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Chapter 8
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Abstract In chapter 2, the concepts of viability kernel and resilience basin are proposed to
characterize the viability and resilience of social and ecological systems. These
systems are submitted to strong disturbances and their models embed uncertain-
ties and approximations. Therefore, it is essential to consider the stability and the
robustness of their resilience. This is classically done with sensitivity analysis
which measures the difference of size of the viability kernel and of the resilience
basin under small deviations of parameters. In this chapter, we propose in addi-
tion to study the geometry of the viability kernel or resilience basin as subsets
of the state space. We show that some indicators of the shape of these sets give
information about how risky disturbances or uncertainties are. The distance to
the set boundary gives information about the robustness of trajectories, which
are safer far from the boundary. It is also an indicator of robustness for control
policies, which aim at keeping the trajectories far from the boundary.

1. Introduction
The definition of resilience described in chapter 2 applies to dynamical sys-

tems whose dynamics are modelled by controlled differential equations and in
which some properties of interest are defined by a subset of the state space (the
constraint set). These dynamical systems, when they model environmental or
socioeconomic systems, are subject to uncertainties. Moreover, the properties
of interest are rarely known with absolute certainty and accuracy. Viability the-
ory can take into account only a part of these uncertainties, considering a set of
velocity vectors rather than a single vector. Therefore, performing sensitivity
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analysis (like in Saltelli et al., 2000) appears as a good solution to assess the
impact of the other parameters of the dynamics, and also the impact of slight
modifications of the boundary of the constraint set on the viability kernel and
its capture basin.

As seen in Chapter 2, the resilience value is infinite inside the viability ker-
nel, but outside this set it can switch to a finite value or even to zero. If a
perturbation leads the system to a state of zero resilience value, there is no
hope of driving it back eventually to the viability kernel.

This is the reason why an explicit study of the robustness of states and tra-
jectories is so important in viability studies. In this chapter, we propose a
geometric method to appraise the robustness of the results given by a viabil-
ity study. Intuitively, the robustness or the risk associated with a given state
depends on its position relative to the boundary of the viability kernel or the
resilience basin.

These geometric concepts and their interest according to the resilience issue
are described in section 2, with a simple example. Prerequisite, correct use of
the method and algorithms are described in section 3. The geometric study is
illustrated on the PATRES case study of language competition in section 4 (see
Chapter 3). It highlights the role the robustness information can play when
controlling the system.

2. Geometric Criteria of Robustness in Viability and
Resilience Analyses

2.1 Geometric description of relevant sets
As in Chapter 2, we consider a dynamical system and we suppose that a

property of interest of this system is defined as a constraint set (subset of the
system’s state space). The viability kernel is formed by all the states belonging
to the constraint set that are viable, that is, the subset of initial points from
which it is possible to maintain the system inside the constraint set. The re-
silience basin is defined as the capture basin of the viability kernel, that is the
set of all states from which it is possible to reach the viability kernel in finite
time.

The volume of these sets is useful to qualify the robustness of the system.
The smaller they are, the less robust the system is. For example, if the volume
of the viability kernel is very small compared with the volume of the constraint
set, then it will be difficult to maintain the system in this desired set. If the
volume of the resilience basin is very small compared with the volume of the
state space (when its size is finite), then the system itself is not very resilient.

The variation of these sets with small modifications of the parameters is
also a valuable piece of information. In particular, if small modifications of the
constraint set lead to catastrophic modifications of the viability kernel (empty
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or very small set), then the viability study is not robust to uncertainties in
parameters.

Besides this sensitivity analysis of the model, the geometric description pro-
vides more information concerning the robustness to uncertainty or measure-
ment error of the state and control variables. Figure 8.1(a) shows two viability
kernels with the same volume. Obviously a dynamical system that evolves in
the top left kernel is less resistant to perturbation than a dynamical system that
evolves in the top right kernel.

Figure 8.1: Two examples of situations where the geometric description brings
useful information. (a) Two kernels with the same volume. A system evolving
in the left kernel cannot resist even small disturbance along the vertical axis.
Dot circles show the respective largest maximal balls of both sets. (b) Two
points in the same kernel. The dashed circle shows the largest perturbation
that keep the point inside the viability kernel.

A useful indicator of the shape of the viability kernel or of the resilience
basin is the diameter of the largest maximal ball. Maximal balls inside a set
are open balls that are not contained in any larger ball inside the set. Centres
of maximal balls form the skeleton (see Serra, 1988, for more information
about mathematical morphology concepts). The largest maximal ball is the
largest ball inscribed in the set. The centre of the largest maximal ball is the
farthest point from the boundary of the set. With Euclidean distance, the largest
maximal ball is a sphere (it is the sphere itself). When the centre of the largest
maximal ball is close to the boundary of the set, then every point is close to the
boundary, as is the case in Figure 8.1(a) on the left.

The diameter of the largest maximal ball can be compared with two base
characteristics of the viability study, as shown in Figure 8.2. When the diam-
eter of the largest maximal ball is small compared with the diameter of the
minimal bounding ball of the set, the system is very sensitive to even small
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Figure 8.2: Geometric indicators for the viability kernel or the resilience basin:
the radius of the kernel minimal bounding ball and the radius of the largest
maximal ball inside the kernel. M is the centre of the maximal ball, and ∆(M)1
and ∆(M)2 are the sensitive disturbances at point M.

disturbances. In the case of a viability kernel or a resilience basin, this means
that the system is not robust to the uncertainties in the state variables.

The size of the viability kernel can also be compared with the size of the
constraint set. When the diameter of the minimal bounding ball of the viability
kernel is small compared with the diameter of the minimal bounding ball of
the constraint set, the dynamical system has to be restrained in a small area.
This makes control much more difficult.

2.2 State robustness
When a system starts from a state inside the viability kernel, it is possible

to maintain its evolution inside the constraint set with certainty, whereas if the
system starts inside the resilience basin, it is possible to reach the viability
kernel in finite time. These are the properties that characterize the viability
kernel and the resilience basin. Nevertheless all states are not equal in regard
to other respects: state utility, control cost, but also robustness to uncertainty or
measurement error and robustness to perturbation. In Figure 8.1(b), the point
on the left is far less robust than the point on the right.

Definition 8.1 Robustness of a State and Sensitive Disturbance.
Let K be a viability kernel or a resilience basin in the state space E (or in

the extended phase space with control variables). Let x be a state in K. The
robustness s(x) of the state x is defined by:

s(x) = max{α ≥ 0; ∀y ∈ E, d(x,y)< α ⇒ y ∈ K}

. A minimal sensitive disturbance at point x, ∆(x) is defined by:

∆(x) = argminδ∈E{‖δ‖ , s(x+δ ) = 0}
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.

When a state is far from the boundary, it is actually tolerant to error in state
determination, and in the same extent its robustness to perturbation is high. In
Figure 8.1(b), the distance to the boundary is indicated by a dashed circle. It is
obvious that the robustness value of the right state is greater than the robustness
value of the left state. When a small perturbation is applied to the left point, it
leaves the viability kernel. The point on the right can resist larger disturbances.
Inside the viability kernel, where states are undifferentiated as to resilience, the
concept of robustness is more appropriate to describe the situation, since the
robustness of a state is the size of the largest perturbation that keeps the system
in the viability kernel.

2.3 Trajectory Robustness
The distance map is used to define the robustness of a state, but it can also

be used to propose a family of robustness definitions on trajectories. Since the
distance map gives the distance to the boundary at each point, it is possible to
use this information to define robustness indicators at the level of a trajectory.
Several definitions can be proposed, depending on the risk perception of the
manager.

Definition 8.2 Geometric Robustness of a Trajectory.
Let x : t 7−→ x(t) be a trajectory in the viability kernel or resilience basin

K. We note ΓK its boundary. Let f be a function from the set of continuous
real-valued functions to R. The f -geometric robustness value of u on the time
interval [0,T ] is:

r f (x) = f ({t ∈ [0,T ] 7→ d(x(t),ΓK)})

.

For example, the most risk-adverse indicator is the minimum of the robust-
ness on the trajectory, with f = min. But it has some drawbacks, since it does
not take into account the time during which the robustness is low. So the func-
tion f = mean can also be used as an average value to consider the robustness
of a trajectory. (This definition has its own drawbacks, since a trajectory that
leaves the set has a non-zero robustness).

Definition 8.3 Min-robustness and Mean-robustness of a Trajectory.
Let x : t 7−→ x(t) be a trajectory in the viability kernel or resilience basin K.

We note ΓK its boundary. The min-robustness value of x on the time interval T
is:

r−(x) = min
t∈[0,T ]

{d(x(t),ΓK)}
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Figure 8.3: Geometric robustness. Trajectory x(t) is more robust than trajec-
tory y(t). Trajectory z(t) has a min-robustness value of 0, since it leaves the
viability kernel.

The mean-robustness value of x on the time interval [0,T ] is:

rm(x) =
1
T

∫
t∈[0,T ]

d(x(t),ΓK)dt

.

Other definitions can be proposed with a discounting rate for future robust-
ness values, in a similar way than is done for delayed rewards or payments
(which are worth less than if they were paid at present time). For example,
the control policy can take into account the fact that it is possible to modify
a trajectory in the future. Therefore the robustness at the present time of a
state reached in the future is less critical than the robustness of the present
state. (The robustness value of a future state is considered to be less than the
robustness value of the present state with a positive discount factor).

Definition 8.4 Discounting Robustness.
Let α be a discount factor. The discounting robustness value of x on the time

interval [0,T ] is:

rα(x) =
1
T

∫ T

0
d(x(t),ΓK)e−αtdt

.

With these definitions, both trajectories x and y starting from A in Figure
8.3 have a strictly positive robustness value for all time intervals, and the ro-
bustness of x is greater than the robustness of y, for the min-robustness, the
mean-robustness or the discounting robustness (actually all f -robustness with
f monotone). The robustness of trajectory z is defined on [0,T1], where T1
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is the time it exits the viability kernel. Its min-robustness value on the time
interval [0,T1] is zero.

All these definitions can be adapted to the discrete case. For example, the
discounting robustness in the discrete case is:

rα(x) =
1
T

T

∑
t=0

d(x(t),ΓK)
1

(1+α)t

.
Trajectory robustness can be used to compare different evolutions of the

system, starting from the same state point at some time t0. For example, in
Figure 8.3, a manager will disregard trajectory z, because it leaves the viability
kernel. Since trajectory x dominates y for all robustness indicators, the manager
should follow the sequence of control of trajectory x.

2.4 A Simple Example
The geometric approach can be better understood when it is applied to a

simple example, like the problem of lake eutrophication (see Carpenter et al.,
1999, for an extensive description).

Clear water or water in the oligotrophic state provides ecosystem services
such as freshwater, irrigation supplies, etc. of much higher economic value
than turbid water or water in the eutrophic state. But many lakes have expe-
rienced sudden shifts from oligotrophic to eutrophic states. Phosphorus is the
most critical nutrient for the eutrophication of lakes. Excess phosphorus is im-
ported by farms in the form of fertiliser and animal feed supplements. Most of
the phosphorus accumulates in soil, and may then be transported to streams and
lakes during runoff events associated with snow melt or rainstorms. Knowing
the dynamics of lake eutrophication, the available regulatory laws, the present
concentration of phosphorus in the lake and the present amount of inputs, the
issue is to determine whether the lake can remain in an oligotrophic state or if
it is doomed to become eutrophic in finite time. Simple models describe the
lake time evolution with few variables: L, the amount of phosphorus inputs
and P the phosphorus concentration in the lake.

Agriculture requires a minimum value for L, whereas oligotrophic state re-
quires a maximum value for P. In this model, regulatory laws are constraints
on dL

dt : this means that the law cannot set the maximum amount of phosphorus
inputs, but rather imposes a decrease of the phosphorus inputs, for example by
a percentage each year, with a maximum allowed.

With these simple assumptions, it is possible to compute the viability kernel
for the lake eutrophication problem. The viability kernel (see Figure 8.4) is the
subset of the (L,P)-plane that gathers all states (L,P) such that there exists at
least one regulatory law that allows the oligotrophic state to be maintained (
Martin, 2004).
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Figure 8.4: Distance map for the viability kernel boundary of the
lake eutrophication problem, with the following constraints: 0 ≤ P <
1.4, 0.1 < L < 1,

∣∣dL
dt

∣∣≤ 0.09. The black line is the viability kernel boundary.
p(A) and p(B) show the direction and size of the minimal sensitive disturbance
at point A and B, respectively.

The information about the distance to the viability kernel boundary is valu-
able because of measure uncertainties or exogenous disturbances (which, for
instance, cause a sudden increase in phosphorus concentration). Figure 8.4
shows the viability kernel with the level curves of the distance to its boundary.
The geometric study shows in what cases a state is dangerously close to the
decision boundary. For example, point B stands very close to the boundary
compare to A: it is less robust to perturbation.

The projection onto the boundary shows the direction of the most dangerous
disturbance. Figure 8.4 shows that when the lake is in state B, a small increase
of phosphorus input (L) combined with a very small change in the phosphorus
concentration (P) can shift the state of the lake outside the viability kernel.
This means that in a case of such a small disturbance, at some time in the
future, whatever controls are applied, the lake will experience eutrophication.

The geometric study also gives global information concerning the problem.
In Figure 8.5, point M is the centre of the largest maximal ball of the viability
kernel. It is the farthest point from the boundary with d(M,Γ) ≈ 0.36. The
corresponding diameter 0.36×2 = 0.72 can be compared with the size of the
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Figure 8.5: Trajectories for the lake eutrophication problem, corresponding to
constant negative or null control. The dot dashed line is the set of equilibriums.
Long dashed trajectories that leave the viability kernel are not robust. Point M
is the centre of the largest maximal ball.

constraint set (0.9 along L). Because this viability kernel has a reasonable size,
it should be easy to find an action policy that guarantees an oligotrophic state.

The geometric study gives information about trajectories. We consider con-
trols of the type dL

dt = −αL(0), with α ≥ 0, L(0) being the amount of phos-
phorus inputs at the initial time. Both trajectories u1 (α = −5%) and u2
(α =−15%) starting from A with a constant (negative) control have a strictly
positive value, either for the min or the mean-robustness. Both min and mean-
robustness values of u2 are greater than the ones of u1. The vertical trajectory
coming from A is not robust for the min-robustness. It corresponds to the tra-
jectory with no phosphorus input variation (α = 0). If the initial state of the
lake is at B, finding an efficient control policy is more difficult. The trajectory
coming from B in Figure 8.5 has a null min-robustness value, since it leaves
the viability set in twelve years. The control is already set to half the maximum
allowed (-0.09/year), α =−6% of the initial value L(0) at B.

All these geometric indicators can also be used to define a particular ac-
tion policy, for instance by maximizing the robustness as described in section
4. The most important information concerns the choice of a particular control
among all possible viable controls. For example, at point B, a lot of control
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values are still possible to keep the lake in a viable state. Generally a man-
ager does not want to impose too strict regulation (for example, the maximum
diminution allowed). In order to keep the robustness above a given threshold,
the manager can anticipate and choose a viable control closer to the control
available at the projection point p(B). In the same way, if the manager wants
to raise the robustness value of a lake at state A, he can propose a control close
to the control available at the projection point p(A).

In the next section we present the methods and tools that allow one to com-
pute and use the distance map and projection to provide geometric information
for a viability study.

3. Computing Geometric Robustness
The underlying concept of robustness is the distance to the boundary (of

the significant sets of the viability study). It is used to define the robustness
of states and trajectories, to describe the shape of the sets (with the largest
maximal ball), to select appropriate control (through the projection point of a
state). It is therefore essential to have at one’s disposal an efficient method to
compute the distance and projection. This is the subject of this section.

3.1 Practice of Geometric Method
In this section we develop the prerequisites that are often insufficiently taken

into account when dealing with geometric methods. It is particularly important
in the case of the study of viability since an efficient control policy depends on
the result of the resilience and robustness study. Many choices are implicitly
made before the computation of the distance, with impacts on the distance
map. It is essential to underline the different options and their significance in
order to really benefit from the geometric study. As for all geometric methods,
the choice of the distance is a critical step of the geometric robustness study.
A change of the distance can radically change the conclusion. For example, in
Figure 8.1(a), a change from the Euclidean distance to:

d2(x,y) =

√
(3(x1− y1))2 +(

1
3
(x2− y2))2

transforms the right circle shape into the left ellipse. Both shapes share the
same area, but the radius of the largest maximal ball in the case of the ellipse is
three times smaller than in the case of the circle. This problem arises frequently
with multiple criteria weighting.

However, the geometric study takes place after the building stage of the
model, therefore this issue is generally already fixed when the distance map
algorithm is applied.
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In any case, a reflection about the distance is essential to interact with the
human experts in charge of the model.

Nondimensionalized variables. The viability kernel is a subset of Rn, and
the two main methods that are available to approximate the viability set gen-
erally perform homogenization and rescaling operation. So the distance map
algorithm is generally applied to variables that are already nondimensional-
ized, and the distance induced by the inner product can be used directly. When
it is not the case, model experts have to propose a suitable coordinate system
in which the inner product is meaningful.

Two kinds of coordinate system transformation are basically useful, the
Min-Max (MM) and the standard (s) transformation (see equation 8.1).

With the Min-Max transformation the model expert considers that a sub-
set of the state space only has to be taken into account for the distance map
transform. The range of every variable is reduced to the interval [0,1] and
the distance transform map applies to the unit hypercube. The main justifica-
tion for the use of Min-Max transformation is that during the viability study,
a constraint set in which the dynamical system should evolve is defined. This
constraint set is a subset of the input state space. This set can be considered as
the set of all possible initial states for the dynamical system, and then mapped
to the unit hypercube for further use.

The Min-Max transformation is also particularly appropriate when the vari-
ables are in fact sensor measurements, since the accuracy of physical sensors
is generally a function of the total range of values. For each attribute i the min-
imum and the maximum of the range are set to Min(i) and Max(i) and the new
coordinate system is used to describe the state space.

The standard transformation is widely used in statistics to normalize sample
data, using an estimate of the mean Ei and of the standard deviation si of each
variable i. In the framework of viability study, s(i) can be seen as a charac-
teristic unit of measurement for variable i, and E(i) a characteristic value for
variable i. For example, s(i) can be set to the range of the constraint set on
variable i.

In practice, the choice of the transformation should be guided by the viabil-
ity problem.

The new coordinate system is defined by (8.1).

yMM
i =

xi−Mini

Maxi−Mini
or ys

i =
xi−Ei

si
. (8.1)

In this new coordinate system, the canonical inner product is meaningful.

Choice of a distance. When the input state space has an inner product, the
Euclidean distance which is derived from the inner product is generally used to
compute the distance map unless some particular property is required. But it is
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not always the most appropriate. Other distances than the Euclidean distance
can still be considered in order to compute geometric indicator for a viability
kernel or a resilience basin. The use of a particular distance should be linked
to the way the possible disturbances or uncertainties for each state variable can
combine themselves.

Euclidean distance d(x,y) = ‖x− y‖= (∑
i
|xi− yi|2)

1
2 (8.2)

L1 distance d1(x,y) = ‖x− y‖1 = ∑
i
|xi− yi| (8.3)

L∞ distance d∞(x,y) = ‖x− y‖
∞
= sup

i
|xi− yi| (8.4)

With the Euclidean distance, the uncertainty (or error or possible perturba-
tion) is distributed among all the variables: the amount of uncertainty sums
over all the variables, following Pythagoras’ theorem. The combined effect of
a small disturbance ai on every variable i is a larger disturbance a with size
‖a‖= (∑i |ai|2)

1
2 . With the L1 (or Manhattan) distance, the combined effect of

disturbances on different variables is simply their sum: ‖a‖1 = ∑i |ai|.
With the L∞ (or sup norm) distance, the combination of perturbations of

the same size on different variables does not change the size of the resulting
perturbation: ‖a‖

∞
= maxi |ai|. This means that every combination of distur-

bances are allowed, or, in other terms, the different sources of uncertainties or
disturbances do not substitute for one another.

In the lake eutrophication problem, we used the Euclidean distance, since
the two variables stands for a same chemical substance (coming from differ-
ent sources). In other problems, with variables standing for different physical
quantities, it can be preferable to use the sup norm distance. This is the case for
example in the cheese ripening process (Mesmoudi et al., 2009), where state
variables are rather different: temperature, mass, microorganisms respiration,
etc.

3.2 Distance Map and Projection Algorithm
The method we use for computing the distance to the boundary was initially

developed for classification systems (see Alvarez et al., 2010) for the general
case and Alvarez, 2004 for a detailed illustration on machine learning decision
trees). It applies well to viability kernels and resilience basins which can be
seen as classifiers. (States inside the viability kernel belong to the class viable,
whereas states outside belong to the class ¬viable. States inside the resilience
basin belong to the class resilient, whereas states outside belong to the class
¬resilient).

The distance and projection maps are computed with an adapted version of
a discrete algorithm coming from mathematical morphology (Meijster et al.,
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2000). This algorithm is defined on a hyper rectangle of Nd , and so the area
of the state space for which the distance is computed has first to be mapped
to a hyper rectangle in Nd . This means in particular that two neighbours on
any axis of the grid are at the same distance. The algorithm computes the exact
distance of each point of the discretized space to a subset S̄ of Nd . We modified
the original algorithm to compute the projection(s) onto S̄. In our case, S̄ is the
set of non-viable or non-resilient states.

The algorithm 1 consists of two steps. The first step computes the distance
and nearest point of the boundary on the first axis. It labels the points of the
boundary if needed. The second step is called d−1 times and adds an axis to
the previous subspace of dimension k− 1. It updates the distance value and
the list of projection points in the new subspace. To each norm is associated a
function that specifies how the distance in dimension k subspace is computed
from the distance in dimension k−1. For sake of simplicity, we consider that
a unit hypercube of the input space is discretized onto a N points per axis d-
dimensional grid G in Nd .

For example, with the Euclidean distance, the square distance in dimension
k subspace is given by a parabola: If gk−1(X) is the squared distance between
X and some point of the boundary, computed on the first k−1 axes, and if uk is
the unit vector of axis k, then the squared distance in the dimension k subspace,
gk(X) is at most gk−1(X). Applying the Pythagorean theorem, it is also at most
gk−1(X − l.uk) + (xk − l)2 for 0 < l < N, and the minimum value gives the
result. But the computation and comparison of all these values is suboptimal.

The algorithm is optimal, since instead of computing all the distance values,
it considers a set of distance functions and computes their lower envelope. For
example, for the Euclidean distance, it considers the set F of parabolas:{

FX(i) = gk−1(X)+(i− xk)
2}(0≤ xk < N)

The square distance for all xk,0≤ xk < N is given by the lower envelope of F ,
that is, for each abscissa, the minimum value among all the values given by the
different parabolas for this abscissa, as it can be seen in Figure 8.6.

The key point is the fact that two parabolas in F intersect at most once in
N2, and that the intersection is very easy to compute: FX intersects FY when
2(xk − yk) divides (x2

k − y2
k + gk−1(X)− gk−1(Y )). Instead of storing all the

parabolas values, only the intersection points and the vertices are stored.
This is the reason why it is optimal: The computation of the envelope is

reduced to a matrix searching problem, whose complexity is of O(N) in this
totally monotonic case (see Hirata, 1996 and Aggarwal et al., 1987 for details),
so the overall complexity is in O(Nd). The algorithm also works well for other
distances, as long as this key point concerning the intersection of the building
functions is maintained. The complementary set S̄ of the viability kernel can
be any subset of Nd , so it contains O(Nd) points. The complexity of algorithms
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Algorithm 1 DistanceAndProjectionOnToSet.
Sketch of the distance map algorithm.
Require: a map from G = [0,N−1]d in Zd to {0,1}. Points of the boundary are labeled by a

function label(x1, ...,xd). A building function F(X)(i) and an intersect function according
to the norm.

Ensure: Distance of each point of [0,N−1]d to S̄ and the corresponding nearest point of S̄
Procedure firstAxisDistance distance along the first axis
for all (x2, ...,xd) ∈ [0,N−1]d−1 do

for i← 0 to N−1 do
d(i, l) = |i− l|
A←{d(i, l), 0≤ l < N and (l,x2, ...,xd) ∈ S̄}
if A = /0 then

g(i,x2, ...,xd)← ∞

else
j← argmin{A}
g(i,x2, .,xd)← |i− j|
p(i,x2, .,xd)← label( j,x2, .,xd)

end if
end for

end for
return g, p
end procedure firstAxisDistance
if norm = Euclidean then

g1← g2 post-processing for Euclidean distance
end if
for k← 2 to d do

Procedure AdditionalAxis example: Euclidean square distance
for (x1, ...xk−1,xk+1, ...,xd) ∈ [0,N−1]d−1 do

for i← 0 to N−1 do
recruitment of building functions
A←{F(x1,.,l,..,xd)(i) = (d(i, l)2 +gk−1(x1, ., l, ..,xd)}, with 0≤ l < N
if min0≤l<N{A}< ∞ then

j← argmin0≤l<NA
assignment following the building functions envelope
gk(x1, .xk−1, i,xk+1, .xd)← F(x1,., j,..,xd)(i)
p(x1, .xk−1, i,xk+1, .xd)← p(x1, .xk−1, j,xk+1, .xd)

end if
end for

end for
end procedure AdditionalAxis
if k = d then

if norm = Euclidean then
gd ←

√
gd

end if
end if
return gd , p

end for
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Figure 8.6: Illustration of Algorithm 1. The distance along the first axis (in
grey) is computed first. Then the parabolas are built along the second axis.
Here, for u1 = 1, along the second axis with 0 ≤ u2 ≤ 3, two parabolas are
recruited with respective vertices (2,9) and (3,4). The dot-dashed line is their
lower envelope. The second parabola is lower than the first one from point
u2 = 1, since the intersection is between 0 and 1. At the next step, (u2 = 4),
another parabola will be recruited with vertex (u2 = 4,22). Then the square
distance will be assigned backwards, following the lower envelope: 4 at u2 = 4,
4 at u2 = 3, 5 at u2 = 2, 8 at u2 = 1 and 13 at u2 = 0.

which consider the distance of the different points of the state space to each of
S̄ points is therefore much higher.

For the Euclidean distance, the building function and the intersect function
are defined by:

FX(i) = gk−1(X)+(i− xk)
2 (8.5)

intersect(FX ,FY ) = truncate(x2
k− y2

k +gk−1(X)−gk−1(Y ))÷2(xk− yk).
(8.6)

For the sup norm, the distance in dimension k subspace is computed from
the distance in dimension k−1 with a truncated V -shaped function:

FX(i) = max(gk−1(X), |i− xk|) (8.7)
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The V -shaped function has its vertex at abscissa xk and is truncated at the value
gk−1(X), since the distance of the sup norm in dimension k is the max of the
distance for the first k−1 axes and of the distance along axis k, that is |i− xk|
at step i. The intersection of truncated V -shaped functions FX and FY is given
by the following formula (with xk ≤ yk):

intersect(FX ,FX) =


max((xk +gk−1(Y )),((xk + yk)÷2))

if gk−1(X)≤ gk−1(Y )
min((yk−gk−1(X)),((xk + yk)÷2)) otherwise

(8.8)
This algorithm is very efficient, since the complexity is in O(d.Nd), which

is optimal. It can also be parallelized on up to Nd−1 processors. For example,
the computation of the distance map for 109 points (20 points per axis in 7
dimensions, or 1000 points per axis in 3 dimensions) takes about 3 hours on a
2.4 GHz processor (see Alvarez et al., 2010 for more details).

4. Robust Viability-Guided Management
We illustrate some viability and robustness guided policies using one of the

language competition models, the bilinguals Minett-Wang model, presented in
detail in chapter 3.

4.1 Language Competition Model Description
In the bilinguals Minett-Wang model, the population is made of three groups,

the monolingual speakers of languages X and Y , and the bilingual speakers B.
The model is two-dimensional, with the dimensions representing the propor-
tions of X and Y speakers, on the x and y axis, respectively (b = 1−x−y). The
evolution of these two variables are governed by the following equations:

dx
dt = (1− x− y)(1− y)as− xya(1− s)
dy
dt = (1− x− y)(1− x)a(1− s)− yxas

(8.9)

where s ∈ [0,1] denotes the prestige of language X compare to the language
Y one, and a is a parameter that models how the attractiveness scales with the
proportion of speakers (for more details see chapter 3).

The prestige measures the status associated with a language due to indi-
vidual and social advantages related to the use of that language, being higher
according to its presence in education, religion, administration and the media.
We assume that public action can modify the prestige of a language, but that
its variation at each time step is bounded:

ds
dt = u
u ∈ U := [−ū; ū].

(8.10)
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Figure 8.7: Distance map of the language viability domain. A grid of 100
points per axis is mapped on the unit hypercube. Only the points of the viability
domain are drawn. Their colour is a function of the Euclidean distance to the
boundary. A black bounding box encloses the viability domain.

The problem of maintaining a given level of monolingual speakers in both
languages can be described by a subset of the state space, the constraint set, K,
in the viability theory terminology:

K := [xmin;1]× [ymin;1] (8.11)

with xmin > 0 and ymin > 0.
It is possible to exhibit viability domains (see Bernard and Martin, submit-

ted) associated with the viability problem described by (8.9), (8.10) and (8.11).
(A viability domain is a subset of the viability kernel, similar to it, but it is not
maximal).

With this model, the variables are already normalized and the dot product
is obvious. Since the boundary of the viability domain is computed directly
(Bernard and Martin, submitted), the distance algorithm computes an approx-
imation of the distance to the boundary on a grid with no further conditions.
Figure 8.7 shows a transparency view of the distance map inside the viability
domain.

The distance map is then used to propose viable and robust policies.

4.2 Robustness to Perturbation and Uncertainty
Besides the viability kernel, viability theory gives at each state a list of con-

trols that ensures that a state can stay in the viability kernel one step ahead.
Nevertheless, all states in viability kernel are not equivalent, since a system
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in a viable state near the boundary can switch outside the viability kernel if
subjected to unexpected perturbation. The distance map can help to define a
more robust control policy than the standard viability control policy, which is
based on the inertia-based avoidance control strategies. The same situation oc-
curs in the resilience basin, and the distance map can help to take into account
unexpected perturbations.

The following examples illustrate robust control policy in the case devel-
oped in section 4.1. For simplicity we consider the viability domain, but the
same approach would apply in a resilience basin (when several controls are
available).

Inertia-based Avoidance Control Strategies.

Heavy Trajectories. Heavy trajectories (Aubin, 1991) correspond to the
choice at each time step of the control that minimizes the norm of the control
rate of change. This means that the control stays the same until it is necessary
to change it to avoid leaving the viability kernel. Figure 8.8 shows an example
of several heavy trajectories with random input state and control in the viability
kernel. In general, with the control based on the Saint-Pierre algorithm, these
trajectories follow the flow of the dynamic system with constant control until
they reach the boundary of the viability kernel. On the boundary of the viability
kernel, when it does not coincide with the boundary of the constraint set, all the
viable velocities belong to its tangent space. Consequently, the trajectories are
stuck to the boundary until they encounter an area where the viability kernel
coincides with the boundary of the constraint set. This is the reason why these
trajectories stay a long time on the boundary, as shown in Figure 8.9. These
trajectories are different from the ones observed in the case studies of this book
because the tool we used to compute the control actions prevents the system to
get too close to the boundary (see Chapter 7).

Slow Trajectories. Slow Trajectories (Aubin, 1991) correspond to the
choice at each time step of the control with the smallest possible norm. This
means that the system is not controlled except when it is necessary. Figure 8.10
shows a set of slow trajectories. In general these trajectories follow the flow
until they reach the boundary of the viability kernel. As with heavy trajecto-
ries, they are then stuck to the boundary until they encounter an area where the
viability kernel coincides with the boundary of the constraint set. Slow trajec-
tories, like heavy trajectories, stay a lot of time on the boundary, as shown in
Figure 8.11.

Standard control policies lead to trajectories that can stay for a long time
very close to the boundary of the viability kernel. This problem cannot be
easily solved by strengthening the constraints: being inside the viability kernel
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Figure 8.8: State robustness of 4 heavy trajectories with random initial state
(black circles). The colour of the points depends on the robustness value. The
viability kernel is shown as a cloud of small points. The black curved lines cor-
respond to trajectories on the boundary: Trajectories often stay on the bound-
ary.

Figure 8.9: Heavy trajectories for the language competition model. Left: Dis-
tance to the boundary as a function of time. Right: Mean frequency (density)
of the distance to the boundary. Heavy trajectories stay on the boundary more
than half the time.

of a smaller constraint state ensures that, for given perturbation strengths, the
system state remains inside the initial constraint set, but not in the viability
kernel. So, without a complete study of the resilience basin of the new viability
kernel, there is no guarantee that a trajectory, even in the more constrained
viability kernel, will resist unexpected perturbation.
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Figure 8.10: State robustness of slow trajectories. Black lines are on the bound-
ary of the viability domain: Slow trajectories stay very often on the boundary.

Figure 8.11: Slow trajectories for the language competition model. Left: Dis-
tance to the boundary as a function of time. Right: Mean frequency (density)
of the distance to the boundary.

Geometric-based Control Strategies. The main objective of a geometric-
based strategy is to propose control policies that are robust to unexpected per-
turbation or uncertainties in the state variables. The same concern is addressed
in chapter 7. The principle is then not only to follow viable (or resilient) strate-
gies but also to remain far from the boundary of the viability kernel (or re-
silience basin) if possible.

For this purpose we design a strategy we call “Avoidance with Threshold”.
This implies a modification of the heavy strategy in the viability kernel. The
control remains constant until the state robustness comes below a given thresh-
old (for the heavy strategy, the value of the threshold is zero). When the ro-
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Figure 8.12: Trajectories from the same initial state point with different ro-
bustness threshold values (r). The avoidance with threshold strategy keeps the
system away from the boundary.

bustness reaches the threshold, the control is still viable, but for sake of antici-
pation, the control corresponding to the projection point of the current state on
the viability kernel boundary is applied. The idea behind this heuristic is that
the control that applies on the boundary takes the flow into account.

A variant of this method is applied in chapter 7, selecting the control that
optimizes the value of the SVM several steps ahead.

The robustness-based strategy, in order to be efficient, needs a fast and re-
liable way to access to the distance and projection on the boundary. This is
provided by the distance map algorithm described in section 3.2.

Figure 8.12 displays the distance to the boundary of the viability kernel as
a function of time for three trajectories that start at the same initial point but
follow avoidance strategies with different threshold values. It shows that the
avoidance strategy is very efficient: The heavy strategy (avoidance strategy
with threshold equal to 0) governs a trajectory whose distance to the boundary
of the viability kernel is often equal to 0. The avoidance strategies with strictly
positive thresholds govern trajectories whose distance to the boundary of the
viability kernel never crosses the threshold once this threshold is reached.

To underline the efficiency of the avoidance strategy, we perform different
numerical experiments. We choose randomly different initial points and com-
pute the trajectories governed by avoidance strategies with different thresholds
including zero. For each trajectory, we compute the distance to the boundary
of the viability kernel as a function of time and then the mean relative fre-
quencies of this distance over all trajectories for each different strategy. Figure
8.13 shows the results computed over 24 trajectories. Most of the time, the
trajectories are above the distance threshold. The frequency of the distance
values smaller than the threshold are not null because the randomly chosen ini-
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tial point may have a distance to the boundary smaller than the threshold. But
once the distance to the boundary passes over the threshold it never returns be-
low it. The avoidance strategy with threshold is very effective for the language
competition model.

Figure 8.13: Mean frequency of the distance to the boundary with different
robustness threshold values.

Finally, we go back to the trajectory robustness definitions proposed in sec-
tion 2.3, and we compute the different robustness values of trajectories starting
at the same point but following avoidance strategies with different thresholds.
Figure 8.14 shows the results for different starting points. Except for the min-
robustness, where both values can be equal to 0, the robustness of the trajecto-
ries with threshold is always strictly above the corresponding robustness of the
standard heavy trajectory.

Figure 8.14: Comparative robustness of trajectories stemming from the same
input point, with and without distance threshold.

Remarks. It is worth noting that the same approach can be followed for
slow trajectories.
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Figure 8.15: Trajectories with control directed towards the centre of the largest
maximal ball. Points of the viability kernel are drawn as small dots. Trajecto-
ries are thick lines. Colour is a function of the distance to the boundary.

Geometric information can also be used to propose directly a control that
aims at maintaining the system far from the decision boundary. For example,
in the language competition model, it is possible to propose a control directed
towards the centre of the largest maximal ball, as shown in Figure 8.15. This
type of control changes radically the pattern of the trajectories, which can stay
much longer in the white area (the farthest area from the boundary). However,
this strategy can be unsuccessful depending on the flow. Some trajectories
have a low robustness value despite the attempt to pull the trajectory towards
the centre of the largest maximal ball. They cannot evolve anymore and stay
in a low robustness state.

5. Conclusion
The definition of the viability kernel ensures the existence of an action pol-

icy that keeps the state of the system inside the constraint set. Analogously, for
states inside the resilience basin, there exists at least one policy that allows the
system to reach the viability kernel in finite time. However, what happens if
a perturbation occurs and causes a jump of a given length of the system state?
Does it remain in the viability kernel or in the resilience basin? The response
to these questions is given by the distance to the boundary of these sets.

To compute an approximation of this distance on a regular grid, we have
used a distance transform algorithm. This information associates each state
belonging to the viability kernel or the resilience basin with its distance to the
boundary and gives information about the robustness of this system state to
perturbations. Besides, geometric robustness of the states inside the viability
kernel or resilience basin can also be used to propose several definitions of
trajectory robustness, which can be used in turn as new optimization criteria.
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Heavy or slow control policies minimize at each time step the control norm
or rate of change (which can be seen as control costs). These standard control
policies lead to strategies lacking in robustness: trajectories can stay for a long
time very close to the boundary of the viability kernel.

Geometric information, taking into account the distance to the set boundary,
can be proposed to adapt the standard control strategy, in order to maintain the
system away from the viability kernel or resilience basin boundary. We have
proposed a geometric-based strategy: when the state robustness comes below a
threshold, the control corresponding to the projection point of the current state
is applied, even if the present control is still viable (or resilient). To implement
such a strategy, we have modified the distance transform algorithm to include
the approximation of the projection onto the boundary. And we have shown
that it does indeed lead to more robust trajectories in the language competition
model.

Other strategies could also be proposed, taking into account more local ge-
ometric information, such as the distance to the skeleton. In the case of a
resilience basin, the robustness could be taken into account as well as the re-
silience value, to select the appropriate control to drive the system back to the
viability kernel. (The geometric robustness could be taken into account even
more directly in the definition of the cost function that is used to define the
resilience value).
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Appendix: Mapping the exact or approximate viability kernel
or resilience basin onto a discrete grid

The DistanceAndProjectionOnToSet algorithm (1) provides the exact distance map to a dis-
crete subset S̄ of Nd . It is relevant to use it to compute an approximation of the distance to a
viability kernel or a resilience basin with some general hypotheses. Depending on the method
that is used to define explicitly the viability kernel or the resilience basin, an approximation of
its boundary can be computed. In the other cases, an approximation of the set itself is computed
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by the viability or the SVM approximation algorithm. The approximation of the distance is not
the same in this case.

Case Where the Boundary is Known. When the subset S̄ of Nd is an approxima-
tion Γ̂ of the true boundary Γ, the algorithm computes directly the exact distance of the points
of the grid G = [0,N−1]d to Γ̂.

For simplicity, we assume that Γ is included in the unit hypercube H of E. We define GN the
regular grid with N points per dimension: GN has Nd elements x̂ = (k1, . . . ,kd), ki ∈ {0,N−1}
corresponding to x = (k1/(N−1), . . . ,kd/(N−1)) in E. The discretized boundary Γ̂N ⊂ GN is
defined as follows:
Let x̂ ∈ GN and let x be its corresponding point in E,

x̂ ∈ Γ̂N if and only if d(x,Γ)≤
√

d
N−1

(8.A.1)

(
√

d is the diagonal length of the unit hypercube and (N−1) the rescaling coefficient).

Theorem A.1 Let y ∈ H and x̂N , the nearest point of y in GN . Then the exact distance
of x̂N to the discretized boundary Γ̂N , approximates the distance of y to the viability kernel
boundary Γ in H, Γ∩H as N goes to infinity.

Proof:
Let P(y) be the projection of y ∈H onto Γ∩H and P̂(x̂N) be the projection of x̂N ∈GN onto

Γ̂N . For the Euclidean distance (but similar inequalities exist for other distances), let εN =
√

d
N−1 .

By construction of Γ̂N , there exists P̂(y) ∈ Γ̂N such that d(P̂(y),P(y))≤ εN and P(x̂N) ∈ Γ∩H
such that d(P̂(x̂N),P(x̂N))≤ εN . Then, thanks to triangular inequality,

d(y,Γ∩H) ≤ d(y,P(x̂N))
≤ d(y, x̂N)+d(x̂N , P̂(x̂N))+d(P̂(x̂N),P(x̂N))
≤ d(x̂N , P̂(x̂N))+2εN

For the same reason, d(x̂N , P̂(x̂N)) ≤ d(y,Γ∩H)+2εN �

When we consider the Euclidean distance, it is also possible to approximate the Euclidean
projection onto the viability kernel boundary.

Theorem A.2 Let y ∈ H and x̂N , the nearest point of y in GN . Then the projection of
x̂N onto the discretized boundary Γ̂N , approximates the Euclidean projection onto the viability
kernel boundary in H, Γ∩H, outside the skeleton1 of the connected parts of the class areas, as
N goes to infinity.

Proof:
Let P(y) be the projection of y ∈H onto Γ∩H and P̂(x̂N) be the projection of x̂N ∈GN onto

Γ̂N . (P̂(x̂N))N is a bounded sequence, so it has a convergent subsequence toward a point Q.
Since d(P̂(x̂N),Γ)≤

√
d

N−1 , Q ∈ Γ. Moreover, from Theorem A.1, d(y,Q) = d(y,P(y)). Since y
doesn’t belong to the skeleton, P(y) = Q.�

Case Where Only the Viability Set is Known. In this case the viability
algorithm or the SVM approximation computes an approximation S of the viability set. The
boundary of the viability set Γ is not explicitly defined. Nevertheless, instead of defining the
discretized boundary, we can defined the discretized complementary set of S, ˆ̄S in G:

x̂ ∈ ˆ̄SN if and only if d(x, S̄)≤
√

d
N−1

(8.A.2)
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Then, for the same reason as above,

Theorem A.3 Let y ∈ H and x̂N , the nearest point of y in GN . Then the exact distance of
x̂N to the discretized set ˆ̄SN , approximates the distance of y to the viability kernel boundary ∂S
in H, ∂S∩H as N goes to infinity.


