
A LINKING INVARIANT FOR ALGEBRAIC CURVES

BENOÎT GUERVILLE-BALLÉ AND JEAN-BAPTISTE MEILHAN

Abstract. We construct a topological invariant of algebraic plane curves, which is in some
sense an adaptation of the linking number of knot theory. This invariant is shown to be a
generalisation of the I-invariant of line arrangements developed by the first author with Artal
and Florens. We give a practical tool for computing this invariant, using a modification of the
usual braid monodromy. As an application, we show that this invariant distinguishes a new
Zariski pair of curves, i.e. a pair of curves having same combinatorics, yet different topology.
These curves are composed of a smooth cubic with 5 tangent lines at its inflexion points. As
in the historical example of Zariski, this pair can be geometrically characterized by the mutual
position of their singular points.

1. Introduction

The topological study of algebraic plane curves was initiated at the beginning of the 20th
century by F Klein and H Poincaré. One of the main questions is to understand the relationship
between the combinatorics and the topology of a curve. It is known, since the seminal work of
O Zariski [18, 19, 20], that the topological type of the embedding of an algebraic curve in the
complex projective plane is not determined by the combinatorics. Indeed, Zariski constructed
two sextics with 6 cusps having same combinatorics, and proved that the fundamental group of
their complements are not isomorphic. Geometrically, these two curves are distinguished by the
fact that the cusps in the first curve lie on a conic, while they do not in the second one. Since this
historical example, using various methods, numerous examples of pairs of algebraic curves having
same combinatorics but different topology have been found, see for example E Artal, J I Cogol-
ludo and H Tokunaga [3], P Cassou-Noguès, C Eyral and M Oka [8], A Degtyarev [9], M Oka [14],
I Shimada [15], or the first author [11]. E Artal suggests in [1] to call such examples Zariski pairs.

The topology of curves in CP2 is intimately connected to the topology of knots and links in S3.
Several tools are indeed shared by these two domains, such as the homology or the fundamental
group of the complement, the Alexander polynomial or module, etc, although they usually have
rather different behaviors.

Recently, E Artal, V Florens and the first author defined a topological invariant of line ar-
rangements (i.e. algebraic plane curves with only irreducibles of degree 1) which is in some sense
modeled on the linking number of knot theory [4]. This invariant was then successifully used
in [11] to distinguish a new Zariski pair. In the present paper, we construct another invariant
adapting the linking number to the more general case of algebraic plane curves. In the case of a
line arrangement, this invariant is shown to be equivalent to the invariant of [4], thus providing
a generalization of this earlier work through a different adaptation of the linking number.

The construction of our linking invariant can be roughly outlined as follows. The basic idea
is to consider a cycle γ in an algebraic plane curve C, which in some sense intersects a minimal
number of components of C, and take its image in the first homology group of the complement ECcγ
of the curve Ccγ formed by the components which do not intersect the cycle γ. Unfortunately such
cycles – and thus their homology classes – are not well defined in general. One of the issues here
is the non existence of a canonical basis of the first integral homology group of the components
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with nonzero genus, hence the definition of cycles traversing such components. In order to remove
these indeterminacies, we consider the linking set {γ}, which is defined as the set of all cycles
combinatorially equivalent to γ (in the sense that they have same projection on the incidence
graph of C), regarded in the quotient of H1(ECcγ ) by an appropriate indeterminacy subgroup Iγ .
Roughly speaking, this indeterminacy subgroup measures the combinatorial difference between
various embeddings of the cycle in the complement ECcγ . The result is a topological invariant of
ordered and oriented algebraic plane curves

This linking invariant has a nice behaviour for some particular choice of curve or cycle. In the
case of rational curves, that is, curves whose irreducible components have all genus 0, we indeed
observe that the linking set is simply a singleton. This allows us to prove the equivalence with
the I-invariant of [4] in the case of line arrangements. We also obtain a stronger version of the
invariance theorem in the case of a cycle contained in a single irreducible component.

From a practical viewpoint, we also show how this invariant can be computed on concrete
examples, using an adaptation of the braid monodromy. This makes a concrete connection be-
tween our invariant and the usual linking number of knot theory.

To illustrate this adaptation of the linking number to algebraic curves, we use it to distinguish
a family of new Zariski pairs. These new examples are formed by curves of degree 8 and are com-
posed of a smooth cubic and 5 tangents lines at the inflexion points of the cubic. These examples
are noteworthy in that they are characterized by a similar geometric property as Zariski’s histor-
ical example; more precisely, these curves can be distinguished by the conic passing through the
5 tangent points, which intersects the cubic in exactly 5 points in the first curve and at 6 points
in the second one. It would be interesting to investigate the behavior of the linking invariant on
other known examples of Zariski pairs, which are in some sense close to the above ones. Very
recently, T Shirane succeeded in showing that a series of curves proposed by Shimada [16] indeed
form π1-equivalent Zariski tuples [17]; the simplest of these examples is given by a cubic and a
quartic intersecting along 6 double points. We expect that our invariant might be able to detect
(some of) these examples, and that it might be related to Shirane’s construction. Furthermore,
establishing such a relation may allow to determine whether our invariant is independent of the
fundamental group of the complement. Other close examples are to be found in the work of Artal
and Tokunaga [6]. Note that in both situations, the quotient by the indeterminacy subgroup
involved in our construction turns out to be non trivial, thus suggesting that the linking invariant
could detect the different topologies.

The rest of this paper is organized as follows.
In Section 2, we recall some basic definitions and results on the topology and combinatorics

of algebraic curves. In particular, we define the incidence graph, which encodes parts of the
combinatorics of the curve, and recall the Zariski-van Kampen presentation of the fundamental
group of the curve complement, using braid monodromy.

Section 3 contains the construction/definition of the linking set and of the indeterminacy
subgroup associated to a cycle of the curve. In the latter part of this section, we state and prove
the main invariance theorem (Theorem 3.13).

Some particular cases of the invariance theorem are studied in Section 4, corresponding to the
cases of rational curves and of a cycle sitting in a single irreducible component. The equivalence
of our linking invariant with the I-invariant of [4] for line arrangements is given in this section.

Section 5 deals with the computation of the linking set. We slightly modify the usual notion of
braid monodromy to compute the image of a cycle in the first homology group of the complement
ECcγ . This is illustrated with the example of a smooth cubic and two tangent lines.
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We give in Section 6 the main application of our construction, namely a set of new Zariski
pairs. This is done by an explicit definition and computation, using the above mentioned method,
together with an additional argument that allows to remove a restrictive hypothesis of the in-
variance theorem.

Acknowledgement. The authors would like to thanks E Artal for the construction intuition of
the Zariski pair, and V Florens for his comments on the manuscript.
The first author is supported by a JSPS Postdoctoral Fellowship.

Notations and conventions. We will make use of the following throughout the paper.
• Unless otherwise specified, C denotes a reducible curve in CP2 of degree d, with irre-

ducible components: {C1, · · · , Cn}.
• A cycle in the curve C is a closed loop in C with non trivial homology class in H1(C,Z),

which may contain singular points of arbitrary multiplicity.
• All homology groups are to be understood with integral coefficients, and this will often

be omitted in the notation.

2. Preliminary definitions

This section contains some well-known results on the combinatorics of curves (see [3] for more
details), and on their topology, such as braid monodromy or the Zariski-van Kampen presentation
of the fundamental group of the complement.

2.1. Combinatorial data.

2.1.1. Combinatorics. We review here the combinatorial data naturally associated with a plane
curve. Formally, we have

Definition 2.1. The combinatorics of C is the homeomorphism type of the pair (Tub(C), C),
where Tub(C) is a tubular neighbouhood of C.

Following [5], this definition can be given a more ‘combinatorial’ flavour as follows. The
combinatorics of C is given by the data(

Irr(C),deg,Sing(C), σtop, {βP }P∈Sing(C)
)
,

where:
• Irr(C) is the set of all irreducible components of C,
• deg assigns to each irreducible component its degree,
• Sing(C) is the set of all singular points of C,
• σtop assigns to each singular point its topological type,
• for each singular point P ∈ Sing(C), βP assigns to each local branch of C at P the global

irreducible component containing it.
Two curves have the same combinatorics if there exist bijections between their sets Irr and

Sing of irreducible components and singular points, which are compatible with the assignments
deg, σtop and {βP } in the natural way; see [5, Rem. 3] for details.1

The combinatorics is ordered if we add an order on the set Irr(C) = {C1, · · · , Cn}. In this
case, two curves have the same ordered combinatorics if the bijection between the sets Irr also
preserves the order.

1Here, we adopt a somewhat condensed definition of the combinatorics compared to that of [5, Rem. 3], where
the assignment σtop (resp. {βP }) implicitly contains the data of the set of topological types in Sing(C) (resp. the
set of local branches of C at P ).
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2.1.2. Incidence graph. A part of the combinatorics of C can be encoded graphically as follows.

Definition 2.2. The incidence graph ΣC of C is a bipartite graph, where the vertex set is
decomposed into

• VIrr = {vC | C ∈ Irr(C)}, the component vertices;
• VSing = {vP | P ∈ Sing(C)}, the point vertices.

An edge of ΣC joins vC ∈ VIrr to vP ∈ VSing if and only if P ∈ C.

So, roughly speaking, this graph contains the information of the ‘handles’ formed by the
intersection of the irreducible components.

Given a cycle γ in C, there is a natural projection Σ(γ) of γ on the incidence graph ΣC , which
we define below. To do so, we first recall some basic vocabulary.

Let Σ be a finite graph with no multiple edges, i.e. no pair of edges with same endpoints.
A walk on Σ is a finite sequence (v0, v1, · · · , vk) of vertices in Σ, possibly with repetitions, such
that vi and vi+1 are connected by an edge ei for each i ∈ {0, · · · , k − 1}. The composition
of two walks (v0, · · · , vk) and (v′0, v

′
1, · · · , v′k) such that vk = v′0 is simply defined as the walk

(v0, · · · , vk, v′1, · · · , v′k). A closed walk is a walk where the first and last vertices v0 and vk
coincide. In this paper, we will consider closed walks up to cyclic permutations. Finally, a walk
is called contractible if the path obtained by following the edges ei when i runs from 1 to k − 1
is a contractible path in ΣC .

We can now define the projection Σ(γ) on the incidence graph ΣC of a cycle γ in C, as
follows. If γ avoids Sing(C), then it is contained in a single irreducible component C ∈ Irr(C),
and Σ(γ) is simply the corresponding vertex vC . Otherwise, γ decomposes as a union of paths
with endpoints in Sing(C); for each such path connecting, say, the singular point p to p′ in
the irreducible component c, consider the corresponding walk in ΣC , given by the sequence
(vp, vc, vp′); the projection Σ(γ) is then given by composing the walks associated with each path,
in the order of passage when running along γ. (Since we consider walks up to cyclic permutation,
this does not depend on a choice of base point on the cycle.)

2.2. Topology of the complement. We now recall some well-known facts on the topology of
algebraic curves and their complement.

Definition 2.3. The topological type of a curve C is the homeomorphism type of the pair
(CP2, C).

This definition is classically refined in two compatible ways. On one hand, the topological
type is oriented if we further require that the homeomorphism preserves the global and the local
orientation (around the irreducible components of C). On the other hand, it is ordered if the
homeomorphism preserves a fixed order on the irreducible components of C.

The fundamental group of the complement is finitely presented, and an explicit presentation
can be given using the so-called Zariski-van Kampen method [13, 10], which we briefly outline
below.

Let ∗ be a point in the complement EC = CP2 \C of the curve C, and L∞ be a line containing
∗ and intersecting C at d points. Pick in L∞ a system of meridians {m1, · · · ,md} around these d
intersection points, based at ∗. The fundamental group π1(L∞ \ C) is generated by m1, · · · ,md,
with (only) relation m1 · · ·md = 1.
Now, consider the projection CP2 \ {∗} → CP1 centered at ∗. Pick in this CP1 a system of
meridians {σ1, · · · , σr} around each point aj such that the fiber Laj above aj is either tangent
to C or passes through a singular point of C (j = 1, · · · , r).
For any based simple closed loop σ ⊂ CP1 which is disjoint from the points aj (j = 1, · · · , r), the
fiber over each point of σ intersects C at d distinct points, so that the loop σ defines naturally
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Figure 1. Real picture of the curve T .

an element of the fundamental group of the configuration space of d points, which is the braid
group on d strands. This braid associated with σ acts naturally on π1(L∞ \ C), and this action
is called the braid monodromy of σ.
In particular, each meridian σj induces a braid monodromy action ρj ∈ Aut (π1(L∞ \ C)).

Theorem 2.4 (Zariski–Van Kampen; [13]). The fundamental group of the complement of C has
the following presentation

π1(EC) ' 〈m1, · · · ,md | m1 · · ·md = 1 and ρj(mi) = mi ; i = 1, · · · , d− 1, j = 1, · · · , r〉.

The first homology group of EC can be deduced from the above. Since any two meridians of
each component Ci of C are conjugate, we can consider their conjugacy class xi (i = 1, · · · , n) so
that, if we denote by di the degree of the irreducible component Ci of C, we have:

Theorem 2.5. The first integral homology group of the complement of C has the following
presentation

H1(EC) ' 〈x1, · · · , xn | d1x1 + · · ·+ dnxn = 0〉.
In particular, H1(EC) is isomorphic to Zn−1 × Zgcd(d1,··· ,dn).

Note that H1(EC) is thus free of rank n− 1 as soon as some component of C is a line.

3. The linking invariant

In this section, we define the main object of this paper, namely the linking invariant of alge-
braic curves, and give some of its main properties.

In order to illustrate the definitions given in this section and in Section 5, we will consider the
example of the curve T defined as the cubic C : x3 − xz2 − y2z = 0, with its two real tangents
lines (denoted by T1 and T2). The part of the curve T for x ∈ (−1; 3) is pictured in Figure 1.

Notation. In what follows, C denotes an algebraic curve as in the previous section.
Although our construction does not involve any choice, it will be convenient for making this con-
struction more explicit to fix, once and for all, a homological parametrization of each irreducible
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component of our given algebraic curve C. More precisely, we fix here the assignment

{ΓC}C∈Irr(C)

of an ordered set of oriented simple closed curves on each component C ∈ Irr(C), that forms a
basis for its first integral homology group. Note that this additional piece of data is vacuous if
and only if the curve is rational (i.e. all components have genus 0).

3.1. Some definitions. We begin with definitions necessary for the construction of our linking
invariant.

Definition 3.1. Let γ be a cycle in a curve C. The support of γ is the union of the irreducible
components of C that intersect any simple closed curve c freely homotopically equivalent to γ:

Supp(γ) =
⋂
c∼γ
{C ∈ Irr(C) | C ∩ c 6= ∅} .

Likewise, the internal support of γ is the subset of Supp(γ) defined by
◦

Supp(γ) =
⋂
c∼γ

{
C ∈ Supp(γ) |

◦
(C ∩ c) 6= ∅

}
.

In what follows, we will only consider a particular family of cycles, which are those cycles that
are contained in their supports.

Definition 3.2. A cycle is minimal if it is contained in the components of its internal support.

Let γ be a minimal cycle of C, then we set

Cγ =
⋃

C∈Supp(γ)

C and Ccγ =
⋃

C/∈Supp(γ)

C.

We have then C = Cγ ∪ Ccγ , and Cγ ∩ Ccγ ⊂ Sing(C).

Remark 3.3.
(1) If γ is a minimal cycle of C then it can be seen as a loop in the complement ECcγ of Ccγ .
(2) The support of a curve is in general not well defined for a homology class, i.e. two

homologuous curves may have different supports.

The following proposition asserts that there always exists a minimal representative within a
given (non trivial) free homotopy class.

Proposition 3.4. For any cycle γ in a curve C, there exists a cycle of C with the same free
homotopy class as γ, and which is contained in the internal support of γ.

Proof. Let γ1 and γ2 be two homotopically equivalent cycles of C. We denote by Cγ1 and Cγ2
the union of the irreducible components of C intersecting γ1 and γ2, respectively, and we set
C1,2 = Cγ1 ∪ Cγ2 . Recall that, by the Seifert-Van Kampen Theorem, the fundamental group of
an algebraic curve admits a presentation with two kinds of generators, the first kind coming
from the genus of the irreducible components, and the second from the ‘handles’ formed by
the intersection of the irreducible components. Note that the second kind of generators can be
obtained by lifting a basis of cycles of the incidence graph. Using such presentations, one can
easily check that

(
π1(Cγ1)/π1(Cγ1 ∩ Cγ2)

)
∩
(
π1(Cγ2)/π1(Cγ1 ∩ Cγ2)

)
is the trivial group. Now, if

γ is the class of γ1 and γ2 in π1(C), then this implies that γ is an element of π1(Cγ1 ∩Cγ2), hence
has a representative in Cγ1 ∩ Cγ2

This shows that there always exists a cycle supported by the intersection of the supports of
two homotopically equivalent cycles, and this is thus also true for the intersection of the supports
of all the representatives of the homotopy class of γ. �
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Definition 3.5. Two minimal cycles of C are combinatorially equivalent if they have the same
projection in the incidence graph ΣC (up to cyclic permutation).

The difference in H1(ECcγ ) between two minimal cycles which are homotopically equivalent in
C is combinatorial. More precisely, it is an element of the following subgroup:

Definition 3.6. The indeterminacy subgroup Iγ(C) associated to γ is the subgroup of H1(ECcγ )
defined by

Iγ(C) =

〈 ∑
C∈SuppcP (γ)

lkP (C,D) ·mC | ∀D ∈
◦

Supp(γ),∀P ∈ D ∩ Sing(C)

〉
,

where
• the summation is over the set SuppcP (γ) = {C /∈ Supp(γ) | P ∈ C}. This is the set of

all irreducible components which are not in the support of γ containing P , where P is a
singular point of C lying in a component of the internal support,
• lkP (C,D) is the local linking number at P of the component C with the component D

of Supp(γ) containing P .

Remark 3.7. The linking number lkP (C,D) is merely the order of the singular point between C
and D at the point P , see e.g. [7, pp.439].

Example 3.8. Let us consider the curve T of Figure 1, and the case of a cycle γ contained
in the cubic C. The support (and the internal support) of γ is only composed of the cubic C.
Then we have Tγ = C and T cγ = T1 ∪ T2. Remark that H1(ET cγ ) = 〈x1, x2 | x1 + x2〉 (due to
Theorem 2.5). Since the order of the intersection point of C with Ti is 3, then lkC∩Ti(C, Ti) = 3.
Finally, we have

H1(ET cγ )/Iγ(T ) = 〈x1, x2 | 3x1, 3x2, x1 + x2〉 = (Z3)2/〈x1 + x2〉 ' Z3.

Notation. If there is no ambiguity, Iγ(C) is also simply denoted by Iγ .

The indeterminacy subgroup of a cycle is determined by the combinatorics and the projection
Σ(γ) of γ in ΣC . Thus, if C and D are two combinatorially equivalent curves, and γ and µ are
combinatorially equivalent cycles in C and D, respectively, then Iγ and Iµ are isomorphic. We
call natural isomorphism the isomorphism

φ : H1(ECcγ )/Iγ → H1(EDcµ)/Iµ

induced by the isomorphism between H1(ECcγ ) and H1(EDcµ) sending meridian to meridian and
respecting both the orientation and the order on Irr(Cγ) and Irr(Dµ).

If γ is a minimal cycle in C, then it can be seen as a cycle in the complement of Ccγ . We denote
by γ̂ its value in H1(ECcγ ), and by [γ] the class of γ̂ in H1(ECcγ )/Iγ .

We can now define the main object of this paper.

Definition 3.9. Let γ be a minimal cycle of C. The linking set of γ, denoted by {γ}, is the subset
of H1(ECcγ )/Iγ formed by the classes of all minimal cycles that are combinatorially equivalent
to γ.

Remark 3.10. Adding or removing components of C lying in the support of γ but not in its
internal support does not modify the linking set of γ and the quotient H1(ECcγ )/Iγ .

The next result gives a more explicit description of the linking set, in terms of the homological
parametrization {ΓC}C∈Irr(C) fixed at the beginning of this section.
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Proposition 3.11. Let γ be a minimal cycle of C.
(1) If the projection Σ(γ) on the incidence graph ΣC is not contractible, then {γ} is the set

〈γ〉 :=

[γ] +
∑

C∈
◦

Supp(γ)

∑
g∈ΓC

ag · [g], with ag ∈ Z

 .

(2) If
◦

Supp(γ) = {C} is a single component, we have

{γ} =

∑
g∈ΓC

ag · [g], with (a1, · · · , ak) ∈ (Z)|ΓC | \ {(0, · · · , 0)}

 .

Remark 3.12. Note in particular that, for any two minimal cycles γ and µ supported in a same
single component, we have {γ} = {µ}.

Proof of Proposition 3.11. Suppose that Σ(γ) is not contractible; in particular we then have
that γ is supported by at least two components. Clearly, any cycle of C which is combinatorially
equivalent to γ has the same (internal) support and indeterminacy subgroup. It may however
differ from γ̂ in H1(ECcγ ), by a combination of terms of the two following kinds:

(1) an element of Iγ ,
(2) an element of the form

∑
C∈

◦
Supp(γ)

∑
g∈ΓC

ag · [g] with ag ∈ Z.

Since terms of the first kind are handled by taking the quotient of H1(ECcγ ) by Iγ , we are left
with the inclusion {γ} ⊂ 〈γ〉. To see the other inclusion, note that any element of 〈γ〉 which is
not the class of the trivial loop represents a cycle which is combinatorially equivalent to γ, so we
only have to prove that 〈γ〉 does not contain the trivial loop. Observe that

(i) adding to γ elements of ΓC with C ∈
◦

Supp(γ) (by a band sum supported in the elements

of
◦

Supp(γ)) does not change the projection Σ(γ),
(ii) if the projection of a cycle on ΓC is not contractible, then this cannot be the trivial cycle.

Now, by hypothesis, the projection of γ is not contractible in ΓC , which by (i) implies that the
projection of any elements of 〈γ〉 also has a non contractible projection. By (ii), this in turns
implies that no element of 〈γ〉 is trivial.

Suppose now that γ is supported by a unique irreducible component C of C. Then a cycle
is combinatorially equivalent to γ if and only if it is also supported by C, and thus can be
expressed as a linear combination in our chosen basis ΓC of H1(C); since a cycle is non trivial,
these coefficients are not all zero. This proves (2), and concludes the proof. �

In the case where Σ(γ) is contractible in ΣC , we can decompose it as a band sum of subcy-
cles supported by a single component. By Case (2) of Proposition 3.11, we can consider and
compute the linking set of each subcycle. Furthermore these linking sets carry more topological
information than the linking set of γ himself (each subcycle has smaller indeterminacy subgroup
and smaller linking set).

3.2. Main theorem. We now show that the linking set indeed is an invariant of algebraic curves.

Theorem 3.13. Let C and D be two curves with the same ordered and oriented topology. If γ
and µ are two combinatorially equivalent minimal cycles in C and D respectively, then we have:

φ({γ}) ∩ {µ} 6= ∅,
where φ denote the natural isomorphism between H1(ECcγ )/Iγ and H1(EDcµ)/Iµ.
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Proof of Theorem 3.13. Let ψ : CP2 → CP2 be the homeomorphism sending C to D, preserving
the order and the orientation. Then ψ sends γ to a cycle which is combinatorially equivalent
to µ. Since ψ induces a homeomorphism ψ∗ : ECcγ → EDcµ , by Definition 3.9 we have that
{ψ∗(γ)} = {µ}.

It remains to show that φ({γ}) ∩ {ψ∗(γ)} 6= ∅. Since ψ preserves both the order and the
orientation, the map induced by ψ∗ between H1(ECcγ )/Iγ and H1(EDcµ)/Iµ is the natural iso-
morphism φ. This implies that the image by φ of the class [γ] of γ in H1(ECcγ )/Iγ is given by
φ([γ]) = [ψ∗(γ)]. s Thus the intersection of φ({γ}) and {ψ∗(γ)} is not empty. �

Remark 3.14. We do not have in general the equality φ({γ}) = {µ}. The reason is that we

cannot ensure that φ([g]) = [ψ∗(g)] for any g ∈ ΓC with C ∈
◦

Supp(γ). See, however, Theorem
4.1 below in the case of rational curves, as well as Theorem 4.6.

Let C and γ be the images of C and γ, respectively, under the action of the complex conjugation.
We denote by c : H1(EC)→ H1(EC) the map induced by this action. Since C and C have the same
combinatorics, the quotients H1(ECcγ )/Iγ and H1(ECcγ

)/Iγ can be identified using the natural
isomorphism φ.

Proposition 3.15. Let C be a curve, and γ be a minimal cycle in C. The linking set of γ in
H1(ECcγ

)/Iγ is:
{γ} = {−φ(g) | g ∈ {γ}} ,

where φ is the natural isomorphism between H1(ECcγ )/Iγ and H1(ECcγ
)/Iγ .

Proof. Consider the map ψ : H1(ECcγ )/Iγ → H1(ECcγ
)/Iγ such that following diagram is commu-

tative
H1(EC)

c //

��

H1(EC)

��
H1(ECcγ )/Iγ

ψ // H1(ECcγ
)/Iγ .

Since c sends the meridian of each component Ci to the opposite of the meridian of Ci, the map ψ
is the opposite of the natural isomorphism φ between H1(ECcγ )/Iγ and H1(ECcγ

)/Iγ . In particular
the meridians generating H1(ECcγ )/ICγ are sent to their opposite, and the result follows. �

4. Some particular cases

We now focus on two particular types of cycles, namely those supported by rational curves,
for which the linking set is a singleton, and those supported by a single component, for which
Theorem 3.13 can be refined.

4.1. Rational curves, line arrangements and the I-invariant. Assume that the internal
support of the cycle γ is a rational curve, so that any irreducible component has genus 0. Note
that such a cycle has a projection σ(γ) which is necessarily non contractible in the incidence
graph. Using Case (1) of Proposition 3.11, the linking set {γ} is the singleton {[γ]}, and we have
the following version of Theorem 3.13.

Theorem 4.1. Let C and D two curves with the same oriented and ordered topology. If γ and
µ are combinatorially equivalent cycles in C and D, respectively, whose internal supports are
rational curves, then

φ({γ}) = {µ} ,
where φ is the natural isomorphism between H1(ECcγ )/ICγ and H1(EDcµ)/Iµ.
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Remark that the previous equality is equivalent to the equality φ([γ]) = [µ] in H1(ECcµ)/Iµ.

Remark 4.2. The above theorem is in particular true if the curves C and D themselves are
rational, which contains the case of line arrangements.

Actually, in the particular case of line arrangements, this invariant is equivalent to the I-
invariant introduced in [4]. Let us recall some terminologies of [4] used to define the I-invariant.

Definition 4.3. Let A be a line arrangement, ξ : H1(EA)→ C∗ be a non-trivial character and
σ be a cycle of the incidence graph ΣA. The triple (A, ξ, σ) is an inner-cyclic arrangement if

(1) ξ(xL) = 1, for any L such that vL ∈ σ (where vL is the vertex associated to L in ΣA),
(2) ξ(xL) = 1, for any line L passing through a point P such that vP ∈ σ (where vP is the

vertex associated to P in ΣA),
(3)

∏
`3P

ξ(x`), for any singular point P on a line L such that vL ∈ σ (where the product is

taken over all the lines ` of A containing P ).

Proposition 4.4. Let A be a line arrangement. The following assertions are equivalent:
(1) H1(EAcγ )/Iγ is not trivial.
(2) There is a non trivial character ξ for which the triple (A, ξ,Σ(γ)) is an inner-cyclic

arrangement.

Proof. Let the triple (A, ξ,Σ(γ)) be an inner-cyclic arrangement. Due to the conditions (1)
and (2) in Definition 4.3, the character ξ sends the meridian of the line of Aγ to 1. This means
that we do not ‘loose information’ by considering the restriction of ξ to H1(EAcγ ). Condition (3)
in Definition 4.3 and the definition of the indeterminacy subgroup (Definition 3.6) imply that ξ
induces a non trivial character ξ∗ on the quotient H1(EAcγ )/Iγ . Finally, the fact that there exists
a non trivial character (namely ξ∗) on the quotient is equivalent to the fact that this quotient is
not trivial. �

In [4], the I-invariant is then defined as

I(A, ξ, µ) = ξ ◦ i∗(µ̃),

where i∗ is the map induced by the inclusion i of BA (the boundary of a tubular neighbourhood
Tub(A) of A) in EA, and where µ̃ is a suitably chosen lift of the cycle µ in BA. More precisely,
this lift is a ‘nearby cycle’, in the terminology of [4], which roughly means that this cycle is
contained in BAγ \ Tub(Acγ) (see [4, Def. 2.11] for a precise definition).

We can now state the equivalence of our linking invariant with the I-invariant in the case of
line arrangements.

Proposition 4.5. Let A be a line arrangement and γ be a cycle of A. If ξ∗ is a character on
H1(EAcγ )/Iγ , then ξ∗ induces a character (denoted by ξ) on H1(EA) such that (A, ξ,Σ(γ)) is an
inner-cyclic arrangement and we have

I(A, ξ,Σ(γ)) = ξ∗({γ}).

Proof. To construct ξ from ξ∗ we use the reverse process of the proof of Proposition 4.4. Let
γ̃ be a lift of Σ(γ) in BA which is a nearby cycle (see above). By construction, γ and γ̃ can
be regarded as two cycles in EAcγ . The definition of an inner-cyclic arrangement implies that
ξ ◦ i∗(γ̃) = ξ|H1(EAcγ )(γ̃). But in EAcγ , the cycles γ̃ and γ are homotopically equivalent up to an
element of Iγ . We conclude the proof using the fact that, by definition, ξ sends any element of
Iγ to 1. �
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4.2. Cycles supported by a single component. We now assume that γ is a cycle in C such

that
◦

Supp(γ) = {C} is a single component. By Case (2) of Proposition 3.11, we have

(1) {γ} =

∑
g∈ΓC

ag · [g], with (a1, · · · , ak) ∈ (Z)|ΓC | \ {(0, · · · , 0)}

 .

We then have the following.

Theorem 4.6. Let C and D be two curves with the same ordered topology. If γ and µ are two
combinatorially equivalent cycles of C and D respectively, then

φ({γ}) = {µ} ,
where φ is the natural isomorphism between H1(ECcγ )/Iγ and H1(EDcµ)/Iµ.

This result is stronger than Theorem 3.13, not only because we have an equality for the linking
sets, but also because we no longer assume that the two curves have same oriented topology.
This latter simplification relies on the following lemma.

Lemma 4.7. Let C and D be two curves with different oriented and ordered topologies. If there
is no order and orientation preserving homeomorphism between (CP2, C) and (CP2,D), where D
is the complex conjugate curve of D, then there is no order preserving homeomorphism between
(CP2, C) and (CP2,D).

Proof. This proof is based on a proof of Artal-Carmona-Cogolludo-Marco in [2], and follows from
the following three facts.

Fact 1: There is no homeomorphism between (CP2, C) and (CP2,D) preserving the order
and the orientation of CP2, and reversing the orientations of all the components.

Indeed, if such a homeomorphism exists, then we can compose it with the complex conju-
gation, and we then obtain a homeomorphism preserving both the order and the orientation
between (CP2, C) and (CP2,D). This is in contradiction with the hypotheses.

Fact 2: There is no homeomorphism between (CP2, C) and (CP2,D) preserving the order,
the orientation of CP2 and the orientation of at least one component.

If C consists of a unique irreducible component, then the hypothesis of different oriented and
ordered topologies between C and D is equivalent to Fact 2. Thus, we assume that C contains at
least two irreducible components.

Suppose that such a homeomorphism φ exists. By Fact 1, there should be at least one com-
ponent C1 of C whose orientation is preserved by φ and by hypothesis, at least one component
C2 of C whose orientation is reversed. Since two components of a curve always intersects at
least one point, we can pick one such point P and compute their local intersection number
(C1 · C2)P = k ∈ N∗ at P . Now, by hypothesis, we have that (φ(C1) · φ(C2))φ(P ) = −k, since
only one of the components has its orientation reversed by φ. But since φ preserves the orienta-
tion of the plane, we also have ((φ(C1) · φ(C2))φ(P ) = k, hence a contradiction. This proves that
the orientation of C2 cannot be reversed. The result then holds by connectivity of C.

Fact 3: There is no homeomorphism between (CP2, C) and (CP2,D) preserving the order
and reversing the orientation of the plane.

If such a homeomorphism exists, then it is an orientation reversing homeomorphism from CP2

to CP2. This is impossible, since the signature of the intersection form is non null. �

Proof of Theorem 4.6. By Proposition 3.15 and Case (2) of Proposition 3.11, we know that in
the case of an internal support consisting of a single component, we have φ {γ} = {ψ∗(γ)}, where
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ψ∗ is the map between H1(ECcγ )/Iγ and H1(ECcγ
)/Iγ induced by complex conjugation. Applying

Lemma 4.7 then yields the result. �

5. Computation of the linking set

In this section, we describe a practical method for the computation of our invariant, based
on a modification of the braid monodromy and using the usual linking number of links in the
3-sphere.

Definition 5.1. A cycle γ in C is admissible if there is a generic projection π : CP2 \{∗} → CP1

such that π(γ) has no self-intersection, and π−1 (π(γ)) ∩ Sing(Ccγ) = ∅.

Note that the latter condition can always be fulfilled, up to a small modification of π.
Let γ be an admissible cycle in C. For any point p of π(γ), we consider the fiber Fp over p,

and the intersection points of Fp with C. Since γ may contain singular points in Cγ , the number
of intersection points may be lower than d above some points. We define Lγ as the (possibly
singular) link formed by the intersection of ∪p∈γFp with C. In other words

Lγ = π−1 (π(γ)) ∩ C ⊂ CP2.

Note that Lγ contains the initial cycle γ as a component. Note also that this link is defined as
the closure of a (possibly singular) d-component braid, which is defined, as with the usual braid
monodromy, by considering the configuration of points in the fibers above the loop π(γ).

We also define Lcγ as the (non singular) sublink of Lγ given by the components which are
contained in Ccγ (i.e the components which are not in the support of γ) and the cycle γ:

Lcγ =
(
π−1 (π(γ)) ∩ Ccγ

)
∪ γ ⊂ Lγ .

Now, this link Lγ naturally sits in a copy of S3, as follows. Let Dγ be the disc bounded
by π(γ) in CP1. Pick a polydisc P of CP2 such that π(P) = Dγ and π−1(Dγ) ∩ C ⊂ P. By
construction, the link Lγ lies in the boundary of P, which is homeomorphic to S3.

Recall that γ̂ denote the class of γ in H1(ECcγ ), and let ρ be the map from H1(S3 \ Lcγ)

to H1(ECcγ ) sending the meridian of each component of Lγc to the meridian of its associated
component in Ccγ . We denote by γ̇ the class of γ in H1(S3 \ Lcγ). As a consequence of the
definitions, we have the following.

Fact 5.2. Let γ be an admissible cycle of C for the projection π, then

γ̂ = ρ(γ̇),

This Fact provides a practical tool to compute γ̂ in terms of the usual linking numbers of γ̇
in the link Lcγ .

Remark 5.3. The meridian of γ̇ is the only one sent to 0 by ρ.

Example 5.4. Let us recall from Example 3.8 that, in the case of the curve T defined as the
cubic C : x3 − xz2 − y2z = 0 with its two real tangent lines T1 and T2, pictured in Figure 1, we
have

H1(ET cγ )/Iγ(T ) = 〈x1, x2 | 3x1, 3x2, x1 + x2〉
for a cycle γ contained in the cubic C. Figure 1 gives the curve T for x ∈ (−1, 3). The
computation of the linking set decomposes in three main steps.

Step 1 Pick a basis ΓC for each C ∈
◦

Supp(γ).
Let g1 and g2 be the two cycles of C in Figure 1, where g1 is the real one. The orientation of the
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s1

s2

s3

Figure 2. Braid defining Lcg2 . The thick strand corresponds to the cycle g2.

cycles is indicated in Figure 1. We have g1 = C∩{[x : y : z] | z 6= 0, x/z ∈ (−1, 0), y/z ∈ iR} and
g2 = C ∩ {[x : y : z] | z 6= 0, x/z ∈ (0, 1), y/z ∈ R}. Note that {g1, g2} forms a basis of H1(C).

Step 2 Compute the image of ΓC in H1(ET cγ ).
For the projection pr1 : [x : y : z] 7→ [x + y/2 : z], resp. pr2 : [x : y : z] 7→ [x + iy/2 : z],
the cycle g1, resp. g2, is admissible. Using the procedure described above, we have that the
link Lcg1 is the closure of the trivial braid of B3, while the link Lcg2 is the closure of the braid
σ1σ2σ

−1
1 σ2σ1σ

−1
2 ∈ B3 represented in Figure 2. The orientation on Lgi is induced by that of the

defining braids (oriented from left to right in the figures). This implies that

ġ1 = 0 ∈ H1(S3 \ Lcg1) and ġ2 = −α1 + α3 ∈ H1(S3 \ Lcg2),

where αi denotes the meridian of the component si in H1(S3 \ Lcγ) (see Figure 2). The map
ρ2 : H1(S3 \ Lcg2) → H1(ET cg2 ) is defined by (α1, α2, α3) 7→ (x2, 0, x1). Since T cγ = T cgi , we have
that ĝ1 = 0 and ĝ2 = x1 − x2 in H1(ET cγ ).

Step 3 Determine the linking set of γ.
Since γ is any cycle in C we can consider that γ = g1. To compute the linking set of γ, we use
the Case (2) of Proposition 3.11, and we obtain:

{γ} = {[0], [x1 − x2], [−x1 + x2]} .

6. Application

In order to illustrate the strength of the linking invariant, we use it to distinguish a family of
new Zariski pairs of curves.

6.1. Definition of the curves. Let C be the cubic of CP2 defined by

x3 − xz2 − y2z = 0.

Since C is a smooth cubic, it admits 9 inflexion points. They are given by:

[x : y : z] ∈ {[0 : 0 : 1], [α : β : 1]} ,

for α a root of 3X4 − 6X2 − 1 = 0 and β = ±
√
α3 − α, and their approximate values are

P0 = [0 : 0 : 1] P1 ' [−1.468 : 1.302i : 1]
P2 ' [−1.468 : −1.302i : 1] P3 ' [1.468 : 1.302 : 1]
P4 ' [1.468 : −1.302 : 1] P5 ' [−0.393i : 0.477 + 0.477i : 1]

P6 ' [0.393i : 0.477− 0.477i : 1] P7 ' [−0.393i : −0.477− 0.477i : 1]
P8 ' [0.393i : −0.477 + 0.477i : 1]

In the following, we will only consider the seven inflexion points P0, · · · , P6.
Let Li be the tangent to C at Pi. We set

C7 = C ∪
( 6⋃
k=0

Lk

)
.

The portion of the curve C7 over the segment x = (−1; 3) is pictured in Figure 3.
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Figure 3. Representation of the curve C7 over the segment x = (−1; 3).

• •

• • •

• • •

•
P6 P4 P5

P1 P0 P2

P7 P3 P8

Figure 4. Representation of the nine inflexion points of C in (F3)2.

Remark 6.1. The lines L1 and L2 are only passing through the real oval, the lines L3 and L4 are
passing only through the complex oval (i.e. are two real tangent lines), and the lines L5 and L6

are passing through both the real and the complex ovals.

Notation. We denote by {i, j} the set {0, · · · , 6} \ {i, j}.

Definition 6.2. Let C [i,j] be the curve defined by

C [i,j] = C ∪
( ⋃
k∈{i,j}

Lk

)
= C7 \ {Li, Lj} .

In the following, we will focus our interest on a particular couple of curve C [i,j], which is
formed by the curves C [5,6] and C [1,3]. This choice of pair is not arbitrary: indeed, these two
curves have a property similar to the sextics of the historical example of Zariski [18], as we now
explain.

It is well known that any triple of inflexion points of a smooth cubic are aligned (see [12]).
This configuration of points can be represented as the points of (F3)2: in the notation introduced
at the beginning of this section, we have the configuration of Figure 4.
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Let Z [i,j] be the conic defined by the 5 singular points of C[i,j]. Geometrically, the curves
C [5,6] and C [1,3] can be distinguished by the following property.

Proposition 6.3 (Zariski-like). The cardinality of the intersection Z [i,j] ∩ C has value 5 for
(i, j) = (5, 6), and value 6 for (i, j) = (1, 3).

Proof. We consider the cubic defined by the two lines (P1, P2) and (P3, P4). By the alignment
property of inflexion points of smooth cubics, this cubic must also contains the point P0 (see
Figure 4), and thus is Z [5,6]. By a similar argument, the cubic Z [1,3] is given by the lines (P0, P2)
and (P6, P5). By Figure 4, it is clear that P1 ∈ Z [1,3] ∩ C, so that #Z [1,3] ∩ C = 6. In the case
of Z [5,6], we have that P0 is an intersection point of multiplicity 2 between Z [5,6] and C, so that
#Z [5,6] ∩ C = 5. �

This geometric distinction between C [5,6] and C [1,3] is also true for the pairs (C [5,6], C [1,4]),
(C [5,6], C [2,3]) or (C [5,6], C [2,4]).

6.2. Computation of the invariant. Let γ be a (non trivial) cycle of C. Let us compute the
linking set {γ} in both C [5,6] and C [1,3], using the procedure illustrated in the examples of the
previous sections.

Step 0: Compute the indeterminacy subgroup.
Since the local linking number of a tangent at an inflexion point of a cubic is 3, we have

Iγ(C [i,j]) = I[i,j]
γ = 〈3xk | k ∈ {i, j}〉.

Furthermore, we have that (C [i,j])cγ is the line arrangement
⋃

k∈{i,j}
Lk. We then have that

H1(E(C[i,j])cγ
)/I

[i,j]
γ ' (Z3)5/〈

∑
k∈{i,j}

xk〉, and is generated by xk for k ∈ {i, j}.

Step 1: Pick a basis ΓC .
Let g1 and g2 be the two cycles of C indicated in Figure 3, and which form a basis for H1(C) (as
in Example 5.4). By definition, we have that (C [i,j])cγ = (C [i,j])cgk . (Note that the same applies
to the curve C7).

Step 2: Compute the image of ΓC in H1(E(C[i,j])cγ
).

In order to reduce the amount of computations, we first work in H1(E(C7)cγ
), and then restrict

to H1(E(C[i,j])cγ
). We consider the projections pr1 and pr2 as in Example 5.4 such that g1 and

g2 are admissible and we compute their associated links in C7. The link Lcg1 is the closure of the
braid Σ1 pictured on the left of Figure 5, and defined by

Σ1 = σ−1
1 σ2σ4σ3σ

−1
4 σ−1

4 σ3σ4σ5σ5σ1σ1σ2σ
−1
1 ∈ B8,

and ρ1 : H1(S3 \ Lcg1) → H1(E(C7)cγ
) is defined by (α1, · · · , α8) 7→ (0, x2, x1, x5, x6, x4, x3, x0),

where αi denotes the meridian of the component si in H1(S3 \Lcg1) (see Figure 5). Similarly, Lcg2
is the closure of the braid Σ2 pictured on the right of Figure 5 and defined by

Σ2 = σ−1
1 σ2σ5σ5σ

−1
6 σ3σ1σ3σ4σ3σ3σ5σ5σ6σ

−1
4 σ−1

2 σ1σ2 ∈ B8,

and ρ2 : H1(S3 \ Lcg2)→ H1(E(C7)cγ
) is defined by (α1, · · · , α8) 7→ (0, x3, x4, x5, x6, x2, x1, x0).

Computing the linking number of γ̇ in the links Lcgi and using the maps ρi, we obtain that
the classes of g1 and g2 in H1(E(C7)cγ

) are:

ĝ1 = x1 − x2 − x5 + x6 and ĝ2 = −x3 + x4 + x5 + x6.
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s1

s2

s3

s4

s5

s6

s7

s8

s1

s2

s3

s4

s5

s6

s7

s8

Figure 5. The braids Σ1 and Σ2. The thick strands correspond to the cycles
g1 and g2, respectively.

Restricting the computation done in H1(E(C7)cγ
) to H1(E(C[5,6])cγ

) and H1(E(C[1,3])cγ
), we obtain

that:
ĝ1

[5,6] = x1 − x2 and ĝ2
[5,6] = −x3 + x4,

ĝ1
[1,3] = −x2 − x5 + x6 and ĝ2

[1,3] = x4 + x5 + x6,

where the notation ĝk[i,j] means that gk is regarded in H1(E(C[i,j])cγ
).

Step 3: Determine the linking set of γ.
Since γ is any cycle in the cubic C, we can take γ = g1. Then, using Case (2) of Proposition 3.11,
we deduce that:

{
γ[5,6]

}
=

{
[x1 − x2], [−x1 + x2], [x1 − x2 − x3 + x4], [−x1 + x2 + x3 − x4]
[x3 − x4], [−x3 + x4], [x1 − x2 + x3 − x4], [−x1 + x2 − x3 + x4]

}
,{

γ[1,3]
}

=

{
[x4 + x5 + x6], [−x4 − x5 − x6], [−x2 − x5 + x6], [−x2 + x4 − x6]

[−x2 − x4 + x5], [x2 + x5 − x6], [x2 + x4 − x5], [x2 − x4 + x6]

}
.

Hence we have the following, as a direct consequence of Theorem 4.6.

Theorem 6.4. There is no order preserving homeomorphism between the pair (CP2, C [5,6]) and
(CP2, C [1,3]). In other words, the curves C [5,6] and C [1,3] form an ordered Zariski pair.

Proof. The order on C [5,6] and C [1,3] is given by the lexicographic order on the indices of the lines.
This implies that the natural isomorphism φ is given by (x0, x1, x2, x3, x4) 7→ (x0, x2, x4, x5, x6).
It is now easy to verify that φ

({
γ[5,6]

})
∩
{
γ[1,3]

}
= ∅. �

Remark 6.5. Recall that the elements of a linking set are only representatives of an equiva-
lence class in a quotient, so proving the above disjointness also uses the computation of the
indeterminacy subgroup in Step 0.

By a strictly similar argument, one can check that the couples (C [5,6], C [1,4]), (C [5,6], C [2,3])
and (C [5,6], C [2,4]) are ordered Zariski pairs.

Remark 6.6. If we consider the following order on C [1,3]: L4 < L2 < L0 < L5 < L6, and the
lexicographic one on C [5,6], then the natural isomorphism φ is defined by:

(x0, x1, x2, x3, x4) 7→ (x4, x2, x0, x5, x6).

In this case, we have that φ([x1−x2−x3+x4]) = [x4−x2−x6] since [x1−x2−x3+x4] = [x0−x1−x4]
in H1(E(C[5,6])cγ

)/Iγ . Then φ
({
γ[5,6]

})
∩
{
γ[1,3]

}
6= ∅.
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6.3. Deletion of the ordered condition. Unfortunately, we can not delete the order hypoth-
esis as we did for the orientation in Lemma 4.7. In order to derive from the above a genuine
Zariski pair, we need to add an additional generic line D to the curves C [5,6] and C [1,3] passing
through the inflexion point P0 = [0 : 0 : 1]. We denote by C̃ [i,j] the curve C [i,j] ∪D obtained in
this way. This additional line will allow us to identify L0 combinatorially.

Proposition 6.7. The group of automorphisms of the combinatorics of C̃ [i,j] is S4.

Proof. By construction, C is the only component of degree 3. It is thus fixed by the automor-
phisms of the combinatorics. By a similar combinatorial argument, we can ensure that L0 and
D are fixed. Thus only the lines Lk with k ∈ {i, j} \ {0} can be modified be an automorphism
of the combinatorics. By construction, these 4 lines play similar roles in the combinatorics: they
are all generic with the other lines and have only one intersection point with the cubic. Hence
an automorphism of the combinatorics permutes these 4 lines, and the result holds. �

Theorem 6.8. There is no homeomorphism between (CP2, C̃ [5,6]) and (CP2, C̃ [1,3]). In other
words, C̃ [5,6] and C̃ [1,3] form a Zariski pair.

Proof. By Theorem 6.4, there is no order preserving homeomorphism between (CP2, C̃ [5,6]) and
(CP2, C̃ [1,3]). Assume that there exists one which does not preserve the order, and denote
by σ ∈ S4 the induced automorphism of the combinatorics. Let ρ : H1(E(C[i,j])cγ

)/Iγ → (Z3)4

defined by sending the class of an element to its representative having 0 as coordinate for x0. Note
that this application is well defined since L0 is fixed by the automorphisms of the combinatorics.
It is clear that σ · ρ(

{
γ[5,6]

}
) ∩ ρ(

{
γ[1,3]

}
) = ∅ (where σ acts by permutation on the coordinates

of (Z3)4), which is in contradiction with the hypothesis. �

Remark 6.9. Strictly similar methods allow us to define three Zariski pairs from the ordered
pairs (C [5,6], C [1,4]), (C [5,6], C [2,3]) and (C [5,6], C [2,4]).

References

[1] Enrique Artal. Sur les couples de Zariski. J. Algebraic Geom., 3(2):223–247, 1994.
[2] Enrique Artal, Jorge Carmona-Ruber, José I. Cogolludo-Agustín, and Miguel Á. Marco Buzunáriz. Topology

and combinatorics of real line arrangements. Compos. Math., 141(6):1578–1588, 2005.
[3] Enrique Artal, José I. Cogolludo-Agustín, and Hiro-o Tokunaga. A survey on Zariski pairs. In Algebraic

geometry in East Asia—Hanoi 2005, volume 50 of Adv. Stud. Pure Math., pages 1–100. Math. Soc. Japan,
Tokyo, 2008.

[4] Enrique Artal, Vincent Florens, and Benoît Guerville-Ballé. A new topological invariant of line arrangements.
Preprint available at arXiv:1407.3387, 2014.

[5] Enrique Artal Bartolo, José Ignacio Cogolludo, and Hiro-o Tokunaga. A survey on Zariski pairs. In Algebraic
geometry in East Asia—Hanoi 2005, volume 50 of Adv. Stud. Pure Math., pages 1–100. Math. Soc. Japan,
Tokyo, 2008.

[6] Enrique Artal Bartolo and Hiro-o Tokunaga. Zariski k-plets of rational curve arrangements and dihedral
covers. Topology and its Applications, 142(1-3):227 – 233, 2004.

[7] E. Brieskorn, H. Knörrer, and J. Stillwell. Plane Algebraic Curves: Translated by John Stillwell. Modern
Birkhäuser Classics. Springer Basel, 2012.

[8] Pierrette Cassou-Noguès, C. Eyral, and M. Oka. Topology of septics with the set of singularities B4,4⊕2A3⊕
5A1 and π1-equivalent weak Zariski pairs. Topology Appl., 159(10-11):2592–2608, 2012.

[9] Alex Degtyarev. On deformations of singular plane sextics. J. Algebraic Geom., 17(1):101–135, 2008.
[10] Alexandru Dimca. Singularities and topology of hypersurfaces. Universitext. Springer-Verlag, New York, 1992.
[11] Benoît Guerville-Ballé. An arithmetic zariski 4-tuple of twelve lines. Geom. Topol., 2015.
[12] Otto Hesse. Über die elimination der variabeln aus drei algebraischen gleichungen vom zweiten grade mit

zwei variabeln. J. Reine Angew. Math., 1844(28):68 – 96, 2009.
[13] Egbert R. Van Kampen. On the Fundamental Group of an Algebraic Curve. Amer. J. Math., 55(1-4):255–260,

1933.



18 B. GUERVILLE-BALLÉ AND J.B. MEILHAN

[14] Mutsuo Oka. Two transforms of plane curves and their fundamental groups. J. Math. Sci. Univ. Tokyo,
3(2):399–443, 1996.

[15] Ichiro Shimada. Fundamental groups of complements to singular plane curves. Amer. J. Math., 119(1):127–
157, 1997.

[16] Ichiro Shimada. Equisingular families of plane curves with many connected components. Vietnam J. Math.,
31(2):193 – 205, 2003.

[17] Taketo Shirane. A note on splitting numbers for galois covers and π1-equivalent zariski k-plets. In preparation,
2016.

[18] Oscar Zariski. On the Problem of Existence of Algebraic Functions of Two Variables Possessing a Given
Branch Curve. Amer. J. Math., 51(2):305–328, 1929.

[19] Oscar Zariski. On the irregularity of cyclic multiple planes. Ann. of Math. (2), 32(3):485–511, 1931.
[20] Oscar Zariski. On the Poincaré Group of Rational Plane Curves. Amer. J. Math., 58(3):607–619, 1936.

Department of Mathematics, Tokyo Gakugei University, Tokyo 184-8501, Japan
E-mail address: benoit.guerville-balle@math.cnrs.fr

Université Grenoble Alpes, IF, 38000 Grenoble, France
E-mail address: jean-baptiste.meilhan@ujf-grenoble.fr


	1. Introduction
	Acknowledgement
	Notations and conventions

	2. Preliminary definitions
	2.1. Combinatorial data
	2.2. Topology of the complement

	3. The linking invariant
	3.1. Some definitions
	3.2. Main theorem

	4. Some particular cases
	4.1. Rational curves, line arrangements and the I-invariant
	4.2. Cycles supported by a single component

	5. Computation of the linking set
	6. Application
	6.1. Definition of the curves
	6.2. Computation of the invariant
	6.3. Deletion of the ordered condition

	References

