
HAL Id: hal-01286994
https://hal.science/hal-01286994

Submitted on 12 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decomposed software pipelining for cyclic unitary
RCPSP with precedence delays

Abir Benabid, Claire Hanen

To cite this version:
Abir Benabid, Claire Hanen. Decomposed software pipelining for cyclic unitary RCPSP with prece-
dence delays. Multidisciplinary International Conference on Scheduling: Theory and Applications,
Aug 2009, Dublin, Ireland. �hal-01286994�

https://hal.science/hal-01286994
https://hal.archives-ouvertes.fr

MISTA 2009

Decomposed Software Pipelining for cyclic unitary RCPSP

with precedence delays ⋆

Abir Benabid · Claire Hanen

Abstract In this paper we adress a new cyclic problem: finding periodic schedules

for unitary resource constrained cyclic scheduling problem. Such resource constraints

are characterized by k, the number of types of functional units employed and mx the

maximal number of processors of the same type. The main problem is to cope with both

precedence delays and resources which make the problem NP-complete in general.

A guaranteed approach, called decomposed software pipelining, has been proposed

by Gasperoni and Schwiegelshohn, followed by the retiming method by Calland, Darte

and Robert to solve the problem for parallel processors and ordinary precedences. We

present, in this paper, an extension of this approach to resource-constrained cyclic

scheduling problems with precedence delays and we provide an approximation algo-

rithm. Let λ and λopt be respectively the period given by the algorithm and the optimal

period. We establish the bound:

λ ≤

„

k + 1 −
1

mx(ρ + 1)

«

λopt +

„

1 −
1

mx(ρ + 1)

«

(δ − 1).

1 Introduction

Cyclic scheduling problems have numerous practical application in production systems

[1] as well as in embeded systems [2]. Our research in this field is partically motivated by

the advances in hardware technology, but our results still available for mass production

systems.

⋆ ORCYAE project supported by awards from DIGITEO, a research park in Ile-de-France
dedicated to information science and technology.

A. Benabid
LIP6, Pierre and Marie Curie University
E-mail: Abir.Benabid@lip6.fr

C. Hanen
Paris Ouest University and LIP6
E-mail: Claire.Hanen@lip6.fr

Embedded architectures used for devices such as mobile, automotive and consumer

electronics need high performance, low silicon implementation costs, low power con-

sumption and rapid development to ensure minimum time-to-market. Most of todays

high performance applications uses instruction level parallel processors such as VLIW

processors [3].

VLIW architectures are mainly used for media processing in embedded devices, and

instruction schedules produced by the compiler are a performance critical optimization

that has a direct impact on the overall system cost and energy consumption. High-

quality instruction schedules enable to reduce the operating frequency given real-time

processing requirements. Most of the parallelism present in these systems is expressed

in the form of loops.

In this paper, we consider a loop composed of many tasks that are to be executed

a large number of times. Instruction scheduling for inner loops is also known as soft-

ware pipelining [4] and can be modelised by a cyclic scheduling problem. Among the

different cyclic scheduling frameworks, modulo scheduling [5] is the most successful in

production compilers. The modulo scheduling focuses on finding a periodic schedule

with the minimal period λ.

The classical results of modulo scheduling apply to problems that are too limited

to be of practical use in instruction scheduling in modern processors as well as in mass

production problems. For example, these results assume simple precedence constraints

on tasks in a schedule, instead of precedences with delays like those in pipelined pro-

cessors, and focus on machine models where each operation uses one of m identical

processors for its execution.

In order to model the software pipelining problem, [6] proposes an extension of the

classic modulo scheduling problem to resource-constrained modulo scheduling problems

with precedence delays where the resources are adapted from the renewable resource

of the resource-constrained scheduling problem [7].

We define, in this paper, a special case of this problem where the resource demands

are unitary, and we present a guaranteed algorithm for these problems.

1.1 Problem formulation

An instance of a unitary resource-constrained cyclic scheduling problem can be defined

by:

– An architecture model defined by P = {P(i,j)\1 ≤ i ≤ k, 1 ≤ j ≤ mi}, where k

denotes the number of different types of processors and mi denotes the number of

type i processors. Let mx = max
1≤r≤k

mr.

– A set of n tasks V = {Ti}1≤i≤n with integer processing time {pi}1≤i≤n. To each

task Ti is associated a binary vector {bi
r}1≤r≤k over the resource types, such that

Ti uses bi
r units of resource of type r during its execution. Notice that a task might

use several processors but of different types.

– Each task Ti must be performed an infinite number of times. We call Ti at iteration

q the q-th execution of Ti.

– Precedence graph G(V, E) where:

– E is a set of edges defining uniform dependence relations denoted by Ti
lij ,hij
−→

Tj , where the delay lij and the height hij are nonnegative integers. lij and hij

model the fact that the task Tj at iteration q has to be issued at least lij time

units after the end of task i in iteration q − hij .

– We denote ρ =
lmax

pmin
where lmax = max

(Ti,Tj)∈E
lij and pmin = min

1≤i≤n
pi.

Notice that this model generalize the classical parallel processors statements (in which

k = 1 -i.e. there is a unique type of processors) as well as typed tasks systems where

each binary vector {bi
r}1≤r≤k has only one positive component. Let us illustrate the

notions of tasks, iterations, delays and heights with the following example. We will

work on this example throughout the paper.

For 1 ≤ i ≤ N

(T1) : t1(i) = t3(i)

(T2) : t2(i) = t3(i)

(T3) : t3(i) = t2(i − 3)

(T4) : t4(i) = t2(i − 1)

(T5) : t5(i) = t4(i − 2)

+t2(i − 1) + t7(i)

(T6) : t6(i) = t5(i − 1)

(T7) : t7(i) = t6(i − 1)

Tasks T1 T2 T3 T4 T5 T6 T7

pi 2 2 3 3 1 1 1

{bi
1, bi

2} 1,1 1,1 1,0 1,0 1,1 0,1 1,1

The loop has n = 7 tasks, each one is executed N times. N is a given parameter

representing the number of iterations and can be very large, and thus is assumed

infinite. The associated precedence graph G(V, E) is given in Figure 1. Values of lij
and hij are displayed next to the corresponding arc. The resource request {bi

1, bi
2} of

each task Ti is highlighted next to the corresponding node.

TT

T

T T

T1

3 6

5

7

T4

2

(1,1)

(0,2)(4,1)

(4,0)

(0,1)

(0,3)
(3,0)

1,1

0,1

1,1

1,1

1,0

(4,1)

(0,0)

1,0

1,1

Fig. 1 An example of precedence graph G(V, E).

A resource-constrained cyclic scheduling problem is to find a schedule σ that assigns

a starting time σ(Ti, q) for each task occurence (Ti, q) such that for all r ∈ {1, · · · , k}

and for each time s, the number of tasks using processors of type r at time s is at most

equal to mr, and
„

Ti
lij ,hij
−→ Tj

«

⇒ σ(Ti, q) + pi + lij ≤ σ(Tj , q + hij) ∀q ∈ N

The modulo scheduling focuses on finding a periodic schedule with the minimal

period λ such that:

∀i ∈ {1, · · · , n}, ∀q ∈ N : σ(Ti, q) = σ(Ti, 0) + q · λ

Periodic schedules are of high interest from a practical point of view, because their

representation is compact so that they can be easily implemented in real systems.

1.2 Decomposed software pipelining

Generating an optimal resource constrained cyclic scheduling with minimal period is

known to be NP-hard. To overcome this NP-hardness, we used the decomposed soft-

ware pipelining approach introduced simultaneously by Gasperoni and Schwiegelsohn

[8], and by Wang, Eisenbeis, Jourdan and Su [9]. The main idea is to decouple the prob-

lem into dependence constraints and resource constraints so as to decompose the prob-

lem into two subproblems: a cyclic scheduling problem ignoring resource constraints,

and a standard acyclic graph for which efficient techniques are known.

Gasperoni and Schwiegelshohn give an efficiency bound to the period λ for the

problem with m identical processors and precedences without delays. Let λopt be the

optimal (smallest) period, this bound is given by the following inequality:

λ ≤

„

2 −
1

m

«

λopt +

„

1 −
1

m

«

(max
1≤i≤n

pi − 1)

Darte et al. [10] presents a heuristic based on circuit retiming algorithms to gen-

eralize the efficiency bound given for Gasperoni-Schwiegelshohn algorithm. The main

idea is to use a retiming R to decide which edges to cut in G(V, E) so as to make it

acyclic. Then, the acyclic makespan minimization problem is solved using any approx-

imated algorithm, that provides a pattern (schedule of a period) for a feasible periodic

schedule.

In this paper, we generalize this approach for our problem. Several new elements

have to be taken into account: extended resource constraints and arbitrary precedence

delays.

We first use the definition of [10] for a legal retiming:

R : V → Z, ∀(Ti, Tj) ∈ E, R(Tj) + hij −R(Ti) ≥ 0

A legal retiming for G of Figure 1 is given in Table 1.

Table 1 A retiming R of G.

Tasks T1 T2 T3 T4 T5 T6 T7

R(Ti) 0 1 0 2 2 1 1

Then, we define the acyclic graph GR by keeping only the arcs of G for which

R(Tj)+hij−R(Ti) = 0. We add two dummy tasks Start and Stop with null processing

times and no resource use. For each task Ti, we add arcs (Start, Ti) and (Ti, Stop) and

we define valuations of these new arcs such that:

∀(Ti, Tj) ∈ G\GR, li,Stop + lStart,j ≥ lij . (1)

Notice that such valuations can be defined as follows for each task Ti:

– lStart,i = 0

– li,Stop = max
(Ti,Tj)∈G\GR

lij .

Let πR be any (non cyclic) schedule of GR that fulfills the resource constraints as

well as the precedences induced by GR. We note πR
i the start time of task Ti in this

schedule. Then, setting λR = πR
Stop and for any task Ti,

σR(Ti, q) = πR
i + (q + R(Ti))λR

we get the following result:

Lemma 1 σR is a feasible periodic schedule of G with period λR.

Proof. First, we prove that, at any time slot t, the tasks scheduled at t in σR meet

the resource constraints. We note Ft the set of tasks for which one of occurence is

scheduled at t. Let Ti and Tj be two tasks in Ft. We note q and q′ their corresponding

occurences such that σR(Ti, q) ≤ t < σR(Ti, q) + pi, σ
R(Tj , q

′) ≤ t < σR(Tj , q
′) + pj .

Hence,

t = σR(Ti, q) + s = σR(Tj , q
′) + s′

πR
i + (q + R(Ti))λR + s = πR

j +
`
q′ + R(Tj)

´
λR + s′

πR
i − πR

j + s − s′ −
`
R(Tj) −R(Ti) + q′ − q

´
λR = 0. (2)

Since πR
i + s < πR

i + pi ≤ πR
Stop = λR and similarly πR

i + s′ < λR, −λR <

πR
i + s − πR

i − s′ < λR. Hence, the equality (2) gives:

πR
i + s = πR

j + s′ and R(Ti) + q = R(Tj) + q′

Hence, Ti and Tj are performed on the same time slot πR
i +s in the acyclic schedule

πR. Thus, Tj ∈ FπR

i +s and then Ft ⊆ Fs+πR

i

Since πR fullfills the resource constraints induced by GR, FπR

i
(and then Ft) meets

the resource constraints.

For precedence constraints, we need to prove that, ∀(Ti, Tj) ∈ E, ∀q ∈ N:

σR(Ti, q) + pi + lij ≤ σR(Tj , q + hij)

⇔ πR
i + (q + R(Ti))λR + pi + lij ≤ πR

j +
`
q + R(Tj) + hij

´
λR

Hence, we have to verify that inequality (3) is satisfied for each (Ti, Tj) in E and

for any q ∈ N

πR
i − πR

j + pi + lij ≤
`
R(Tj) −R(Ti) + hij

´
λR. (3)

Case 1 : (Ti, Tj) ∈ GR

Then, R(Tj)−R(Ti)+hij = 0. Since πR fullfills the precedence constraints induced

by GR,

πR
i + pi + lij ≤ πR

j .

Hence, inequality 3 is satisfied.

Case 2 : (Ti, Tj) /∈ GR

Thus, R(Tj) −R(Ti) + hij > 0. And then, using 1

πR
i − πR

j + pi + lij ≤ πR
i + pi + li,Stop + lj,Start − πR

j

As πR
j ≥ lj,Start and πR

i + pi + li,Stop ≤ πR
Stop, we get:

πR
i − πR

j + pi + lij ≤ πR
Stop

≤ λR

≤ λR(R(Tj) −R(Ti) + hij)

which achieves the proof.

Now, the idea, previously used by [8] and [10] is to choose a particular retiming

and use a guaranteed algorithm to get a schedule πR of GR, and then to extend the

guarantee to the induced periodic schedule.

List scheduling algorithms are the most used heuristics for scheduling with prece-

dence and resource constraints. Alix et al. [11] prove that such algorithms have the

following worst case performance in the case of m identical processors in presence of

precedence delays:

Cmax ≤

„

2 −
1

m(ρ + 1)

«

Copt
max

where ρ =
lmax

pmin
. For systems with unit execution time tasks and typed processors,

Chou and Chung [12] give the following bound:

Cmax ≤

„

k + 1 −
1

mx(lmax + 1)

«

Copt
max

We thus propose the following generic algorithm 1 to solve our problem, by using

a list algorithm to produce πR.

Algorithm 1: Extended DSP

1. Find a legal retiming R for G;
2. for (Ti, Tj) ∈ E do

if R(Tj) −R(Ti) + hij = 0 then

keep (Ti, Tj) in GR ; add nodes Start and Stop;

3. Perform a list scheduling on GR coping with both precedence and resource constraints.
Compute πRi the start time of task Ti in this schedule and λR = Cmax(GR) = πRStop;

4. Define the cyclic schedule σR by:
for 1 ≤ q ≤ N do

for Ti ∈ V do

σR(Ti, q) = πRi + λR(q + R(Ti)) ;

The acyclic graph provided by the retiming R is given by Figure 2 and its cor-

responding list scheduling allocation is presented in Figure 3. The makespan of this

pattern is λR = 9 and it gives the period of the modulo scheduling of G. The different

steps of this heuristic are illustrated by algorithm 1.

T2

T4 T5

T6

T3

T1

T7

1

042

Fig. 2 The acyclic graph
given by the retiming R.

Fig. 3 A pattern generated by a list scheduling of GR: λR = 9.

2 Worst case analysis

In this section we analyze the worst case performance of algorithm 1 in general, making

use of the proof of Chou and Chung [12] for list scheduling. Then, we show that using

some particular retiming, that can be computed in polynomial time, we can get an

overall guarantee for the Extended DSP algorithm.

2.1 Minimal length of pattern

Consider a dependence graph G. An acyclic graph GR is obtained by a retiming R.

Then, we schedule GR by a list algorithm and generate a pattern πR. We note φR the

length (sum of the delays and processing times) of the longest path in GR. Let λopt

be the optimal period of G.

We consider two types of bounds obtained from resource and precedence con-

straints.

2.1.1 Resource bound

Lemma 2 For each type r, let mr be the number of machines of type r. Then,

λopt ≥ max
1≤r≤k

Pn
i=1 bi

r · pi

mr
.

Proof. The shortest time required to complete the tasks using resources of type r on

a single machine is
nX

i=1

bi
r · pi. Hence, on mr parrallel processors, the shortest time

required is

Pn
i=1 bi

r · pi

mr
. Furthermore, the length of the optimal period λopt is not

shorter than the time required to schedule these tasks once.

2.1.2 Precedence bounds

Let πR be a schedule induced by a list algorithm on GR. In order to reveal the depen-

dencies among tasks, we classify the time slots into three kinds:

1. A full slot tf is a time slot in which at least all the processors of a certain type are

executing tasks.

2. A partial slot tp is a time slot in which at least one processor of each type is idle

and this slot contains at least one non-idle processor.

3. A delay slot td is a time slot in which all processors are idle.

We note:

– p: the number of partial slots in πR.

– d: the number of delay slots in πR.

Lemma 3 The partial-slots lemma:

If πR contains p partial slots and d delay slots, then φR ≥ p + d.

Proof. We prove this lemma by finding a chain h =< Tj1 , · · · , Tjc
> in πR such that

the length of h is at least equal to p + d.

Let Tjc
= Stop and assume that we already have a chain < Tji+1

, · · · , Tjc
>.

Consider, if it exists, the predecessor Tji
of Tji+1

such that πR
ji

+ pji
+ lji,ji+1

is

maximum.

The construction of h leads to the following observation: All the slots before πR
j1

or

between πR
ji

+ pji
+ lji,ji+1

and πR
ji+1

(if they exist) are full slots and in which there

is no available processor in a type of resource used by Tji+1
. Otherwise, Tji+1

would

have been scheduled earlier by the list algorithm.

Therefore, all the p partial slots and d delay slots are covered by the intervals

[πR
ji

, πR
ji

+pji
+ lji,ji+1

), so that the length of h is not less than p+d. Thus, φR ≥ p+d.

Lemma 4 The delay-slots lemma:

If πR contains d delay slots, then φR ≥ d +

‰
d

lmax

ı

pmin.

Proof. The schedule is computed by a list algorithm, then the number of any consec-

utive delay slots is not greater than lmax. Consider the chain h defined in the previous

lemma. All the delay slots are included in ∪1≤i≤c−1[π
R
ji

+ pji
, πR

ji
+ pji

+ lji,ji+1
),

since during interval [πR
ji

, πR
ji

+ pji
), Tji

is performed. Now the length of each interval

[πR
ji

+pji
, πR

ji
+pji

+ lji,ji+1
) is less than lmax. So it holds that c · lmax ≥ d. The length

of h is thus not less than d plus the length of the chained tasks, which is greater than

c · pmin ≥

‰
d

lmax

ı

pmin . Thus, φR ≥ d +

‰
d

lmax

ı

pmin.

2.2 Performance bound

Here we define the notations to be used below:

M =
X

1≤r≤k

mr.

ur: the number of non-idle cycles on processors of type r.

vr: the number of non-idle cycles on processors of type r in partial slots in πR.

V =
X

1≤r≤k

vr: the number of non-idle cycles in partial slots in πR.

We now prove a first bound ont the algorithm performance based on the length of

the longest path in GR.

Theorem 1 Consider a dependence graph G. Let R be a legal retiming R on G and

φR the length of the longest path in GR. Then,

λR

λopt
≤ k +

„

1 −
1

mx(ρ + 1)

«
φR

λopt
.

Proof. Consider the pattern πR:

MλR = number of non-idle cycles + number of idle cycles.

where the second term on the right hand side can be decomposed as the number of

idle cycles occurring during delay, partial and full slots.

1. The number of idle cycles per processor occurring during delay slots is equal to

Md.

2. The number of idle cycles per processor occurring during partial slots is at most

equal to Mp − V .

3. Using Lemma 2, we now give a bound on the number of idle cycles occurring during

full slots.

Notice that for a resource type r, there are at most
ur − vr

mr
full slots in which

resource r is full. Thus the number of idle cycles in these slots is at most (M −

mr)
ur − vr

mr
. Hence we get:

≤
X

1≤r≤k

(M − mr)
ur − vr

mr

≤
X

1≤r≤k

(M − mr)
ur

mr
−

X

1≤r≤k

(M − mr)
vr

mr

≤
X

1≤r≤k

(M − mr) max
1≤r≤k

Pn
i=1 bi

r · pi

mr
− (M − mx)

P

1≤r≤k vi

mx

≤ (kM − M)λopt − (M − mx)
V

mx

Then,

MλR ≤ Mλopt + (kM − M)λopt − (M − mx)
V

mx
+ Mp − V + Md

≤ kMλopt − (M − mx)
V

mx
+ Mp − V + Md

≤ kMλopt − M
V

mx
+ Mp + Md

V is the number of non-idle cycles in partial slots, since a partial slot contains at

least one non-idle cycle, V ≥ p. Thus,

λσ ≤ kλopt −
p

mx
+ p + d

≤ kλopt + (1 −
1

mx
)(p + d) +

1

mx
d

≤ kλopt + (1 −
1

mx
)(p + d) +

1

mx
d

„

1 +
pmin

lmax

«

1

1 + pmin

lmax

!

≤ kλopt + (1 −
1

mx
)(p + d) +

1

mx

„

d +

‰
d

lmax

ı

pmin

«„
ρ

ρ + 1

«

From Lemmas 3 and 4, we have φR ≥ p + d and φR ≥ d +

‰
d

lmax

ı

pmin. Then,

λR ≤ kλopt + (1 −
1

mx
)φR +

1

mx

ρ

ρ + 1
φR

≤ kλopt + (1 −
1

mx(ρ + 1)
)φR

2.3 Choosing a good retiming

In order to improve the performance bound, it seems important to minimize the ratio

between φR and λopt. So if we have a good lower bound LB of λopt, using theorem 7

in [13], we can verify the existence of a legal retiming R′ such that φR′

≤ LB ≤ λopt.

If such retiming exists, we have a performance guarantee of:

λR′

λopt
≤ k + 1 −

1

mx(ρ + 1)
.

An another approach consists on minimizing the length of the longest path in the

pattern. There are well-known retiming algorithms [13] to minimize φR. Let Ropt be

a retiming for which the length of the longest path in the acyclic graph GRopt is

minimal. We note it φopt. We also denote by σ∞ an optimal periodic schedule for

unlimited resources (with period λ∞).

Lemma 5 Let δ = max
(Ti,Tj)∈E

(pi + lij) be the maximum scope in G. Then,

λ∞ + δ − 1 ≥ φopt.

Proof. Consider an optimal cyclic schedule σ∞ for unlimited resources. Let us define

r : V → [0, λ∞ − 1] and R : V → Z such that:

σ∞(Ti, q) = r(Ti) + λ∞ (q + R(Ti)) , ∀Ti ∈ V,∀q ∈ N

Then, the precedence constraint for each edge (Ti, Tj) ∈ E is:

σ∞(Ti, q) + pi + lij ≤ σ∞(Tj , q + hij)

r(Ti) + λ∞ (q + R(Ti)) + pi + lij ≤ r(Tj) + λ∞
`
q + hij + R(Tj)

´

r(Ti) + pi + lij ≤ r(Tj) + λ∞
`
hij + R(Tj) −R(Ti)

´

[10] proved that R defines a valid retiming for G. Furthermore, GR is obtained by

keeping the edges of G for which R(Tj) + hij −R(Ti) = 0. Thus ,

r(Ti) + pi + lij ≤ r(Tj), ∀(Ti, Tj) ∈ E

Let h =< Tj1 , · · · , Tjc
, Stop > be a chain in GR.

r(Tji
) + pji

+ lji,ji+1
≤ r(tji+1

), ∀i ∈ {1, · · · , c − 1},

By summing up these c − 1 inequalities, we have

r(Tj1) +

c−1X

i=1

(pji
+ lji,ji+1

) ≤ r(Tjc
)

Thus,

c−1X

i=1

(pji
+ lji,ji+1

) ≤ r(Tjc
). This inequality is true for any chain of GR in

particular for the longest path in GR. Hence,

c−1X

i=1

(pji
+ lji,ji+1

) + (pjc
+ ljc,Stop)

| {z }

φR

− (pjc
+ ljc,Stop)

| {z }

≤δ

≤ r(Tjc
)

| {z }

≤λ∞−1

Hence, φR − δ ≤ λ∞ − 1 and since φopt ≤ φR, we have the desired result.

Finally, from lemma5, we deduce our last performance ratio.

Theorem 2 Consider a dependence graph G. Let Ropt be a retiming on G that mini-

mize the length of the longest path in GR. Then,

λRopt ≤

„

k + 1 −
1

mx(ρ + 1)

«

λopt +

„

1 −
1

mx(ρ + 1)

«

(δ − 1).

Proof. Using theorem 1 applied to Ropt, we get:

λRopt ≤ kλopt + (1 −
1

mx(ρ + 1)
)φopt

≤ kλopt + (1 −
1

mx(ρ + 1)
)(λ∞ + δ − 1)

≤ kλopt + (1 −
1

mx(ρ + 1)
)(λopt + δ − 1)

≤ (k + 1 −
1

mx(ρ + 1)
)λopt + (1 −

1

mx(ρ + 1)
)(δ − 1)

3 Conclusion

Instruction scheduling, which takes place when compiling applications for modern pro-

cessors, affects critically the performance of the the overall system cost and energy

consumption.

In this paper, we presented a generalized model of instruction scheduling but our

results are still available for applications in production systems problems.

We have built upon results of [8,10,12] and extended them to propose a guaranteed

heuristic for unitary resource-constrained modulo scheduling problems. A worst case

analysis of this heuristic is explored and a performance bound is established. It is the

first guarantee derived for cyclic scheduling problems in the case of many different

resources.

We point out that it would be interesting to derive algorithms more sophisticated

than list scheduling to improve this performance bound.

Finally, it would be worth to study the importance of choosing a good retiming and

its impact on the performance guarantee. Good lower bounds for the optimal period

would give a better guarantee.

References

1. M., P.J., X., X.: Modélisation, analyse et optimisation des systèmes à fonctionnement
cyclique. Masson (1995)

2. Hanen, C., Munier, A.: Cyclic scheduling on parallel processors: An overview. In:
P. Chrétienne, E.G. Coffman, J.K. Lenstra, Z. Liu (eds.) Scheduling theory and its appli-
cations. J. Wiley and sons (1994)

3. Rau, B.R.: Dynamically scheduled vliw processors. In: MICRO 26: Proceedings of the
26th annual international symposium on Microarchitecture, pp. 80–92. IEEE Computer
Society Press, Los Alamitos, CA, USA (1993)

4. Allan, V.H., Jones, R.B., Lee, R.M., Allan, S.J.: Software pipelining. ACM Comput. Surv.
27(3), 367–432 (1995)

5. Rau, B.R.: Iterative modulo scheduling: an algorithm for software pipelining loops. In:
MICRO 27: Proceedings of the 27th annual international symposium on Microarchitecture,
pp. 63–74. ACM, New York, NY, USA (1994)

6. Artigues, C., Dinechin, B.D.: Resource-Constrained Project Scheduling: Models, Algo-
rithms, Extensions and Applications. C. Artigues, S. Demassey, E. Nron (2008)

7. Brucker, P., Drexl, A., Mohring, R., Neumann, K., Pesch, E.: Resource-constrained project
scheduling: Notation, classification, models, and methods. European Journal of Opera-
tional Research 112(1), 3–41 (1999)

8. Gasperoni, F., Schwiegelshohn, U.: Generating close to optimum loop schedules on parallel
processors. Parallel Processing Letters 4, 391–403 (1994)

9. Wang, J., Eisenbeis, C., Jourdan, M., Su, B.: Decomposed software pipelining: a new
perspective and a new approach. Int. J. Parallel Program. 22(3), 351–373 (1994). DOI
http://dx.doi.org/10.1007/BF02577737

10. Calland, P.Y., Darte, A., Robert, Y.: Circuit retiming applied to decomposed soft-
ware pipelining. IEEE Trans. Parallel Distrib. Syst. 9(1), 24–35 (1998). DOI
http://dx.doi.org/10.1109/71.655240

11. Munier, A., Queyranne, M., Schulz, A.S.: Approximation bounds for a general class of
precedence constrained parallel machine scheduling problems. In: IPCO, pp. 367–382
(1998)

12. Chou, H.C., Chung, C.P.: Upper bound analysis of scheduling arbitrary delay instruction
on typed pipelined processors. Int. Journal of High Speed Computing 4(4), 301–312 (1992)

13. Leiserson, C.E., Saxe, J.B.: Retiming synchronous circuitry. NASA STI/Recon Technical
Report N 89, 17,797–+ (1988)

