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refer for example to [12–19]. It is also well known that considering
additional kinematic descriptors, which leads to the so-called
micromorphic continuum models, can be seen as a general-
ization of higher gradient theories. For instance, in the case of the
system here considered, one could use an independent kinema-
tical descriptor to account for the geodesic (in-plane) bending of
the beams. The wide generality of micromorphic continua makes
them one of the most powerful theoretical tools to study the
behavior of very complex mechanical systems; on micromorphic
continua a classic reference is [20], while a review of some more
recent results is [21,22]. The state-of-the-art literature clearly
shows that higher gradient models and micromorphic continua
are nowadays very relevant and vital research areas, and therefore
lines of investigations potentially capable to address some related
foundation issues can be of great interest.

Concerning the numerical investigation of systems of the type
herein considered, one should take into account that it can very
easily lead to non-trivial problems (see for more details [23,24]), in
particular when considering peculiar geometrical configurations;
however, recent results in numerical analysis of similar cases
involving nets of beams or related homogenized system can prove
useful also in our context. Recent developments in finite element
analysis have indeed provided sharp tools for addressing problems
in which large displacements and deformations are involved (for
applications of Isogeometric Analysis for discrete systems and the
reader is referred e.g. to [25–28], while for application of free-
locking finite element analysis to continuous systems see e.g.
[29,30]). Another typical source of troubles in this context is the
onset of instabilities of various kinds, and also in this direction

some recent results (as those exposed e.g. in [31–35]) have
strongly helped the possibility of novel theoretical developments.
The development of new numerical tools can also have con-
sequences on the degree of interest of some subjects. The classic
theory of beams by Euler considered in the present paper, for
instance, still offers space for far from trivial investigation, espe-
cially considering that today's computational tools allow the study
of exotic geometrical or elastic features (as done for example in
[36–39]). On the whole, the availability of new numerical results
and methods seems to suggest that it is probably the right
moment to try to systematically address via numerical investiga-
tion the aforementioned theoretical issues.

Let us start by briefly recalling the main features of the con-
sidered system (for a more detailed description see [1]). Each
beam belonging to one of the two arrays is connected with hinges
to the beams belonging to the other array, thus resulting in a
structure which is natural to call a pantographic sheet. Notice that
each beam is continuous throughout all its length. The structure is
therefore actually constituted by arrays of beams, whereas the
presence of hinges interrupting the continuity of the beams would
have led to a typical truss. The effect of hinges is, then, only that of
constraining two discrete sets of points, belonging respectively to
the two families of the beams, to have the same displacement (see
Eq. (2)). In Fig. 1 the reference configuration Cn is represented.
Beams are graphically represented by lines, belonging to two
families (α, β) of parallel and equally distanced beams (with step-
length d), mutually orthogonal in the reference configuration. Cn

has a rectangular shape with sides length ℓ¼
ffiffiffi

2
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♭¼
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W d, and in it the two families α and β intersect at 45°. As

Fig. 1. The reference configuration of the 2D pantographic sheet.

Fig. 2. Axial strain evaluated at the cross-section's beam centroid.

Fig. 3. Axial force.
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graphically indicated in the figure, beams belonging to α and β are
respectively denoted with the integer indexes i and j ð0r irLþW ,
0r jrLþWÞ. Every intersection is therefore uniquely determined
by a pair of indexes (i,j).

Each beam has a deformation energy density given by:

E ¼ kMðϕ0Þ2þkNðw0Þ2
2

: ð1Þ

Here ϕ and w are respectively the magnitudes of the rotation of
the cross section of the beam and of the axial displacement w with
respect to reference configuration of the beam, and kM, kN are
respectively bending and axial stiffness coefficients.

Dots in Fig. 1 represent hinges that are kinematically defined by
the following vector equation:

ubði; jÞþwbði; jÞ ¼ ucði; jÞþwcði; jÞ; ð2Þ

Fig. 4. Internal forces along the marked beam.
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where u is the transverse displacement with respect to the
reference configuration of the beam. The previous relation must
hold 8bAα; cAβ, and for all integers i; j such that 0r irLþW and
0r jrLþW .

The actual configuration Ct is characterized, with respect to Cn,
by ‘small’ deformations and (possibly) ‘large’ displacements. These
geometric and kinematic characteristics of the system lead (even
when considering a linearized beam model) to the onset of sharp
non-linearities, as we will see below.

2. Static analysis

In this section a static study of the considered structure is
provided for a reference configuration Cn with a shape ratio
ℓ=♭¼ 4. All numerical simulations were performed with COMSOL
Multiphysics.

We prescribed an imposed horizontal displacement Δu on the
points belonging to the right side of Cn. Our value for Δu is 1/3 of
the length ℓ of the basis of Cn. The left side is clamped. In Fig. 2 the
axial deformation of the system in the given conditions is shown.
The deformation field of the beam axes for α and β is also plotted.
Right and left sides are undeformed, and it can be seen that, as it is
well known in the continuous case, two triangle-shaped regions
close to the sides are stressed at a very low level, while a higher
concentration of strain is observed in the vertexes and gradually
decreases along the sides of the two aforementioned triangular
regions. These results are confirmed by well-established experi-
mental data (see e.g. [40,41]).

In Fig. 3, the axial force relative to the previous simulation is
plotted. As one could expect from the previous case, a maximum

value for the magnitude of the axial force is reached at the ver-
texes, and moreover the peak is quite sharp.

In the next group of static simulations (see Fig. 4), we con-
sidered a particular beam (j¼0, highlighted in the bottom panel)
and studied different mechanical variables related to it. This spe-
cific beam was chosen because it is representative of the most
stressed region, as observable from the previous figure. The three
cases are relative to an increasingly dense beams configuration.
Panels A–B, C–D, and E–F are indeed referred to an undeformed
configuration Cn in which the step-length is respectively 2d, d and
d/2 (the second case corresponds to the reference configuration
shown in Fig. 1). In panels A, C and E, the axial force (N) is plotted
versus beam curvilinear abscissa (m). Also in these cases a pre-
scribed displacement Δu of magnitude ℓ=3 has been imposed to
the points belonging to the right side, while the left side is
clamped. As one can see, the force is piece-wise constant, which is
clearly due to the fact that it is exerted by the hinges. As the
number of beams increases, the plot seems to converge to a highly
non-linear curve, having a sharp maximum near to 0. This char-
acteristic can have interesting implications of the applications,
since it means that the considered kind of structure has a very well
predictable tensile fracture region. The maximum observed value,
moreover, is dependent on the number of considered beams
(respectively � 12 N, � 30 N and � 60 N in panels A, C and E).

In panels B, D, F the bending moment (N m) is plotted versus
beam curvilinear abscissa (m). In this cases, the trend is piece-wise
linear, with a 0 value at the beginning, while a marked minimum
is visible around the middle of the beam. As the number of beams
increases, the plot seems to converge, also in this case, to a
strongly non-linear curve. A typical edge effect is observable
around the end of the beam. As there are no hinges in the end
points of the beams, upper end points are unstressed.

In the next simulation, the angle θ that the beams form at the
crossing points is considered. In particular, the difference Δθ

Fig. 5. Variation of angle between the two families of beams at the center of the
pantographic sheet as a function of the prescribed displacement. A comparison
with the linear regime (dot-dashed line) is provided.
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Fig. 7. Prescribed displacement.

Fig. 6. Beams' curvature.
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(degrees) between the actual value of θ at the center point of the
structure and the reference value θ0 ¼ 901 at the same point is
plotted versus the prescribed displacement Δu (m). The con-
sidered values for Δu are 10 equally spaced values between 0 and
0.153 m. In Fig. 5, a comparison with a linear behavior (dot-dash
line) is shown. Also in this case a significant non-linearity is
observable. The fact that the differenceΔθ can have large values in
this kind of loading is of course of important in case ideal hinges
are replaced by hinges with an associated rotational stiffness,
which is true in almost every real-world case.

In Fig. 6 the curvature (m�1) of the beams is plotted, again with
a prescribed displacement Δu¼ ℓ=3 imposed on the points
belonging to the right side and a clamped left side. The behavior in
this case is highly significant for our purposes, because it shows a
richness which is not compatible with a classic first gradient
model. Indeed, two practically undeformed regions are connected
(smoothly along each beam) via a ‘boundary layer’ which is
markedly deformed. It is therefore reasonable to conjecture that

the homogenized limit of the considered structure is best modeled
by a second gradient continuum.

3. Analysis of some dynamic cases

Discrete systems' dynamics can be very complex, possibly
involving all the exotic and peculiar behaviors one can find
studying continuum systems (for a description of some of the
possible dynamic phenomena like unusual wave propagation or
dissipation which may occur in this kind of structures, the reader
can refer to e.g. [42–45]).

Four dynamic cases are considered in this section for a refer-
ence configuration Cn with a shape ratio ℓ=♭¼ 25. In Fig. 7, the
time history of an impulsive time-dependent displacement u(t),
having its maximum at t¼0.003 s, is shown. The displacement u(t)
is then imposed to the points belonging to the right side of the
structure, while the left side is clamped. The consequent evolution

Fig. 8. Propagating wave as a consequence of an imposed time-dependent longitudinal displacement at the right side of the sheet.
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of the system is shown in Fig. 8, where the total rotation of the
cross section of the beams is plotted. The six snapshots are relative
to time steps of 0.00225 s starting from the time at which the
displacement reaches its maximum value ðuMax ¼ 0:025 mÞ. A quite
standard wave propagation arises, strongly resembling that cor-
responding to a continuum case. Dispersion is observable, as one
can judge from the increasing length of the perturbed area.

In the next case, we wanted to check how the structure
responds to a loading which in its continuum limit resembles a
(bending) couple. We indeed considered a system of three
impulse-like forces F1, F2, F3, which are time-dependent and self-
equilibrated (having both resultant and resultant moment equal to
zero) in every instant, and have maximum values of 1 N (F1) and 1/
2 N (F2, F3). They are applied to the end points of three contiguous
beams in the center of the system, i.e. F2 at point ði¼ 0; j¼ L=2�1Þ,
F3 at point ði¼ 0; j¼ L=2þ1Þ and F1 at point ði¼WþL=2; j¼ L=2Þ.
The three forces are oriented along the direction of the beams
belonging to one of the two families (α). The wave propagation
originated in this way is particular interesting for our purposes, as

the axial deformation is negligible in all the time history, while a
significant bending perturbation is traveling (see Fig. 9). This also
suggests that the homogenized limit of the considered system
requires a second gradient model.

The third dynamic case that we considered concerns the simul-
taneous prescription of two opposite time-dependent displacements
on the two sides of the system in the same direction of the α-family
beams. The trend of the time history of the prescribed displacement
is the same as that displayed in Fig. 7. In Fig. 10, six snapshots are
presented with a time step of 0.0027 s, starting from the time cor-
responding to the maximum value of the prescribed perturbation
ðuMax ¼ 0:01 mÞ. The rotations of the cross section of the beams are
graphically represented. Also in this case considerable dispersion is
observable, and the propagation and the interaction of waves closely
resemble analogous cases in continuum media.

Finally, we considered in Fig. 11 the case of two pantographic
sheets connected by an array of hinged longitudinal beams kM ¼ 1:96
�10�2 N m2 and kN ¼ 7:85� 104 N; specifically, these beams are
incorporated in an elastic medium to prevent rigid motion (indeed,

Fig. 9. Propagating wave as a consequence of an imposed time-dependent system of three self-equilibrated forces.
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without this matrix, we would have an array of four-bar linkages).
The displacement is prescribed to the points belonging to the right
side and is oriented along α, and has a maximumvalue of 0.02 m; the
time-step is the same as for the previous simulations. As one can see,
there is practically no wave propagation beyond the discontinuity at
the center, and this circumstance suggests a potentially useful
employment of pantographic sheets with internal discontinuities in
the designing of filters capable to effectively damp vibrations.

4. Conclusions

It is well known that the behavior exhibited by systems con-
stituted by very simple interacting objects can be much more
complex and rich than one could expect from the single con-
stitutive element. In the present work, the investigated mechan-
ical system was indeed constituted by ordinary (non-linearized)
Euler beams displayed in a geometrically periodic configuration.
The numerical analysis of the structure showed peculiar (strongly

non-linear) trends for the axial force, the bending moment and the
relative rotation between the beams.

The technological appealing of pantographic sheets is linked to
the possibility of combining high mechanical strength with light-
ness and flexibility. The structure considered in the present paper
has indeed a potentially very attractive strength-to-weight ratio
(especially in case suitable materials, like kevlar or carbon fiber,
are employed). Moreover, the pantographic sheet is in our opinion
particularly interesting since it adds to this feature a very well-
predictable fracture behavior. Indeed, the static analysis above
performed showed that not only the maximum values for the
tensile stress and bending moment are quite concentrated in
specific areas, but also that the peak shown there is very sharp,
thus allowing a very simplified checking procedure for the
mechanical resistance of real-world prototypes.

The need to investigate the theory of the homogenized limit of
structures with the mechanical and geometrical characteristics here
described comes from two directions. First of all, the realization of
real pantographic sheets made of a very large number of beams, and

Fig. 10. Propagating waves as a consequence of two opposite prescribed time-dependent displacements at both sides of the sheet.
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in particular the possibility to consider even nano-objects and the
consequent desire to numerically predict their behavior, would lead
to a sharply increasing computational complexity, so that a formal
theory for the continuum case would have a significant practical
meaning. Besides that, the features here discussed seem to indicate
that a generalized continuum approach is needed for the theory of
the homogenized limit of a pantographic sheet, and therefore one
cannot underestimate the theoretical significance of the study of a
rigorous homogenization procedure for this kind of structures.

Of course, the implicit simplification due to the assumption of
ideal hinges has to be replaced, if one wants to proceed towards
concrete applications, by more realistic hinges having a nonzero
rotational stiffness. Moreover, since the axial stiffness is usually
much larger than the bending stiffness, it would be reasonable to
consider pantographic sheets made of inextensible fibers as a
better approximation of real objects. The theoretical, numerical
and experimental investigation of such kind of structures looks
indeed a very promising research field at the moment.
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