questions 
may arise. In particular, if the teacher gets, say, 2 or 
3 tails in a row, students may begin to wait for heads. 
Eventually the whole class may get interested in the 
question: How long has one to wait for heads? 

Different answers may come up, the level 0 answer 
being: “Nobody knows, only Jesus knows!”  Other 
answers are expressed in gestural language. Some 
students may suggest experimenting. Each of them 
flips a coin until he or she gets heads.   They realize 
the variability of their waiting times. Some may find 
that the situation is hopeless. Others, more positively 
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minded, may suggest to average. They average their 
waiting times and find, say, 1,7 or 2,6. So what?  

This stirs usually a lot of discussion. Some students 
suggest further experimenting. Other make guesses, 
like “the average should tend to 3”. One natural ques-
tion is what average are we likely to get if we entice 
all students on campus to do the experiment?  

Some become tired of experimenting and begin to 
look for a more theoretical approach. Eventually they 
draw the corresponding possibility tree (a truncated 
binary tree) and assign probabilities with the help of a 
hydraulic or pedestrian metaphor, as in Soto-Andrade 
(2013). Recall that in the first one we visualize the pos-
sibility tree in vertical position, root at the top, pour a 
litre of water at the root and let it drain evenly down-
wards. Probabilities are metaphorized as quantities of 
water. In the second one a suitable number of pedestri-
ans (a power of 2 in this case) starts at the root splitting 
evenly at each junction. Probabilities appear now as 
proportions (ratios) of pedestrians reaching a node in 
the tree. This is easy, but then they realize that to calcu-
late the theoretical average, i.e. the expected waiting 
time, they have to calculate the infinite sum  ,  that 
is rather unwieldy for them. Some students begin to 
intuit  that there should be something like a limiting 
value for the average (if all Chinese waited for heads…) 
or either an “ideal average”. It is not clear for them 
however how to pin it down. The teacher prompts the 
students to suggest other approaches. If no new ideas 
arise, the teacher may suggest to enact the situation, 
all together. 

More precisely, she suggests that all students stand 
up in a circle and each waits for heads when flipping 
a coin. She asks then how they would calculate the 
average waiting time. The students suggest the obvious 
way that entails asking each one of them how many 
times he had to flip the coin to obtain heads, add all 
these waiting times and divide by the number of play-
ers.  The problem arises then however that this proce-
dure does not allow them to guess or to estimate nei-
ther the experimental average waiting time nor the 

“ideal average waiting time”. It is nevertheless clear 
for most of them that “ideally” half of them should get 
heads at the first flip. Then among those who failed, 
ideally one half will get heads at the second flip. This 
is an interesting idea that actually comes up from 
some students, but leads them to an infinite sum all 
the same (although simpler to evaluate than the sum 

above). So the students are still motivated to look for 
a friendlier approach. 

At this point the teacher might suggest that to ask 
every player how long she had to wait for heads is a bit 
cumbersome. The question arises as to how could the 
students proceed in a friendlier and more concrete 
way, so that they really “see” what has happened to 
each one of them (notice the switch to a non verbal 
cognitive style). After some minutes thought at least 
one student suggests:  flip several coins, one after the 
other, instead of just one! All appreciate this bright 
idea and begin to flip one coin after another (eventu-
ally the teacher has to lend coins to some students).  
After a while, each of them has a group of coins in 
front of her.  If nothing happens, the teacher may 
ask them: what do you see?  Some may say: “not very 
much, just a bunch of coins on the floor”. But others 
remark quickly: “there is just one head in front of each 
of us”. Other recall that to calculate the average we 
should count the total number of coins on the floor 
and divide by the number of players.  Said that way  
however, the result is not easy to estimate beforehand.  
Then usually a few students realize that they will be 
dividing the total number of coins by the number of 
coins showing heads.  But they “know” which is the 

“ideal ratio” here: if I see 17 coins showing heads on 
the floor, I would have expected “ideally” 34 coins in 
all. Of course there might be 37 coins instead.  But this 
shows that “ideally” the average of all waiting times 
should be 2.  After this breakthrough, usually the 
teacher invites the students to keep silent and quiet 
for a little while (one minute, say), in an introspective 
attitude, and to visualize the whole picture.  After that 
she may prompt them to draw an image of the whole 
enactment (the circle of players, each with a bunch of 
coins in front of him…), so as to enter the iconic regis-
ter.  And then, according to the mathematical profile of 
the students, she can prompt them to formulate their 
conclusions in symbolic language.

An interesting fact that we have observed is that for 
most mathematicians this enactment is a proof while 
for most secondary school teachers it is not!  Putting 
the whole situation on its head, we could even say that 
we have found an enactive metaphorical proof that the 
infinite sum  adds up to 2. We claim that this is 
closer to real mathematics that the usual purely sym-
bolic, abstract and axiomatic approach, thst is just one 
genre among many possible ones (Manin, 2007; Soto - 
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Andrade, 2014). Finally we should remark that also 
the  equality  =  may be gleaned from our enact-
ment:  when students realize that they should collect 
all coins lying on the floor, the teacher may prompt 
them to suggest different ways to do it.  Usually some 
students come up with the idea of the “common pot” 
(as in a soup-kitchen), like the one squatters occupy-
ing a school in protest would organize (a familiar ex-
perience for many students). The idea is that to collect 
all the coins, the teacher should ask first everyone 
to put one coin into the common pot. All can do that. 
Then she would ask for a second coin. Ideally only 
half of the players are able to do that. And so on. This 
shows immediately that the ideal average of waiting 
times coincides with the sum , hence the equality 
of the two infinite sums above.

The didactical situation: A posteriori analysis
The idea of flipping a new coin after each failure in 
getting heads came up as easily in students majoring 
in humanities and social sciences as in students ma-
joring in mathematics or pedagogy in physics and 
mathematics. The fact that the number of students in 
the circle coincides with the number of coins showing 
heads did not come up very quickly, but we saw no 
significant difference between mathematically ori-
ented students and humanists. Some of them realized 
this after contemplation of an iconic representation 
of their enactment, others did it after staring hard at 
the coins on the floor. A lot of discussion emerges as 
to how to register their results.  

The relationship between the experimental average 
waiting time and the ideal one emerged rather slow-
ly. Estimates of the experimental average of waiting 
times for millions of people varied in a significant way 
between students a and b, c.  Recall  that the former 
had previously flipped a coin 100 times and registered 
what they observed (not just the final result, but the 
whole process!). So they realized that the simplest av-
atar of randomness already creates shapes that look 
like mountain ridges and stock exchange charts.  They 
were less prone than students b and c to think that 
in we cannot say anything sensible or even approx-
imate about random experiment results. They also 

“saw” more easily that the ideal average waiting time 
should be 2, the inverse of the ideal relative frequency 
of heads when you flip many times a coin. 

In all groups of students those who intuited that the 
ideal average waiting time should be 2 (out of statis-

tical experimentation) related this immediately with 
the inverse of the ideal relative frequency of heads 
when flipping a coin many times. All students con-
jectured quickly after this experience that the ideal 
average waiting time for   “ace” when tossing a dice 
should be 6. Further work in more advanced symbol-
ic mode was easier with students b and c that had a 
more intensive mathematical training. Sometimes a 
game emerged after this enactment, that may suggest 
another approach to the expected waiting time: the 
teacher gives each student as many coins as necessary 
to get heads flipping them one after another. When 
a student finally gets heads, the game is over and he 
keeps all flipped coins. The natural question is:  How 
much should the teacher charge for playing this game, 
so that it becomes a fair game?

DISCUSSION AND CONCLUSIONS   

Crossing a priori and a posteriori analyses we see that 
several years of traditional mathematical training 
(students b and c) did not make a significant difference 
in performance in an enactment like the one we report 
here: students a, who come directly from high school, 
usually with a poor relationship to mathematics, did at 
least as well as students b and c, when trying to figure 
out enactively the value of the ideal average waiting 
time for heads. In fact they did even better regarding 
their intuition of the behaviour of the experimental 
average waiting time for an increasing number of 
flippers. We conjecture that this phenomenon is due 
to the fact that – in contrast to students b and c - they 
had made the enactive experience of flipping a coin 
100 times and registering the whole stochastic pro-
cess, realizing its relationship with everyday shapes 
like mountain ridges and stock exchange charts.  This 
suggests that in some sense enactive experiences 
may concatenate and interact in a feedback loop in 
the life story of the learners, as suggested in Varela, 
Thompson and Rosch (1991):   “cognition is not the rep-
resentation of a pre-given world by a pre- given mind 
but is rather the enactment of a world and a mind on 
the basis of a history of the variety of actions that a 
being in the world performs” (emphasis is ours).

We also observed that learning enactively is not a 
one man (or woman) show, it is a   collective social 
undertaking, that may be seen upon in some cases 
as an avatar of swarm intelligence. We have noticed, 
especially in group a, that among students reacting 
remarkably faster and better than the average in 
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enactive situations, a high percentage of come from 
alternative Montessori or Waldorf schools.  

We should remark that our enactive approach poses 
some significant challenges: teachers and students 
need to be able to play tightrope walkers and transit 
seamlessly between different cognitive styles (from 
symbolic to enactive particularly). Special support 
and dedication is needed for those who come from 
more formal and robotic school systems, so that they 
can progressively adapt to new ways of working and 
approaching mathematical experience and knowl-
edge. If this sort of “cognitive therapy” is not provided 
(by a devoted highly qualified teacher assistant, for 
instance) the risk arises of a severe stratification in the 
classroom, that could demotivate many students. We 
see then that significant situational intelligence, in the 
sense of Masciotra, Roth, & Morel (2007) is required 
from teachers as enactive practitioners.

On the other hand, as pluses of our approach we 
have observed that is very often highly motivating 
for the students, involves surprise (a key factor for 
learning, according to Peirce and Freire), knowledge 
is constructed in a cooperative way in the classroom, 
space is given for questions to emerge from the stu-
dents in experiential situations, instead of answers 
being given to them before they have a chance to 
ask the questions first (Freire, 2011; Tillich as cited 
by Brown, 1971;  Mason, 2014) and finally, it fosters 
participation so that students become  protagonists 
of their learning.

As open ends, we may mention, among others:  the 
didactical study of histories of enactive experiences of 
the learners; the relation between enaction and intui-
tion (first steps in this direction may be found in Diaz-
Rojas, 2013); the systematic study of the emergence 
of enactive metaphoring in suitable didactical situ-
ations; the enactive exploration of the real meaning 
of being mathematical in the classroom in the sense 
of Mason (2014), research on curriculum reshaping 
motivated by the enactive approach in mathematics 
education.
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