Abir Benabid
email: abir.benabid@lip6.fr

Claire Hanen
email: claire.hanen@lip6.fr

Decomposed software

published or not. The documents may come

Introduction

Cyclic scheduling problems have numerous practical application in production systems [START_REF] Hanen | Modélisation, analyse et optimisation des systèmes à fonctionnement cyclique[END_REF] as well as in embeded systems [START_REF] Hanen | Cyclic scheduling on parallel processors: An overview[END_REF]. Our research in this field is partically motivated by the advances in hardware technology, but our results still available for mass production systems.

⋆ ORCYAE project supported by awards from DIGITEO, a research park in Ile-de-France dedicated to information science and technology.

Embedded architectures used for devices such as mobile, automotive and consumer electronics need high performance, low silicon implementation costs, low power consumption and rapid development to ensure minimum time-to-market. Most of todays high performance applications uses instruction level parallel processors such as VLIW processors [START_REF] Rau | Dynamically scheduled vliw processors[END_REF].

VLIW architectures are mainly used for media processing in embedded devices, and instruction schedules produced by the compiler are a performance critical optimization that has a direct impact on the overall system cost and energy consumption. Highquality instruction schedules enable to reduce the operating frequency given real-time processing requirements. Most of the parallelism present in these systems is expressed in the form of loops.

In this paper, we consider a loop composed of many tasks that are to be executed a large number of times. Instruction scheduling for inner loops is also known as software pipelining [START_REF] Allan | Software pipelining[END_REF] and can be modelised by a cyclic scheduling problem. Among the different cyclic scheduling frameworks, modulo scheduling [START_REF] Rau | Iterative modulo scheduling: an algorithm for software pipelining loops[END_REF] is the most successful in production compilers. The modulo scheduling focuses on finding a periodic schedule with the minimal period λ.

The classical results of modulo scheduling apply to problems that are too limited to be of practical use in instruction scheduling in modern processors as well as in mass production problems. For example, these results assume simple precedence constraints on tasks in a schedule, instead of precedences with delays like those in pipelined processors, and focus on machine models where each operation uses one of m identical processors for its execution.

In order to model the software pipelining problem, [START_REF] Artigues | Resource-Constrained Project Scheduling: Models, Algorithms, Extensions and Applications[END_REF] proposes an extension of the classic modulo scheduling problem to resource-constrained modulo scheduling problems with precedence delays where the resources are adapted from the renewable resource of the resource-constrained scheduling problem [START_REF] Brucker | Resource-constrained project scheduling: Notation, classification, models, and methods[END_REF].

We define, in this paper, a special case of this problem where the resource demands are unitary, and we present a guaranteed algorithm for these problems.

Problem formulation

An instance of a unitary resource-constrained cyclic scheduling problem can be defined by:

-An architecture model defined by

P = {P (i,j) \1 ≤ i ≤ k, 1 ≤ j ≤ m i },
where k denotes the number of different types of processors and m i denotes the number of type i processors. Let mx = max 1≤r≤k mr.

-A set of n tasks V = {T i } 1≤i≤n with integer processing time {p i } 1≤i≤n . To each task T i is associated a binary vector {b i r } 1≤r≤k over the resource types, such that T i uses b i r units of resource of type r during its execution. Notice that a task might use several processors but of different types.

-Each task T i must be performed an infinite number of times. We call T i at iteration q the q-th execution of T i . -Precedence graph G(V, E) where:

-E is a set of edges defining uniform dependence relations denoted by T i lij ,hij -→ T j , where the delay l ij and the height h ij are nonnegative integers. l ij and h ij model the fact that the task T j at iteration q has to be issued at least l ij time units after the end of task i in iteration qh ij .

-We denote ρ = lmax p min where lmax = max (Ti,Tj)∈E l ij and p min = min

1≤i≤n p i .
Notice that this model generalize the classical parallel processors statements (in which k = 1 -i.e. there is a unique type of processors) as well as typed tasks systems where each binary vector {b i r } 1≤r≤k has only one positive component. Let us illustrate the notions of tasks, iterations, delays and heights with the following example. We will work on this example throughout the paper.

F or 1 ≤ i ≤ N (T 1) : t 1 (i) = t 3 (i) (T 2) : t 2 (i) = t 3 (i) (T 3) : t 3 (i) = t 2 (i -3) (T 4) : t 4 (i) = t 2 (i -1) (T 5) : t 5 (i) = t 4 (i -2) +t 2 (i -1) + t 7 (i) (T 6) : t 6 (i) = t 5 (i -1) (T 7) : t 7 (i) = t 6 (i -1) Tasks T 1 T 2 T 3 T 4 T 5 T 6 T 7 p i 2 2 3 3 1 1 1 {b i 1 , b i 2 } 1,1 1,1 1,0 1,0 1,1 0,1 1,1
The loop has n = 7 tasks, each one is executed N times. N is a given parameter representing the number of iterations and can be very large, and thus is assumed infinite. The associated precedence graph G(V, E) is given in Figure 1. Values of l ij and h ij are displayed next to the corresponding arc. The resource request {b i 1 , b i 2 } of each task T i is highlighted next to the corresponding node. A resource-constrained cyclic scheduling problem is to find a schedule σ that assigns a starting time σ(T i , q) for each task occurence (T i , q) such that for all r ∈ {1, • • • , k} and for each time s, the number of tasks using processors of type r at time s is at most equal to mr, and

" T i lij ,hij -→ T j « ⇒ σ(T i , q) + p i + l ij ≤ σ(T j , q + h ij) ∀q ∈ N
The modulo scheduling focuses on finding a periodic schedule with the minimal period λ such that:

∀i ∈ {1, • • • , n}, ∀q ∈ N : σ(T i , q) = σ(T i , 0) + q • λ
Periodic schedules are of high interest from a practical point of view, because their representation is compact so that they can be easily implemented in real systems.

Decomposed software pipelining

Generating an optimal resource constrained cyclic scheduling with minimal period is known to be N P-hard. To overcome this N P-hardness, we used the decomposed software pipelining approach introduced simultaneously by Gasperoni and Schwiegelsohn [START_REF] Gasperoni | Generating close to optimum loop schedules on parallel processors[END_REF], and by Wang, Eisenbeis, Jourdan and Su [START_REF] Wang | Decomposed software pipelining: a new perspective and a new approach[END_REF]. The main idea is to decouple the problem into dependence constraints and resource constraints so as to decompose the problem into two subproblems: a cyclic scheduling problem ignoring resource constraints, and a standard acyclic graph for which efficient techniques are known.

Gasperoni and Schwiegelshohn give an efficiency bound to the period λ for the problem with m identical processors and precedences without delays. Let λ opt be the optimal (smallest) period, this bound is given by the following inequality:

λ ≤ " 2 - 1 m « λ opt + " 1 - 1 m « (max 1≤i≤n p i -1)
Darte et al. [START_REF] Calland | Circuit retiming applied to decomposed software pipelining[END_REF] presents a heuristic based on circuit retiming algorithms to generalize the efficiency bound given for Gasperoni-Schwiegelshohn algorithm. The main idea is to use a retiming R to decide which edges to cut in G(V, E) so as to make it acyclic. Then, the acyclic makespan minimization problem is solved using any approximated algorithm, that provides a pattern (schedule of a period) for a feasible periodic schedule.

In this paper, we generalize this approach for our problem. Several new elements have to be taken into account: extended resource constraints and arbitrary precedence delays.

We first use the definition of [START_REF] Calland | Circuit retiming applied to decomposed software pipelining[END_REF] for a legal retiming:

R : V → Z, ∀(T i , T j) ∈ E, R(T j) + h ij -R(T i) ≥ 0
A legal retiming for G of Figure 1 is given in Table 1.

Table 1 A retiming R of G.
Tasks

T 1 T 2 T 3 T 4 T 5 T 6 T 7 R(T i) 0 1 0 2 2 1 1
Then, we define the acyclic graph G R by keeping only the arcs of G for which R(T j)+h ij -R(T i) = 0. We add two dummy tasks Start and Stop with null processing times and no resource use. For each task T i , we add arcs (Start, T i) and (T i , Stop) and we define valuations of these new arcs such that:

∀(T i , T j) ∈ G\G R , l i,Stop + l Start,j ≥ l ij . (1)
Notice that such valuations can be defined as follows for each task T i :

-l Start,i = 0 -l i,Stop = max (Ti,Tj)∈G\G R l ij .
Let π R be any (non cyclic) schedule of G R that fulfills the resource constraints as well as the precedences induced by G R . We note π R i the start time of task T i in this schedule. Then, setting λ R = π R Stop and for any task

T i , σ R (T i , q) = π R i + (q + R(T i)) λ R
we get the following result:

Lemma 1 σ R is a feasible periodic schedule of G with period λ R .
Proof. First, we prove that, at any time slot t, the tasks scheduled at t in σ R meet the resource constraints. We note F t the set of tasks for which one of occurence is scheduled at t. Let T i and T j be two tasks in F t . We note q and q ′ their corresponding

occurences such that σ R (T i , q) ≤ t < σ R (T i , q) + p i , σ R (T j , q ′) ≤ t < σ R (T j , q ′) + p j . Hence, t = σ R (T i , q) + s = σ R (T j , q ′) + s ′ π R i + (q + R(T i)) λ R + s = π R j + `q′ + R(T j) ´λR + s ′ π R i -π R j + s -s ′ -`R(T j) -R(T i) + q ′ -q ´λR = 0. (2
) Since π R i + s < π R i + p i ≤ π R Stop = λ R and similarly π R i + s ′ < λ R , -λ R < π R i + s -π R i -s ′ < λ R .
Hence, the equality (2) gives:

π R i + s = π R j + s ′ and R(T i) + q = R(T j) + q ′
Hence, T i and T j are performed on the same time slot π R i +s in the acyclic schedule π R . Thus, T j ∈ F π R i +s and then

F t ⊆ F s+π R i Since π R fullfills the resource constraints induced by G R , F π R i
(and then F t) meets the resource constraints.

For precedence constraints, we need to prove that, ∀(T i , T j) ∈ E, ∀q ∈ N:

σ R (T i , q) + p i + l ij ≤ σ R (T j , q + h ij) ⇔ π R i + (q + R(T i)) λ R + p i + l ij ≤ π R j + `q + R(T j) + h ij ´λR
Hence, we have to verify that inequality (3) is satisfied for each (T i , T j) in E and for any q

∈ N π R i -π R j + p i + l ij ≤ `R(T j) -R(T i) + h ij ´λR . (3
) Case 1 : (T i , T j) ∈ G R Then, R(T j)-R(T i)+h ij = 0. Since π R fullfills the precedence constraints induced by G R , π R i + p i + l ij ≤ π R j . Hence, inequality 3 is satisfied. Case 2 : (T i , T j) / ∈ G R Thus, R(T j) -R(T i) + h ij > 0. And then, using 1 π R i -π R j + p i + l ij ≤ π R i + p i + l i,Stop + l j,Start -π R j As π R j ≥ l j,Start and π R i + p i + l i,Stop ≤ π R Stop , we get: π R i -π R j + p i + l ij ≤ π R Stop ≤ λ R ≤ λ R (R(T j) -R(T i) + h ij)
which achieves the proof. Now, the idea, previously used by [START_REF] Gasperoni | Generating close to optimum loop schedules on parallel processors[END_REF] and [START_REF] Calland | Circuit retiming applied to decomposed software pipelining[END_REF] is to choose a particular retiming and use a guaranteed algorithm to get a schedule π R of G R , and then to extend the guarantee to the induced periodic schedule.

List scheduling algorithms are the most used heuristics for scheduling with precedence and resource constraints. Alix et al. [START_REF] Munier | Approximation bounds for a general class of precedence constrained parallel machine scheduling problems[END_REF] prove that such algorithms have the following worst case performance in the case of m identical processors in presence of precedence delays:

Cmax ≤ " 2 - 1 m(ρ + 1) « C opt max
where ρ = lmax p min . For systems with unit execution time tasks and typed processors, Chou and Chung [START_REF] Chou | Upper bound analysis of scheduling arbitrary delay instruction on typed pipelined processors[END_REF] give the following bound:

Cmax ≤ " k + 1 - 1 mx(lmax + 1) « C opt max
We thus propose the following generic algorithm 1 to solve our problem, by using a list algorithm to produce π R .

Algorithm 1: Extended DSP 1. Find a legal retiming R for G; 2. for (T i , T j) ∈ E do if R(T j) -R(T i) + h ij = 0 then keep (T i , T j) in G R ;
R = Cmax(G R) = π R Stop ; 4. Define the cyclic schedule σ R by: for 1 ≤ q ≤ N do for T i ∈ V do σ R (T i , q) = π R i + λ R (q + R(T i)) ;
The acyclic graph provided by the retiming R is given by Figure 2 and its corresponding list scheduling allocation is presented in Figure 3. The makespan of this pattern is λ R = 9 and it gives the period of the modulo scheduling of G. The different steps of this heuristic are illustrated by algorithm 1.

Worst case analysis

In this section we analyze the worst case performance of algorithm 1 in general, making use of the proof of Chou and Chung [START_REF] Chou | Upper bound analysis of scheduling arbitrary delay instruction on typed pipelined processors[END_REF] for list scheduling. Then, we show that using some particular retiming, that can be computed in polynomial time, we can get an overall guarantee for the Extended DSP algorithm.

Minimal length of pattern

Consider a dependence graph G. An acyclic graph G R is obtained by a retiming R. Then, we schedule G R by a list algorithm and generate a pattern π R . We note φ R the length (sum of the delays and processing times) of the longest path in G R . Let λ opt be the optimal period of G.

We consider two types of bounds obtained from resource and precedence constraints.

Resource bound

Lemma 2 For each type r, let mr be the number of machines of type r. Then,

λ opt ≥ max 1≤r≤k P n i=1 b i r • p i mr .
Proof. The shortest time required to complete the tasks using resources of type r on a single machine is

n X i=1 b i r • p i .
Hence, on mr parrallel processors, the shortest time required is

P n i=1 b i r • p i mr
. Furthermore, the length of the optimal period λ opt is not shorter than the time required to schedule these tasks once.

P recedence bounds

Let π R be a schedule induced by a list algorithm on G R . In order to reveal the dependencies among tasks, we classify the time slots into three kinds:

1. A full slot t f is a time slot in which at least all the processors of a certain type are executing tasks. 2. A partial slot tp is a time slot in which at least one processor of each type is idle and this slot contains at least one non-idle processor. 3. A delay slot t d is a time slot in which all processors are idle.

We note:

p: the number of partial slots in π R .

d: the number of delay slots in π R .

Lemma 3 The partial-slots lemma:

If π R contains p partial slots and d delay slots, then φ R ≥ p + d.

Proof. We prove this lemma by finding a chain h =< T j1 , • • • , T jc > in π R such that the length of h is at least equal to p + d.

Let T jc = Stop and assume that we already have a chain < T ji+1 , • • • , T jc >. Consider, if it exists, the predecessor T ji of T ji+1 such that π R ji + p ji + l ji,ji+1 is maximum.

The construction of h leads to the following observation: All the slots before π R j1 or between π R ji + p ji + l ji,ji+1 and π R ji+1 (if they exist) are full slots and in which there is no available processor in a type of resource used by T ji+1 . Otherwise, T ji+1 would have been scheduled earlier by the list algorithm.

Therefore, all the p partial slots and d delay slots are covered by the intervals

[π R ji , π R ji + p ji + l ji,ji+1
), so that the length of h is not less than p + d. Thus, φ R ≥ p + d.

Lemma 4

The delay-slots lemma:

If π R contains d delay slots, then φ R ≥ d + ‰ d lmax ı p min .
Proof. The schedule is computed by a list algorithm, then the number of any consecutive delay slots is not greater than lmax. Consider the chain h defined in the previous lemma. All the delay slots are included in

∪ 1≤i≤c-1 [π R ji + p ji , π R ji + p ji + l ji,ji+1), since during interval [π R ji , π R ji + p ji), T ji is performed. Now the length of each interval [π R ji + p ji , π R ji + p ji + l ji,ji+1
) is less than lmax. So it holds that c • lmax ≥ d. The length of h is thus not less than d plus the length of the chained tasks, which is greater than

c • p min ≥ ‰ d lmax ı p min . Thus, φ R ≥ d + ‰ d lmax ı p min .

Performance bound

Here we define the notations to be used below:

M = X 1≤r≤k mr.
ur: the number of non-idle cycles on processors of type r.

vr: the number of non-idle cycles on processors of type r in partial slots in π R . V = X 1≤r≤k vr: the number of non-idle cycles in partial slots in π R .

We now prove a first bound ont the algorithm performance based on the length of the longest path in G R .

Theorem 1 Consider a dependence graph G. Let R be a legal retiming R on G and φ R the length of the longest path in G R . Then,

λ R λ opt ≤ k + " 1 - 1 mx(ρ + 1) « φ R λ opt .
Proof. Consider the pattern π R :

M λ R = number of non-idle cycles + number of idle cycles.

where the second term on the right hand side can be decomposed as the number of idle cycles occurring during delay, partial and full slots.

P 1≤r≤k v i mx ≤ (kM -M)λ opt -(M -mx) V mx Then, M λ R ≤ M λ opt + (kM -M)λ opt -(M -mx) V mx + M p -V + M d ≤ kM λ opt -(M -mx) V mx + M p -V + M d ≤ kM λ opt -M V mx + M p + M d
V is the number of non-idle cycles in partial slots, since a partial slot contains at least one non-idle cycle, V ≥ p. Thus,

λ σ ≤ kλ opt - p mx + p + d ≤ kλ opt + (1 - 1 mx)(p + d) + 1 mx d ≤ kλ opt + (1 - 1 mx)(p + d) + 1 mx d " 1 + p min lmax « 1 1 + pmin lmax ! ≤ kλ opt + (1 - 1 mx)(p + d) + 1 mx " d + ‰ d lmax ı p min « " ρ ρ + 1 « From Lemmas 3 and 4, we have φ R ≥ p + d and φ R ≥ d + ‰ d lmax ı p min . Then, λ R ≤ kλ opt + (1 - 1 mx)φ R + 1 mx ρ ρ + 1 φ R ≤ kλ opt + (1 - 1 mx(ρ + 1)
)φ R

Choosing a good retiming

In order to improve the performance bound, it seems important to minimize the ratio between φ R and λ opt . So if we have a good lower bound LB of λ opt , using theorem 7 in [START_REF] Leiserson | Retiming synchronous circuitry[END_REF], we can verify the existence of a legal retiming R ′ such that φ R ′ ≤ LB ≤ λ opt . If such retiming exists, we have a performance guarantee of:

λ R ′ λ opt ≤ k + 1 - 1 mx(ρ + 1)
.

An another approach consists on minimizing the length of the longest path in the pattern. There are well-known retiming algorithms [START_REF] Leiserson | Retiming synchronous circuitry[END_REF] to minimize φ R . Let R opt be a retiming for which the length of the longest path in the acyclic graph G Ropt is minimal. We note it φ opt . We also denote by σ∞ an optimal periodic schedule for unlimited resources (with period λ∞). Proof. Consider an optimal cyclic schedule σ∞ for unlimited resources. Let us define r : V → [0, λ∞ -1] and R : V → Z such that:

σ∞(T i , q) = r(T i) + λ∞ (q + R(T i)) , ∀T i ∈ V, ∀q ∈ N
Then, the precedence constraint for each edge (T i , T j) ∈ E is:

σ∞(T i , q) + p i + l ij ≤ σ∞(T j , q + h ij) r(T i) + λ∞ (q + R(T i)) + p i + l ij ≤ r(T j) + λ∞ `q + h ij + R(T j) ŕ(T i) + p i + l ij ≤ r(T j) + λ∞ `hij + R(T j) -R(T i) [10]
proved that R defines a valid retiming for G. Furthermore, G R is obtained by keeping the edges of G for which R(T Hence, φ Rδ ≤ λ∞ -1 and since φ opt ≤ φ R , we have the desired result.

j) + h ij -R(T i) = 0. Thus , r(T i) + p i + l ij ≤ r(T j), ∀(T i , T j) ∈ E Let h =< T j1 , • • • , T jc , Stop > be a chain in G R .
Finally, from lemma5, we deduce our last performance ratio.

Theorem 2 Consider a dependence graph G. Let R opt be a retiming on G that minimize the length of the longest path in R . Then,

λ Ropt ≤ " k + 1 - 1 mx(ρ + 1) « λ opt + " 1 - 1 mx(ρ + 1)

«

(δ -1).

Proof. Using theorem 1 applied to R opt , we get:

λ Ropt ≤ kλ opt + (1 - 1 mx(ρ + 1)
)φ opt ≤ kλ opt + (1 -1 mx(ρ + 1)

)(λ ∞ + δ -1)

≤ kλ opt + (1 -1 mx(ρ + 1)

)(λ opt + δ -1)

≤ (k + 1 - 1 mx(ρ + 1)
)λ opt + (1 -1 mx(ρ + 1)

)(δ -1)

Conclusion

Instruction scheduling, which takes place when compiling applications for modern processors, affects critically the performance of the the overall system cost and energy consumption.

In this paper, we presented a generalized model of instruction scheduling but our results are still available for applications in production systems problems.

We have built upon results of [START_REF] Gasperoni | Generating close to optimum loop schedules on parallel processors[END_REF][START_REF] Calland | Circuit retiming applied to decomposed software pipelining[END_REF][START_REF] Chou | Upper bound analysis of scheduling arbitrary delay instruction on typed pipelined processors[END_REF] and extended them to propose a guaranteed heuristic for unitary resource-constrained modulo scheduling problems. A worst case analysis of this heuristic is explored and a performance bound is established. It is the first guarantee derived for cyclic scheduling problems in the case of many different resources.

Fig. 1

 1 Fig. 1 An example of precedence graph G(V, E).

Fig. 2

 2 Fig.2The acyclic graph given by the retiming R.

Fig. 3 A

 3 Fig. 3 A pattern generated by a list scheduling of G R : λ R = 9.

Lemma 5

 5 Let δ = max (Ti,Tj)∈E (p i + l ij) be the maximum scope in G. Then, λ∞ + δ -1 ≥ φ opt .

-

 r(T ji) + p ji + l ji,ji+1 ≤ r(t ji+1), ∀i ∈ {1, • • • , c -1},By summing up these c -1 inequalities, we haver(T j1) + c-1 X i=1 (p ji + l ji,ji+1) ≤ r(T jc) Thus, c-1 X i=1 (p ji + l ji,ji+1) ≤ r(T jc). This inequality is true for any chain of G R in particular for the longest path in G R . Hence, c-1 X i=1 (p ji + l ji,ji+1) + (p jc + l jc,Stop) (p jc + l jc,Stop)

 1. The number of idle cycles per processor occurring during delay slots is equal to M d. 2. The number of idle cycles per processor occurring during partial slots is at most equal to M p -V . 3. Using Lemma 2, we now give a bound on the number of idle cycles occurring during full slots.Notice that for a resource type r, there are at most urvr mr full slots in which resource r is full. Thus the number of idle cycles in these slots is at most (M -

	mr) ≤ ≤ ≤	ur -vr mr X (M -mr) . Hence we get: ur -vr mr 1≤r≤k X 1≤r≤k (M -mr) ur mr -1≤r≤k X X 1≤r≤k (M -mr) max 1≤r≤k P n i=1 b i (M -mr) r • p i mr -(M -mx) vr mr

We point out that it would be interesting to derive algorithms more sophisticated than list scheduling to improve this performance bound.

Finally, it would be worth to study the importance of choosing a good retiming and its impact on the performance guarantee. Good lower bounds for the optimal period would give a better guarantee.