
HAL Id: hal-01286949
https://hal.science/hal-01286949v1

Submitted on 24 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Embedded Real-Time H264/AVC High Definition Video
Encoder on TI’s KeyStone Multicore DSP

Nejmeddine Bahri, Thierry Grandpierre, Med Ali Ben Ayed, Nouri Masmoudi,
Mohamed Akil

To cite this version:
Nejmeddine Bahri, Thierry Grandpierre, Med Ali Ben Ayed, Nouri Masmoudi, Mohamed Akil. Em-
bedded Real-Time H264/AVC High Definition Video Encoder on TI’s KeyStone Multicore DSP. Jour-
nal of Signal Processing Systems, 2017, 86 (1), pp.67-84. �10.1007/s11265-015-1098-x�. �hal-01286949�

https://hal.science/hal-01286949v1
https://hal.archives-ouvertes.fr

Embedded real-time H264/AVC high definition video encoder on

TI’s KeyStone multicore DSP

Nejmeddine Bahri1, Thierry Grandpierre1, Med Ali Ben Ayed2, Nouri Masmoudi2, Mohamed Akil1

(1)ESIEE Engineering, LIGM Laboratory, University Paris-EST, France
(2)National school of Engineers, LETI Laboratory, University of Sfax, Tunisia

nejmeddine.bahri@esiee.fr thierry.grandpierre@esiee.fr nouri.masmoudi@enis.rnu.tn

Abstract –To overcome high computational complexity of advanced video encoders for

emerging applications that require real-time processing, using multicore technology can be one of

the promising solutions to meet this constraint. In this context, this paper presents a parallel
implementation of the H264/AVC high definition (HD) video encoder exploiting the power

processing of eight-core digital signal processor (DSP) TMS320C6678. GOP Level Parallelism

approach is used to improve the encoding speed and meet the real-time encoding compliant. A

master core is reserved to handle data transfer between the DSP and the camera interface via a

Gigabit Ethernet link. Multithreading algorithm and ping-pong buffers technique are used to

enhance the classic GOP level parallelism approach and hide communication overhead.

Experimental results on seven slave DSP cores, running each at 1 GHz, show that our

implementation allows performing a real-time HD (1280x720) video encoding. The achieved

encoding speed is up to 28 f/s. The proposed parallel implementation accelerates the encoding

process by a factor of 6.7 without inducing quality degradation in terms of PSNR or bit-rate

increase compared to single core implementation. Experiments show that our proposed scheduling
technique for hiding communication overhead allows saving up to 36% of the fully encoding chain

time which includes frames capturing, frames encoding and bitstream saving in a file.

Keywords: H264/AVC encoder, real-time, multicore DSP, GOP Level Parallelism.

I. Introduction

Nowadays, embedded processors occupy the majority of
multimedia systems such as smart cameras, digital TV,

Smartphone, and video surveillance platforms. In the

other side, facing the rapid evolution of digital cameras

technology, HD resolution becomes widely used in

several multimedia applications in order to ensure better

video quality. Consequently, video encoding with high

compression performance is required to overcome the

huge amount of data transmission, memory storing

requirement, and transmission bandwidth limitation.

H264/AVC [1] encoder represents one of the most

efficient video standards. It is characterized by a better
video coding efficiency compared to previous ones.

However, this efficiency is followed by a high

computational complexity that requires a high-

performance processing capability to meet the real-time

constraint of 25 f/s. Moreover, this complexity is

drastically increased with HD resolution which makes it

hard to achieve real-time encoding with low frequency

processors.

 With the fast evolving of embedded processors

technology in terms of high processing frequency and

multicore architectures, developers become actually able

to perform more complex applications that require real-
time processing and high computing performance. In

fact, multicore technology allows overcoming the

frequency limitation of mono-core processors and makes

it possible to process several tasks simultaneously with

the minimum of power consumption. In this context,

many researchers have been conducted on the parallelism

of H264/AVC video encoder on multicore platforms.

Different partitioning techniques have been discussed in

order to accelerate the encoding process and meet the
real-time encoding compliant.

 In this context, this paper presents an optimized

H264/AVC HD video encoder implementation on a

multicore DSP TMS320C6678. GOP Level Parallelism

approach is used to accelerate the encoding speed. A

real-time video coding demo is described taken into

account image capture from a camera interface, DSP

encoding, and bitstream saving in a file. Our

implementation is enhanced by performing a multi-

threading algorithm and exploiting the standard ping-

pong buffers technique in order to hide communication
overhead.

 The remainder of this paper is outlined as follows:

next section presents the different partitioning methods

for H264/AVC video encoder and discusses some

parallel implementations of this standard. TMS320C6678

multicore DSP architecture is described in section 3.

Section 4 details our proposed implementation based on

the classic GOP Level Parallelism approach which is

performed on seven slave DSP cores. It highlights also

our video encoding demo including image capture and

bitstream saving. This section is then concluded by

discussing the achieved encoding performances. The

mailto:nejmeddine.bahri@esiee.fr
mailto:thierry.grandpierre@esiee.fr
mailto:nouri.masmoudi@enis.rnu.tn

enhanced GOP Level Parallelism approach, based on

optimizing communication overhead, is detailed in

section 5. At the end of this section, experimental results

are presented and discussed. Finally, section 6 concludes

this paper and presents some prospects.

II. Partitioning approaches and related

works for the H264/AVC video encoder

II.1. Partitioning approaches

To profit from the potential parallelism in H264/AVC

encoder, two mainly techniques could be exploited to
parallelize this encoder on a multicore platform:

II.1.1. Task-level parallelization (TLP)

This approach splits the encoder into several tasks, equal

to the number of threads available on the system and run

these tasks simultaneously as a pipeline. Consequently,

we have to choose the appropriate functions that should

be grouped together to be processed in parallel and the

other functions that will be executed in serial to respect

data dependencies. Furthermore, tasks computational

complexity should be considered to maximize the

encoding speedup and ensure a workload balance for the

different tasks. Finally, when grouping functions,
synchronization overhead should be minimized as much

as possible by eliminating data dependency between the

different function blocks.

II.1.2. Data-level parallelization (DLP)

This technique exploits the hierarchical data structure of

H264/AVC encoder by simultaneously processing several

data levels on multiple processing units. In fact,

H.264/AVC encoder baseline profile splits a video

sequence into an hierarchical structure as shown in Fig

.1. The video sequence consists of one or more groups of

pictures (GOP). Each GOP includes one or more frames

and always starts with intra frame (I) where only the intra
prediction [1] is performed to reduce the spatial

redundancy. The remaining frames are a predicted frames

(P) where both intra and inter predictions [1] are

performed to reduce both spatial and temporal

redundancies respectively. Finally, the frames are also

divided into one or more slices, subdivided themselves

into macroblocks (MB) and blocks.

I p ppp
….

Frame

I p ppp
….

GOP (Group of Pictures)

slice

slice

slice

Block

MB

Fig. 1. Hierarchical decomposition of a video sequence in H264/AVC

standard

DLP is restricted by data dependencies among

different data units (spatial dependencies in the same

frame required for the intra prediction and temporal

dependencies between successive frames required for the

inter prediction).

According to data structure of H264/AVC encoder,

several parallelism approaches can be applied such as:

GOP Level Parallelism: several GOPs can be
encoded in parallel as no dependencies exist among

different GOPs. In fact, each GOP starts with intra frame

“I frame” where the current MB intra encoding requires

only data from its neighboring MBs. This approach is

characterized by high performance scalability, thus

speedup is enhanced as the number of available cores is

increased. This technique does not require a high

synchronization cost and does not induce any rate

distortion. However, this approach requires a high

memory amount to handle all the GOP frames which

makes it not well suitable for System on Chip (SOC)
platforms as the Chip surface is an important factor for

the design evaluation.

Frame Level Parallelism: a partial dependency

between successive “P frames” in the same GOP is

existed. In fact, to calculate the current MB motion

vector, a motion estimation algorithm is performed in a

specific area named “search window” in the reference

frames (previously encoded) as shown in Fig. 2.

Consequently, several frames can be encoded in a

pipeline way as well as the search window is already

encoded.

Reference

 Frame

Current Frame

Search

window

Current MB

Fig. 2. Data dependency for inter prediction

Slice Level Parallelism: H264/AVC standard gives

the choice to split the frame into independent slices.

Thus, several slices can be processed in parallel in

function of the number of available threads or processing

units. This approach presents high performance

scalability. No synchronization cost among threads is

needed. This approach does not require a lot of memory

amount. However, slice level parallelism technique

induces bit-rate degradation because intra dependencies

are not respected for TOP MBs of each slice.
MB Level Parallelism: in the frame itself, several

MBs can be processed in parallel once their neighboring

MBs (TOP, TOP Left, Top Right and Left) are already

encoded to respect intra data dependency. This approach

is characterized by low encoding latency and does not

require a lot of memory amount. However, low

performance scalability and high synchronization cost are

the major drawbacks of this approach.

II.2. Related works

To overcome the high complexity of H264/AVC video

encoder, several works have exploited the parallelism in

H264/AVC encoder to meet the real-time encoding

compliant and achieve a good encoding speedup which

can be presented by the following equation (1).

 (1)

Several implementations exploiting multi-thread,

multiprocessor, and multicore architectures are discussed

in many papers. Different methods of partitioning have

been applied as:

II.2.1. Task Level parallelism approach

Several works have applied TLP approach to accelerate

the encoding run-time. As examples, we note:

Zhibin Xiao et al [2] mapped the dataflow of

H.264/AVC encoder on 167-core asynchronous array of

simple processors (AsAP) computation platform. They
processed the luminance and the chrominance

components in parallel. Intra4x4 modes and intra16x16

modes are processed in parallel. Only 3 modes for

intra4x4 instead of 9 and 3 modes for intra16x16 are

considered to reduce the top right dependency. Eight

processors are used for ICT (Integer Cosine Transform)

and quantification. Seventeen processors are reserved for

CAVLC (Context Adaptive Variable Length Coding)

entropy coding and a hardware accelerator is used for

motion estimation. Despite all these optimizations, the

real-time is not achieved. The presented encoder is able
to encode only 21 f/s for VGA resolution (640 x 480).

Also, reducing the number of candidate modes for

intra16x16 and intra4x4 affects the visual quality in

terms of PSNR and induces a bit-rate increase.

Ming-Jiang Yang et al [3] implemented the

H264/AVC encoder on a dual-core DSP processor ADSP-

BF561 chipset using functional partitioning. Core A of

BF561 processor is devoted to perform mode decision,

motion compensation, intra prediction, integer transform

(IT), quantization, de-quantization, inverse integer

transform, and entropy encoding. Core B is dedicated to

perform boundary extension, in-loop filtering, and half-
pel interpolation. Core A and core B perform tasks in two

pipeline stages. The proposed system achieves real-time

encoding for CIF format (352x288) but not yet for higher

resolutions (SD (720x480) and HD (1280x720).

Seongmin Jo et al [4] used OpenMP programming

model to parallelize H264/AVC encoder with the TLP

approach. They executed motion estimation modes

(16x16, 16x8, x8x6 and 8x8), intra prediction modes

(intra4x4 and intra16x16) and de-blocking filter for the

previous MB in parallel as seven different tasks on ARM

Quad MPCore platform. Mode decision and entropy
coding are processed thereafter in serial. The obtained

speedup on 4 cores is 1.67 which looks not significant

compared to the number of used cores. This is justified

by that OpenMP programming model is a generic

parallelization approach which is not optimized for

specific applications such as H264/AVC encoder.

Hajer et al. [5] presented a high level parallelization

approach to develop an optimized parallel model of

H264/AVC encoder for embedded SoCs. The proposed

implementation is based on the exploration of task level
parallelism and the use of the parallel Kahn process

network (KPN) model of computation, and the YAPI

programming C++ runtime library. They partitioned the

H264/AVC encoder into several tasks and run each task

on a processor. Moreover, they divided the motion

estimation and compensation modules into 3 processes to

accelerate their processing. Experiments on a SOC

platform including 4 MIPS processors show that a
speedup of 3.6 is achieved for QCIF format but real-time

encoding performance is still not achieved (7.7 f/s for

QCIF format).

Although task level partitioning ensures low encoding

latency, it has some drawbacks. In fact, it provides less

encoding efficiency due to a lot of data dependencies

among tasks that require a large amount of data transfers

among processors; thus, consumption of the system

bandwidth. Moreover, functions in H.264/AVC encoder

have not the same load balance which makes it hard to
uniformly map functions among processors. As a result,

the final performance is always limited by the heaviest

load processor. Furthermore, for some multicore

platforms, cache memory is not automatically coherent

as it is for general purpose multiprocessor. This may

impose cache coherence problems [6] when a core reads

a shared data which was processed by another core.

Consequently, cached data write-back and invalidation

cache lines are required for each data reading and writing

among the different cores. These instructions relatively
reduce the implementation efficiency especially when

there are a lot of data dependencies.

II.2.2. GOP Level parallelism approach

GOP level parallelism approach was applied in several

works to benefit from the high performance scalability

and low synchronization cost.

S.Sankaraiah et al. [7] [8] applied this technique and

exploited a multithreading algorithm for H264/AVC

encoder. Each GOP is handled by a separate thread.

Frames in each GOP are encoded by two threads: I and P
frames by the first thread and B frames by the second

thread. The obtained speedup using dual and quad core

processors are 5.6 and 10 respectively. Real-time is not

noticed in the paper.

Rodriguez et al. [9] proposed an H264/AVC encoder

implementation using GOP level parallelism combined

with slice level parallelism. They used a clustered

workstations solution with the MPI technique (Message
Passing Interface) to ensure data communications among

the different processors. The drawback of this solution is

that clustered workstations are a costly solution and they

are not devoted for embedded applications. Moreover, a

bit-rate increase is noticed owing to the use of slice level

parallelism technique.

Fang Ji et al. [10] implemented this encoder on an

MPSOC platform (Multi-Processor System On Chip)

using GOP level parallelism technique. They build three

Microblaze soft cores based on XILINX FPGA. A master

processor is devoted to allocate frames into the shared
memory. Thus, each slave coprocessor encodes its

appropriate GOP. Experiments show that the obtained

speedup is 1.831. The real-time encoding compliant is

not achieved. In fact, this solution can encode only 3 f/s

for QCIF (176x144) resolution.

II.2.3. Frame Level Parallelism approach

Generally, frame level parallelism approach is combined

with another technique as it is mentioned in Zhuo Zhao’s

paper [11]. Authors proposed a new wave-front

parallelization method for H264/AVC encoder. They

mixed two partitioning methods: frame level parallelism
and MB row level parallelism. All the MBs in the same

row are processed by the same processor or thread to

reduce data exchanges among processors. MBs in

different frames can be processed concurrently once the

search window is already encoded. A Pentium 4

processor running at 2.8 GHz is used to run the

H264/AVC Joint Model software (JM) 9.0 [12].

Simulations on 4 processors show that a speedup factor

of 3 is achieved (3.17 QCIF and 3.08 for CIF). However,

real-time encoding is not reached and only 1frame/1.72s

is encoded for CIF resolution.

II.2.4. slice Level parallelism approach

Slice level parallelism approach was applied in several

works to profit from low synchronizations among

different threads or processors.

Yen-Kuang et al. [13] used OpenMP programming

model to accelerate the encoding process. Slice level

partitioning is performed on 4 Intel Xeon™ processors

with Hyper-Threading Technology. Simulations show

that a speedup factors ranging from 3.74 to 4.53 are

obtained on 4 processors with Hyper-threading

technology for CIF and SD resolutions.

Olli lehtoranta et al. [14] implemented a row-wise data

parallel video coding method on quad TMS320C6201
DSP system. The frame is divided into slices by row-

wise and each slice is processed by one DSP. A DSP

master is devoted to swap data to/from the remaining

DSPs. Real-time encoding performance (30f/s) is

achieved only for CIF resolution but not yet for higher

resolutions.

Despite its simplicity, slice level parallelism approach

has two mainly drawbacks. First, it provides quality

degradation in terms of PSNR and second, it induces an

important increase in bit-rate especially when splitting

the frame into a great number of slices.

II.2.5. MB Level parallelism approach

In several papers, MB level parallelism is used to

accelerate the encoding speed and ensure a low encoding

latency with the minimum of memory requirement.

Sun et al. [15] implemented a parallel algorithm for

H264AVC encoder based on a MB region partition

(MBRP). They split the frame into several MB regions

composed by adjoining columns. Then, they mapped the

MB regions onto different processors to be encoded.

Data dependencies in the same MBs row are all

respected. Simulation results on 4 processors running at

1.7 GHz show that the proposed partitioning achieves a

speedup factor of 3.33 without inducing the rate
distortion compared to the software JM10.2. However,

real-time is not achieved. In fact, the achieved encoding

speed is only 1frame/1.67s for CIF resolution and

1frame/6.73s for SD resolution.

Shenggang Chen et al. [16] introduced an on-chip

parallel H264/AVC encoder implementation on

hierarchical 64-cores DSP platform. This platform

consists of 16 super nodes (4 DSP cores for each node).

2D Wave-front algorithm is used and each MB is
assigned to one super node. Subtasks for encoding one

MB such as motion estimation, intra prediction, and

mode decision are further parallelized to keep busy the

four DSP cores that form a node. Speedup factors of 13,

24, 26 and 49 are achieved for QCIF, SIF (352x240),

CIF, and HD sequences respectively. The proposed wave-

front parallel algorithm does not introduce any quality

loss. However, the use of CABAC-based bit-rate
estimation and the parallel CABAC evolutional entropy

coder cause a bit-rate increase. Real-time processing is

not indicated in this paper.

Seongmin Jo et al [4] applied as second method, a

DLP approach with OpenMP programming model. 2D

wave-front approach is performed by processing several

MBs in the same frame in parallel way. Experiments on

an ARM MPCore platform show that this approach

achieves a speedup factor of 2.36 using 4 threads.

However, real-time encoding performance is not noticed
also in this work.

II.2.6. Combined approaches

Multiple partitioning methods are combined in several

works to ensure more encoding efficiency and well

exploit the H264/AVC encoder parallelism.

Huayou Su et al [17] proposed a parallel framework

for the H264/AVC encoder based on a massively parallel

architecture implemented on NVIDEA’s GPU (Graphic

Processor Unit) using CUDA (Compute Unified Device

Architecture). They presented several optimizations to
accelerate the encoding speed. A parallel implementation

of the inter prediction is proposed based on a novel

algorithm MRMW (Multi-resolutions Multi-windows)

that consists in using the motion trend of a lower

resolution frame to estimate that of the original frame (

higher resolution). MRMW steps are parallelized with

CUDA on different GPU’s cores. In addition, they

performed a multi-level parallelism for intra-coding by
performing a multi-slice encoding. Each frame is

partitioned into independent slices and the wave-front

method is adopted to parallelize MBs encoding in the

same slice. Some dependencies within MBs are not

respected in order to maximize the parallel processing.

Moreover, CAVLC coding and filtering processes are

also parallelized by dividing these modules into several

tasks. Experimental results show that a speedup factor of

20 is obtained. The presented parallel H264/AVC

encoder is able to perform a real-time HD video
encoding. However, this implementation affects the

visual quality by inducing a PSNR degradation ranging

from 0.14 dB to 0.77 dB and induces a little increase in

bitrate.

António Rodrigues et al. [18] implemented the

H264/AVC encoder on a 32-core Non-Uniform Memory

Access (NUMA) computational architecture with eight

AMD 8384 quad-core chip processors running at 2.7

GHz. Two parallel levels are combined: slice level and

MB level. A multi-threading algorithm using openMP is
used for the JM software. The frame is divided into

several slices and each slice is processed by a group of

cores. Several MBs in the same slice are encoded in

parallel. Data dependencies are respected by the different

cores of the group. The achieved speedup using the

whole set of 32 cores is between 2.5 and 6.8 for 4CIF

video (704 × 576). These speedups are not significant

compared to the number of exploited cores. Using a MB

level parallelism requires that data must be shared which

may lead to a memory bottleneck and higher latency.

Also, increasing the number of slices induces a bit-rate

distortion. Finally, real-time encoding performance is not
noticed in this work.

III. DSP platform description

New DSP processors represent a promising solution for

high performance applications and embedded systems

implementations. They are characterized by a software

flexibility, high performance computing, low power
consumption, competitive price tag, and time to market.

VLSI (Very Large Scale Integration) technology

evolution allows designing new generations of DSP

processors characterized by high frequency processing

and multicore architecture. This gives more efficiency to

DSP platforms and motivates developers to perform more

complex applications that require high performance

computing. For these reasons, we chose to implement

the H264/AVC encoder on the multicore DSP

TMS320C6678 to profit from its new features to meet

the real-time encoding compliant (25 f/s).

TMS320C6678 DSP [19] belongs to the latest generation
of multicore DSPs made by Texas Instrument (TI). It is

the highest-performance fixed/floating-point DSP which

is based on TI’s KeyStone multicore architecture. This

platform includes multicore navigator, teraNet,

hyperlink, and multicore shared memory controller

which provide adequate internal bandwidth for non-

blocking access to all processing cores, coprocessors,

peripherals, and I/O. As presented in Fig. 3, eight

TMS320C66x DSP Core Subsystems (C66x CorePacs)

running each at 1GHz, very long instruction word

(VLIW) architecture, Single Instruction Multiple Data
(SIMD) set instruction and 8.5 Mega-bytes (Mb) of

memory on chip are combined to deliver 64000 MIPS

performance. Each C66x DSP core integrates a large

amount of on-chip memory. In addition to 32 Kilo-bytes

(KB) of L1 program and data cache, 512 KB of internal

memory per core that can be configured as mapped RAM

or cache is integrated on the chip. The platform also

integrates 4Mb of shared memory. To support

applications that require a large amount of memory such
as ultra HD video applications, TMS320C6678 includes

512 Mb of DDR3-1333 external memory. This platform

comes with the TI’s Multicore Software Development

Kit (MCSDK) for SYS/BIOS Real-Time Operating

System (RTOS). Performance is also enhanced by an

EDMA controller (Enhanced Direct Memory Access)

which is able to manage memory transfers independently

from the CPU. TMS320C6678 supports several high

speed standard interfaces including RapidIO for DSP-to-

DSP communications, PCI Express Gen2, and Gigabit

Ethernet for Internet Protocol (IP) networks. It also
includes I2C, UART and Telecom Serial Interface Port

(TSIP).

Fig. 3. Internal architecture of TMS320C6678 multicore DSP

IV. The Classic multicore implementation

of the GOP Level Parallelism approach

IV.1. Partitioning strategy

From previous works, several partitioning methods have

been applied and each of them has as advantages as also

some drawbacks. Choosing the appropriate partitioning

approach depends also on the target platform. In fact, the
number of available processing units and processors inter

communication medium (shared memory, point to point,

FIFO memory, message passing interface) should be

necessarily taken into account to perform an efficient

parallel implementation. Consequently, several points

should be considered:

 Memory constraint is not an important factor for

DSP-based implementations as well as for SOC

platforms. Consequently, this gives more liberty to

choose a partitioning method.

 Since C6678 DSP memory cache is not automatically

coherent, a simple partitioning method which does

not require an important inter-processors

communications and characterized by a low

synchronization cost should be selected. This allows

reducing the required write-backs and cache lines

invalidations to avoid cache coherence problem.

 The selected method should not affect the bit-rate
performance or the visual quality and preferably

characterized by a high encoding scalability.

Based on these points, we adopt the GOP level

parallelism approach to achieve real-time encoding

processing without inducing any rate distortion. In fact,

no dependencies among GOPs make this approach easy

for implementation. It does not require data transfers or

synchronizations among processors and characterized by

a high encoding scalability. Finally, cache coherence

problem with GOP level parallelism method is almost

abolished compared to TLP approach.

IV.2. System platform description

To perform a real-time video encoding demo, frames

acquisition by the DSP platform should be also

performed in real-time. Consequently, 277Mbits/s as

transmission bandwidth (35 Mbytes/s) at least is required

to transfer HD frames (1280x720) at 25 f/s in YCrCb 4:2:0

format ((1280 x 720 x 1.5) x 8 bits x 25 f/s). Since our

DSP evaluation board has not yet a frame grabber

interface, a personal computer (PC) linked to a Universal

Serial Bus (USB) HD webcam is used as a preliminary

step to send the raw captured frames to the DSP. Our
DSP board and the PC support both a Gigabit Ethernet

interface (1000 Mbits/s) which allows a real-time data

transfer between them. The PC could be thereafter

replaced by another embedded platform including camera

interface and a Gigabit Ethernet communication

peripheral such BeagleBoard-xM [20] or raspberry Pi

[21] platform.

As the C6678 DSP includes eight cores, the first core

“core0” is considered as master. It is devoted to establish

TCP/IP (transmission Control Protocol / Internet

Protocol) connection with the client (PC: camera

interface) exploiting Network Developer’s Kit library
[22]. It firstly receives the GOPs sent by the camera

interface and saves them into the external memory which

is a shared memory for all the DSP cores. Then, the 7

remaining DSP cores are considered as slaves and they

are used to encode the 7 received GOPs. Once they finish

encoding, core0 sends the bitstream of all encoded

frames to the PC in order to be stored in a file or decoded

later.

As shown in Fig. 4, for each slave core (1 to 7), a

memory section is reserved including the GOP current

frames (img1 to imgGOPsize), the reconstructed frame
(RECT) and finally the bitstream buffers where the

bitstream of each frame from the GOP will be saved.

In the internal memory of core0, a TCP server

program is loaded to establish Gigabit Ethernet

connection between the DSP and the PC. The H264/AVC

program is loaded into each internal memory of the 7

remaining cores. The local variables used during the

encoding such as predicted MB buffers, transform and

quantification matrixes, and best predicted modes are

also allocated into the internal memory of each core to

avoid data overlaps among different cores and reduce

memory bottleneck situation.
A C/C++ project is implemented on the PC side in

order to capture raw frames from the HD camera using

OpenCv library [23]. This library allows also converting

the captured frames from RGB to YCrCb 4:2:0 format.

Visual C/C++ project

OpenCv library

Frame capture, resize,

conversion from RGB to

YUV4:2:0

Transfer data using TCP/

IP protocol

TCP Stream socket

Client (@IP, port

number)

TCP Stream

socket

Server (@IP,

port number)

External memory

SDRAM

Img 1

RECT frame

core1

Bitstream_img1

Core 1

DSP/BIOS

project

H264

encoder. Out

CSL APIs

EVMC6678 DSP

Send 7

GOPs

1

Recv

Bitstream

of 7 GOPs

Core 0

DSP/BIOS

project

TCP server. out

Network

developer's Kit

& CSL APIs

2
3

4

6

Bitstream decoding TV
7

Core 7

DSP/BIOS

project

H264

encoder. Out

CSL APIs

2

3

4

.

.

.

5

5

.

.

.

Img 2

Img size_GOP

.

.

Bitstream_img2
.

.
Bitstream_img size_GOP

Img 1

RECT frame

core7

Bitstream_img1

Img 2

Img size_GOP

.

.

Bitstream_img2
.

.
Bitstream_img size_GOP

Fig. 4. Video encoding demo using the classic GOP Level parallelism approach

Client (PC) Server (core0) H264 encoder (core1)

establish TCP/IP connection

among PC and core0

Wait an IPC from core0

Send IPCs to

core 1...7

Send 7 GOPs

(size_GOPx7)

Frames

Recv 7 GOPs

(size_GOPx7)

Frames

Wait an IPC

from core1 &

core2 &

core3 &

core4 &

.

.

core7

Encoding Frame j

Send bitsream

sizes and

bitstreams of 7

GOPs to client

Close socket ()

i=0

No

Yes

J < GOP

size

No

j=0

J++

Yes

Wait an IPC from core0

j=0

Wait an IPC from core0

j=0

exit

Send IPC to core0

Recv sizes and

bitstreams of 7

GOPs and save

them in a file

i++

Wait an IPC from core0 Wait an IPC from core0
Wait an IPC from core0

H264 encoder (core2) H264 encoder (core7)...

...

...

End End End

Yes Yes

Encoding Frame j

J < GOP

size

No

J++

Yes

Send IPC to core0

Encoding Frame j

J < GOP

size

No

J++

Yes

Send IPC to core0

...Wait for

bitstream

Time

Fig. 5. The chronological steps of the classic GOP Level Parallelism approach on amulticore DSP TMS320C6678

Encoding steps using the classic GOP level

parallelism approach on 7 DSP cores are described in Fig

.5 and detailed as follows:

 TCP/IP connection is firstly established between the

PC and the DSP (core0). The PC sends thereafter 7

GOPs to core0 which will receive them and load each

GOP into its appropriate buffers as shown in Fig. 4. If
only one core is used for encoding, only one GOP is

sent to core0 etc.

 Once core0 finishes receiving the 7 GOPs, it sends 7

inter processor communication interruptions (IPC) to

core1-core7, which are waiting for an interruption

from core0, to notify them that the current frames are

already in the SDRAM memory and encoding

process can be started.

 As no dependencies exist among GOPs, the 7 DSP

cores start the encoding process simultaneously. Each

core processes its appropriate GOP frame by frame

until finishing the entire GOP. For each encoded
frame, a bitstream is generated and saved into its

appropriate buffer in the memory section reserved for

each core.

 Once the entire GOP is encoded, each core sends an

IPC interruption to core0; which is in a wait state; to

notify it that the bitstreams are ready to be transferred

to the PC.

 When receiving the 7 IPCs from core1-core7, core0

sends the bitstream of the 7 GOPs to the PC via the

Gigabit Ethernet link. Core0 sends at first the

bitstream of core1 then the bitstream of core2 and
finishes by the bitstream of core7 to respect the final

bitstream order when it will be received by the PC

and saved in a file. Before sending the bitstream data,

core0 sends also the bitstream size of each frame to

inform the PC about the data size which it should

receive. When core0 transfers the bitstreams to the

PC, the remaining cores are in a wait state for the

next GOPs.

 After receiving the bitstreams and saving them in a

file, the PC captures another 7 GOPs and sends them
to core0. The same work thereby will be reproduced

until finishing the entire video sequence.

IV.3. Cache coherency

In order to overcome the cache coherence problem [6]

among DSP cores which process (read, write) the same

data in a shared memory as shown in Fig. 6, TI provides

the MCSDK Kit [24] which includes several libraries as

the CSL (Chip Support Library) which includes also

different API commands such as:

 CACHE_wbL2: it writes back the cached data from

the cache memory of coreA to its location in the

shared memory which allows coreB processing the
updated data.

 CACHE_invL2: it invalidates the cache lines in the

cache memory and forces coreA to read data from the

original location in the shared memory in order to use

the updated data which was processed by coreB.

In our implementation, after reading the captured

frames from the PC, core0 should write back the cached

data (current frames) to their locations in the external

memory to be encoded later by the remaining cores. In

the other side, core1-core7 should invalidate the current

frames addresses in the cache memory before starting

encoding. This allows encoding the updated data written

by core0 and not the old data existed in their cache

memories. Moreover, once the encoding process is

finishes, core1-core7 should write back the bitstreams

from their cache memories to the external memory and

similarly core0 should invalidate the bitstreams in its

cache memory in order to send the new values to the PC.

Core A Core B

External Memory CacheCache

X Y Y

X : old data

Y: New data

Fig. 6. Cache coherence problem

IV.4. Experimental results

The H264/AVC encoder is implemented on the

TMS320C6678 multicore DSP using the LETI

laboratory’s software [25] [26]. This software is an

optimized version of the Joint Model (JM) software.

Experiments are performed on the most commonly used

video test sequences in HD 720p (1280x720) resolution

using different QP (Quantification Parameter) values.
These sequences are a raw data in YCrCb 4:2:0 format

recommended by the Joint Video Team (JVT) of

ISO/IEC MPEG & ITU-T VCEG organizations [27].

Encoding parameters are described in TABLE I.

TABLE I ENCODING PARAMETERS

Video resolution 1280x720

Intra period (GOP size) 8

Search range 16

QP values 30, 37

Frames to be encoded 280

Error metric for mode

decision
Sum of Absolute Difference

Entropy encoder CAVLC

Rate control off

Nb of reference Frames 1

Optimizations
Fast intra/inter mode decision

algorithms [28] [29]

For performance evaluation, encoding speed is

computed with different number of slave cores and can

be presented by the following equation:

encoding speed
DSP frequency

x number of frames

Number of clock cycles indirectly represents the

required time to encode a number of frames without

considering communication overhead (receiving GOPs

and sending bitstreams). This time is computed between

sending the last IPC interruption by core0 to the last core

to trigger the encoding process and the reception of the

last IPC interruption from the last core which has

finished the encoding process.

Table II and III show respectively the encoding

speeds of the classic GOP implementation for HD video

sequences with different number of cores using QP=30

and QP=37.

TABLE II ENCODING SPEEDS FOR HD720P RESOLUTION USING THE

CLASSIC GOP LEVEL PARALLELISM APPROACH WITH QP=30

Video

Encoding
speed
using
one core
(f/s)

Encoding
speed
using 3
cores
(f/s)

Encoding
speed
using 5
cores
(f/s)

Encoding
speed
using 7
cores
(f/s)

Shields 4.26 11.93 19.91 28.11

Parkjoy 4.91 14.22 22.52 32.09

Parkrun 4.05 11.96 19.83 27.96

sunflower 4.29 12.14 21.08 28.79

Crowdrun 3.98 11.71 18.58 25.92

Birds 4.80 13.70 23.61 32.46

Mob_cal 4.11 12.09 20.16 28.26

Stokholm 3.97 11.72 19.60 27.31

Average

(f/s)
4.29 12.43 20.66 28.86

TABLE III ENCODING SPEEDS FOR HD720P RESOLUTION USING THE

CLASSIC GOP LEVEL PARALLELISM APPROACH WITH QP=37

Video

Encoding
speed
using
one core
(f/s)

Encoding
speed
using 3
cores
(f/s)

Encoding
speed
using 5
cores
(f/s)

Encoding
speed
using 7
cores
(f/s)

Shields 4.53 12.14 20.13 28.32

Parkjoy 5.02 14.38 22.73 32.23

Parkrun 4.36 12.26 19.96 28.19

sunflower 4.42 12.31 21.34 28.93

Crowdrun 4.12 11.83 18.78 26.24

Birds 4.96 13.84 23.86 32.72

Mob_cal 4.46 12.26 20.31 28.48

Stokholm 4.21 11.91 19.76 27.56

Average

(f/s)
4.51 12.61 20.87 29.08

Experimental results show that using 7 DSP cores

allows surpassing the real-time constraint 25 f/s.

Encoding speed is increased from 4.29 f/s on a single

core to 28.86 f/s in average on 7 cores and can reach 29

f/s with QP=37. The encoding speed is enhanced when

the QP value is increased. This returns to our fast intra
mode decision algorithm which is applied in the LETI’s

software encoder [28]. Our multicore implementation

achieves an important encoding speedup of 6.73 in

average with QP=30 and 6.44 with QP=37. These

speedups are very close to the theoretical value (7). This

tiny drop in speedup factor firstly returns to the required

inter-communications among core0 and core1-core7 such

as write-backs and cached data invalidations. Secondly, it

returns to the impossibility of simultaneous access to

SDRAM memory by the fully cores to read and write

data. Our parallel approach allows improving the

encoding speed and performing a real-time HD video

encoding. Our parallel implementation does not induce

video quality degradation in terms of PSNR or bit-rate

increase compared to a single core implementation.

V. Enhanced GOP Level Parallelism

approach: hiding communication

overhead

V.1. Implementation strategy

As we have mentioned earlier, the majority of published

works do not consider data transfer time in their

computations. When performing a real-time video coding

application including video capture, frames encoding,

and bitstream saving it in a file, communication overhead

will be imposed and should be taken into account. As

shown in Fig. 5, a lot of waiting time is noticed with the
classic GOP implementation. Communication overhead

is not optimized. This significantly reduces our multicore

implementation efficiency. In fact, core1-core7 should

wait the reception of 7 GOPs to trigger encoding process

whereas encoding could be started as soon as the

reception of the first frame by core0. Moreover, core0

remains in a wait state until core1-core7 finish the

encoding process. However, this time could be exploited

to prepare in advance the next 7 GOPs. Consequently,

core1-core7 can immediately start encoding the next

GOPs without waiting core0 finishing bitstream

transferring and receiving the next 7 GOPs.

To enhance the classic GOP level parallelism

implementation, hiding communication overhead

technique is presented. Our optimization is based on two

strategies as shown in Fig. 7: First, using the ping-pong

buffers technique on the DSP side in order to overlap

GOPs encoding process with reading and writing GOPs

processes. Second, a multi-threading approach is used on

the PC side. Thus, three threads are created to handle
reading raw frames, sending them to DSP via Ethernet,

receiving bitstreams from DSP and saving them in a file.

On the DSP side, for each slave core, a ping-pong GOP

buffer is allocated for both the current frames and the

generated bitstreams. A single buffer is allocated for the

reconstructed frame since it will not be transferred.

Consequently, one buffer for the reconstructed frame,

2* GOP size buffers for the current frames and 2* GOP

size buffers also for the bitstreams are allocated in the

memory section of each slave core in SDRAM memory.

Our implementation strategy is described in Fig. 8 and
consists of the following steps:

 Thread1 captures the first frame from a camera or a
file and sends it to core0 which will save it into the ping
buffer SRC[0][0] of core1. Then, Core0 notifies core1 by
sending an IPC interruption to start encoding its first
current frame.

 When receiving an IPC interruption from core0, core1
starts encoding the first frame of its GOP. At the same
time, thread1 continues reading the next frames of the
first GOP and sending them to core0 which will save
them into the ping buffers of core1 SRC1[0][i] (i=1 to
GOP size-1).

Core 0

SYS/BIOS

project

TCP server. out

Network

developer's Kit

& CSL APIs

TCP Stream

socket

Server (@IP,

port number)

External memory

SDRAM

Src[0][0]

RECT frame

core1

Bistream[0][0]

Core 1

DSP/BIOS

project

H264

encoder. Out

CSL APIs

EVMC6678 DSP

Send 7

GOPs

1

6

Recv

Bitstream

of 7 GOPs

.

.

.

5

.

.

.

Src[0][1]

Src[0][GOP_size]

...

Bistream[0][1]

Bistream[0][GOPsize]

Src[1][0]

Src[1][1]

Src[1][GOP_size]

Bistream[1][0]

Bistream[1][1]

Bistream[1][GOPsize]

2

4

3

Ping SRC

GOP

Ping

stream

GOP

Pong SRC

GOP

Visual C/C++ project

For(i=0;i<7*GOP_size;i++)

{

 Capture frame SRC[frame_size];

 Send (SRC[frame_size]) ;

}

Bitstream[1][0]

Bitstream[1][1]

Bitstream[1][i]

Bitstream[0][0]

Bitstream[0][1]

Bitstream[0][i]

For(k=0;k<FramesToBeEncoded/(7*GOP_size);k++)

{

 For(i=0;i<7*GOP_size;i++)

 {

 Rcv (bitstream [k&1] [i])

 }

}

SRC[frame_size]

For(k=0;k<FramesToBeEncoded/7*GOP_size);k++)

{

 For(i=0;i<7*GOP_size;i++)

 {

 write (bitstream [k&1] [i])

 }

}

Thread1 (reading and sending)

Thread2 (bitstream receiving)

Thread3 (bitstream writing)

.

.

.

.

.

.

...

...

...
Pong

stream

GOP

Src[0][0]

RECT frame

core1

Bistream[0][0]

5

Src[0][1]

Src[0][GOP_size]

...

Bistream[0][1]

Bistream[0][GOPsize]

Src[1][0]

Src[1][1]

Src[1][GOP_size]

Bistream[1][0]

Bistream[1][1]

Bistream[1][GOPsize]

2

4

3

Ping SRC

GOP

Ping

stream

GOP

Pong SRC

GOP

...

...

... Pong

stream

GOP

Core 7

DSP/BIOS

project

H264

encoder. Out

CSL APIs

Fig. 7. Description platform using the enhanced GOP Level Parallelism approach

 When finishing reading and sending the first GOP,

thread1 starts reading the second GOP and sends it to

core0 which will store it into the ping buffers of core2

SRC2[0][i]. Similarly to the first GOP, when receiving

the first frame of the second GOP, core0 sends an IPC

interruption to core2 to notify it that it can start encoding

the first frame of its GOP. This step is repeated until

finishing the reception of the 7 GOPs. Thus, each core
starts the encoding process immediately after receiving

the first frame of the corresponding GOP without waiting

the reception of all the frames.

 During encoding the first ping GOPs by core1-core7,
thread1 sends the next 7 GOPs to core0 which will store
them into the pong buffers SRC[1][i] of each core (i=0 to
GOP size-1). As encoding process takes more time than
reading process, communication delays are hidden and
they do not contribute to the parallel run-time.

 Once core i finishes the encoding process and saves
the bitstream into the ping buffers Bistream[0][i], it sends
an IPC interruption to core0 to notify it that it can forward
its bitstream to the PC. Then, this core starts encoding its
pong GOP, already received and stored into the pong
buffers SRC[1][i] without any wait. Consequently, the

new generated bitstream will be stored into the pong
buffers Bistream[1][i] to not overwrite data stored in the
ping buffers Bistream[0][i] which are being transferred by
core0 to the PC.

 During encoding the pong GOPs, core0 sends the ping

bitstreams (Bistream[0][i]) to the PC starting with those

of core1 and finishing with the bitstreams of core7 in

order to be saved in a chronological order. Thus, thread2

receives these ping bitstreams and stores them into the

ping buffers Bitstream[0][i]. Finally, thread3 writes them

in a file and at the same time thread1 sends the next 7

GOPs to core0 which will store them into the ping buffers
SRC[0][i] of each core. With this strategy, the ping

bitstreams writing, the pong SRC GOPs encoding and the

next 7 ping GOPs capturing and sending are practically

processed in parallel.

 The encoding process is then reproduced in a reverse
order for SRC frames and bitstreams through ping-pong
buffers.

When looking at Fig. 8, no significant delays are

noted. Core1-core7 process their corresponding data

without any waiting time.

Capture Frame1 + send
Send IPC to core1

Core 0Thread1 Core1

send Bitstreams of

GOP 1

Time

Wait
T=0

Encode

frame1

Thread2Thread3

EVM C6678PC

Capture Frame2 + send

Capture Frame8 + send

...

Capture Frame9 + send
Capture Frame10 + send

Capture Frame16 + send

...

Capture Frame17 + send
Capture Frame18 + send

Capture Frame24 + send

...

Capture Frame49 + send
Capture Frame50 + send

Rcv Frame1
Rcv Frame2

Rcv Frame8

...

Rcv Frame9
Rcv Frame10

Rcv Frame16

...

Rcv Frame17
Rcv Frame18

Rcv Frame24

...

Rcv Frame49
Rcv Frame50

Send IPC to core2

Send IPC to core3

Encode

frame2

Encode

frame3

Encode

frame4

Encode

frame5

Encode

frame6

Encode

frame7

Encode

frame8

Core2

Wait

Encode

frame9

Encode

frame10

Encode

frame11

Encode

frame12

Encode

frame13

Encode

frame14

Encode

frame15

Encode

frame16

Core3

Wait

Encode

frame17

Encode

frame18

Encode

frame19

Encode

frame20

Encode

frame21

Encode

frame22

Encode

frame23

Encode

frame24

Capture Frame56 + send

...
Rcv Frame56

...

Core7

Wait

Encode

frame49

Encode

frame50

Encode

frame51

Encode

frame52

Encode

frame53

Encode

frame54

Encode

frame55

Encode

frame56

Send IPC to core7

Capture Frame57 + send

Send IPC to core1

Capture Frame58 + send

Capture Frame64 + send

...

Capture Frame65 + send
Capture Frame66 + send

Capture Frame72 + send

...

Capture Frame73 + send
Capture Frame74 + send

Capture Frame80 + send

...

Capture Frame105 + send
Capture Frame106 + send

Rcv Frame57
Rcv Frame58

Rcv Frame64

...

Rcv Frame65
Rcv Frame66

Rcv Frame72

...

Rcv Frame73
Rcv Frame74

Rcv Frame80

...

Rcv Frame105
Rcv Frame106

Capture Frame112 + send

...
Rcv Frame112

...

Encode

frame57

Encode

frame58

Encode

frame65

Encode

frame66

Encode

frame73

Encode

frame74

Encode

frame105

Encode

frame106

send Bitstreams of

GOP 2

send Bitstreams of

GOP 3

send Bitstreams of

GOP 4

GOP 5

GOP 6

send Bitstreams of

GOP 7

write Bitstreams of

GOP 1

write Bitstreams of

GOP 2

write Bitstreams of

GOP 3

write Bitstreams of

GOP 4,5,6

write Bitstreams of

GOP 7
Capture Frame113 + send
Capture Frame114 + send

Capture Frame120 + send

...

Capture Frame121 + send
Capture Frame122 + send

Capture Frame128 + send

...

Rcv Frame113
Rcv Frame114

Rcv Frame120

...

Rcv Frame121
Rcv Frame122

Rcv Frame128

...

Send IPC to core0

Send IPC to core0

Send IPC to core0

Send IPC to core0

Wait

Send IPC to core2

Ping GOP1

Ping GOP2

Ping GOP3

Ping GOP7

Pong GOP8

Pong GOP9

Pong GOP10

Pong GOP14

Ping GOP15

Ping GOP16

Wait

.

.

.

.

.

.

.

.
.

.

.

.

….

.

.

.

.

.

. ….

.

.

.

.

.

.

Wait

Recv Bitstreams of

GOP 1

Recv Bitstreams of

GOP 2

Recv Bitstreams of

GOP 3

Recv Bitstreams of

GOP 4

GOP 5

GOP 6

Recv Bitstreams of

GOP 7

Wait

Wait

Wait

Wait

Send IPC to core7

.

.

.
.
.
.

.

.

.

.

.

.

Fig. 8. The chronological steps of the Enhanced GOP Level Parallelism on the multicore DSP TMS320C6678

V.2. Experimental results for the Enhanced GOP

implementation

To evaluate our enhancement, communication overhead is

considered in the encoding time computation. Frames
capture, transferring them to DSP, receiving them by core0

and loading them to DSP memory are taken into account in

our calculation. Table IV shows the encoding speeds for

both: the classic GOP implementation (without including

data transfer times: only encoding time) and the enhanced

GOP implementation for HD resolution with QP=30. The

same encoding parameters, used in the first

implementation, are reused for the enhanced approach.

TABLE IV ENCODING SPEED FOR HD RESOLUTION USING THE ENHANCED

GOP LEVEL PARALLELISM APPROACH

HD Video
sequences

Encoding speed on 7

DSP cores: Classic GOP

imlementation (data

transfer is not included)

(f/s)

Encoding speed on 7

DSP cores: Enhanced

GOP imlementation

(data transfer is

included) (f/s)

Shields 28.11 27.38

Parkjoy 32.09 31.14

Parkrun 27.96 27.25

sunflower 28.79 27.86

Crowdrun 25.92 25.27

Birds 32.46 31.58

Mob_cal 28.26 27.48

Stokholm 27.31 26.43

Average

(f/s)
28.86 28.04

As shown in Table IV, a non-significant drop in encoding

speed is induced. This clearly affirms that our proposed

data transfer scheduling technique efficiently hides

communication overhead. The obtained encoding speeds

for the enhanced implementation are very close to those of

the classic GOP implementation. In fact, data transfer time

is only noticed at the first GOPs. After that, these transfers

are overlapped with the encoding process.

Experiments show that our enhanced implementation

allows surpassing the real-time compliant (25 f/s) by

reaching up to 28 f/s in average for HD video sequences.

An important speedup factor of 6.7 is obtained on 7 DSP
cores. Regarding rate distortion, our multicore

implementation does not induce visual quality degradation

or bitrate increase compared to a unique core

implementation.

It may be noted that several factors are contributed to

achieve this performance despite that encoding steps,

detailed above, transmit the idea that there is always a

simultaneous accesses to the external memory by the

different cores which may cause a significant latency.

First, our encoding implementation is based on a “MB

row level architecture” [26]; so each core copies a MB row
from the current frame in the external memory into a

current MB row buffer in the internal L2 memory. The

encoding process will be thereafter performed by the CPU

between the L1 and L2 level memories which reduces the

external memory bottleneck situation. Secondly, 128 kbytes

of L2 memory are configured as cache for each core. Thus,

access to a memory location triggers a prefetch of a line of

memory locations into the cache memory. This allows

reducing the cache misses; so accelerating encoding run-

time. Reconstructed MBs row and bitstream are not directly

copied into the external memory after their processing but

they remain in the cache memory which reduces the
external memory access. Third, in addition to eight

processing units for each core which allow performing

eight instructions per cycle, code composer studio IDE

(Integrated Development Environment for DSP

programming) allows generating an optimized assembler

code that exploits the maximum of pipeline. Thus, the

different cores may do not perform the same load

instruction from the external memory at the same time, a

core i can perform prefetch instructions, other core can

perform load instruction and another one can execute ADD

instructions for example etc. Moreover, our enhanced
implementation is a pipelined design; there is a timing

delay between the different cores. So reading current MB

rows and writing bitstreams are not necessarily performed

at the same time by all cores. Furthermore, the C6678

external memory is characterized by large bandwidth. In

fact, it is a 64-bit DDR3 SDRAM operating at 1333 MHz

with up to 10664 Mbyte/s of throughput

((64bits)/(8bits/byte)*1333 MHz). Several tests show that

this bandwidth is enough to support multiple DSP cores

accessing the DDR3 memory simultaneously [30].

To more evaluate our enhanced approach, the total

required time to perform the entire video encoding chain
(frames capturing, DSP encoding, and bitstream in a file) is

computed for the both implementations: the classic and the

enhanced one.

Table V shows the computed time of the fully encoding

chain for these two implementations. The number of HD

encoded frames is 1200. This time depends on the PC

performance (reading/writing data from/in a file), DSP

performance (H264/AVC encoding process) and the data

transmission bandwidth between the PC and the DSP

(sending/receiving data using TCP/IP Ethernet protocol).

Our DSP frequency is 1 GHz. The used PC is Intel i3
running at 2.33 GHz and including a Gigabit Ethernet

communication interface.

TABLE V THE TOTAL TIME OF THE ENTIRE ENCODING CHAIN

HD video

sequences

The total time for

the classic GOP

implementation

(second)

The total time for the

enhanced GOP

implementation

(second)

Saving

time

(%)

Shields 241 148 38.58%

Parkjoy 210 132 37.14%

Parkrun 256 162 36.71%

sunflower 237 143 39.66%

Crowdrun 231 147 36.36%

Birds 242 151 37.60%

Mob_cal 216 136 37.03%

Stokholm 234 155 33.76%

Average

time (s)
233 147 36.90%

Experimental results show that our enhancements allow

saving up to 36% of the total time for HD video encoding

chain. Exploiting multi-threading algorithm with ping-pong

buffers technique significantly reduces the processing time

by overlapping the encoding process with that of data

transferring.

TABLE VI COMPARISON WITH PREVIOUS WORKS

approach Our approach [2] [10] [11] [14] [15] [17]

Partitioning

method

GOP Task GOP MB/Frame slice MB region

partition
(MBRP)

Task

platform Multicore DSP
TMS320C6678
(7 cores for
encoding)

167-core
asynchronous
array of simple
processors

3 Microblaze
soft cores
based on
XILINX FPGA

Pentium 4
processor
running at 2.8
GHz

quad
TMS320C6201
DSP system

PC with a P4
1.7GHz
processor
4 cores

NVIDEA’s
GPU using
CUDA with
448 cores

Reference
software and
encoding
parameters

LETI’s H264
codec, baseline
profile, ME
algorithm is
LDPS, search
range=16,
Number of
reference

frame=1, R-D
optimization is
not used,
entropy coding
is CAVLC.

JM baseline
profile, search
range=3, ME
algorithm is
Diamond
Search,
Number of
reference

frame=1,
entropy coding
is CAVLC.

AVS reference
code RM5.2,
ME algorithm
is full search,
entropy coding
is CAVLC.

JM9.0, one
reference
frame for MV,
search
range=10, R-D
optimization is
used, entropy
coding is

CAVLC.

H263/MPEG4
baseline
profile, search
range=16, ME
algorithm is
diamond
search, entropy
coding is VLC.

JM 10.2
baseline
profile, ME
algorithm is
the Full search,
Number of
reference
frame=1,

R-D
optimization is
used, entropy
coding is
CAVLC.

X264 codec,
search
range=32,
ME
algorithm is
MRMW,
Number of
reference

frame=1,
entropy
coding is
CAVLC.

Encoding
speed (f/s)

28 f/s for HD 21 f/s for VGA
(640 x 480)

3 f/s for QCIF 0.58 f/s for CIF 30 f/s only for
CIF resolution

0.6 f/s for CIF
and 0.15 f/s for
SD

30 f/s for
HD720p

Distortion
PSNR/bitrate

No yes No No yes No Yes

For low and medium video resolutions such as

CIF(352x288), VGA (640x480) and SD (720x480), real-

time is achieved on less than 7 cores which allows

exploiting the remaining cores to perform other tasks such

biometric recognition, access control, objects detection and

surveillance application etc. This will give an important

advantage for our multicore DSP if integrated into a smart

system.

For more performance evaluation, our solution is

compared to previous works which have been performed on

several platforms and applied different parallelism

methods. As shown in Table VI, several implementations
have not satisfied the real-time constraint. In fact, JM

software is not an optimized algorithm which makes it hard

to reach a real-time encoding performance. Some works

have achieved the real-time compliant for low resolution

but not yet for higher resolutions. GPU implementation

[17] allows performing a real-time HD video encoding

thanks to the great number of processing cores. However,

this proposed scheme induces some rate distortion (PSNR

degradation and bitrate increase). Finally, we can note that

our implementation has ensured a good encoding scalability

without inducing any rate distortion compared to a single
core implementation.

In addition to the performance evaluation with previous

works, our H264/AVC encoder implementation based on

LETI’s codec is also compared to the JM 18.6 reference

software. Encoding performance is evaluated in terms of:

 ΔPSNR (dB): it presents the visual quality degradation
in terms of PSNR when using our encoder compared to the
JM reference software.

 ΔBitrate (%): it presents the percentage increase in
bitrate when using our encoder compared to the JM
reference software.

 Encoding speed (f/s): it depends on the CPU frequency
and the encoder computational complexity.

These above criteria are presented by the following

equations:

Δ

 (3)

Δ (4)

As we noted above, LETI’s codec is an optimized

version of the JM software. We have applied various

optimizations for the different modules (mode decision,
motion estimation, ICT transform, and de-blocking filter) to

reduce the computational complexity of this encoder and

achieve a compatible DSP-based solution. Furthermore,

some functions have been programmed in assembler

language to efficiently exploit the internal resources of our

DSP.

The JM18.6 encoder software is processed on an Intel

core2 Quad CPU running at 2.33 GHz. Our LETI’s encoder

is evaluated on the multicore Keystone DSP

TMS320C6678 running at 1 GHz each core. Simulation

parameters are detailed in Table VII.
Table VIII shows the encoding performances in terms

of the three cited criteria for the both implementations.

Experimental results show that the JM reference software

ensures better encoding performances in terms of PSNR

and bitrate compared to our encoder. In fact, our

H264/AVC encoder induces PSNR degradation by 1 dB in

average and an increase in bitrate by 3% compared to the

JM18.6 reference software.

TABLE VII ENCODING PARAMETERS USED FOR THE JM 18.6 AND THE LETI’S CODEC

 JM 18.6 LETI’s Codec

Target platform
Intel core2 Quad CPU Q8200 running
at 2.33 GHz each CPU

Multicore DSP TMS320C6678 running at
1GHz each core

Video resolution HD (1280x720) HD (1280x720)

Quantification parameter (QP) 30 30

Frame rate 25 25

Intra period 8 8

Motion estimation algorithm EPZS LDPS

Subpixel Motion Estimation on off

Error metric SAD SAD

Number of reference frame 1 1

Entropy coding method CAVLC CAVLC

Rate control off off

Rate Distortion Optimized disabled disabled

Function optimizations Non
Fast intra and inter prediction algorithms,
Fast mode decision algorithm, optimized
filtering module

Software optimizations
Visual studio optimizations :
Maximize speed, favor fast code,
Multi-threaded Debug …etc.

Code composer optimizations : intrinsic
functions, using assembler language for
some modules+ Enhanced GOP Parallelism
on 7 cores

TABLE VIII ENCODING PERFORMANCES FOR THE JM 18.6 AND THE LETI’S CODEC

HD video
sequences

PSNR
(dB) (JM)

ΔPSNR
(dB)

Bitrate
JM

(Kbit/s)

ΔBitrate (%)
Encoding
time for JM

(f/s)

Encoding
time for our

encoder (f/s)

stockholm 34,68 -0,6 3934 +2,53 1,09 27,31

sunflower 40,63 -0,98 2365 +2,69 1,10 28,79

mob_cal 33,67 -0,98 7136 +2,68 1,11 27,48

crowdrun 34,65 -1,5 11309 +3,16 1,06 25,92

shields 34,88 -0,9 5161 +2,83 1,10 27,38

Regarding encoding speed, we can note that our encoder

is more optimized and faster than the JM reference

software. Our multicore DSP implementation allows

performing a real-time HD video encoding by reaching up

to 28 f/s whereas, JM reference software is not able to
meet the real-time compliant. This returns to the various

optimizations applied to reduce the computational

complexity and accelerate the encoding process.

V.3. Power consumption estimation

To estimate the power consumption of our H264/AVC

encoder implementation on the TMS320C6678 DSP, we

have adopted the TI’s spreadsheet [31] as shown in Fig. 9.

It is an excel file which includes configurable parameters

that allow estimating the power consumption based on

configured usage parameters.

These parameters are presented as follows:

 Frequency: specifies the frequency of the DSP core or
the frequency of the external interface as DDR3.

 Modes: selects the peripheral-specific configuration
mode.

 Status: indicates whether a peripheral is Enabled (used)
or Disabled (unused).

 % Utilization: specifies the percentage of the time the
module spends doing something useful, versus being unused
or idle. It includes the % Signal Processing (SP) Utilization,
% Control Code (CC) Utilization, and % Idle Utilization.

 %SP: represents scenarios with high levels of DSP
activity. This corresponds to all 8 instructions fetched by the
DSP executed in parallel each DSP clock cycle. Thus all 8
functional units are active every cycle.

 %CC: represents scenarios with low levels of DSP
activity. It represents execution of approximately 2
functional units every clock cycle.

 % Write: represents the relative amount of time the
module is transmitting versus receiving.

 Bits: specifies the number of data bits to be used in a
selectable-width interface.

 Lane: specifies the number of lanes used by that
interface.

 % Switching: specifies the probability that any one data
bit on the relative data bus will change state from one cycle
to the next.

More details about these parameters are presented in the

reference of Power Consumption Summary for KeyStone

C66x Devices [32].

Fig. 9. Estimation of power consumption using TI’s spreadsheet

In our estimation, we specify 30% and 40% respectively

for the %SP and the %CC utilizations. This specification

presents a more realistic scenario for a very signal

processing intensive code [33]. In fact, a very few kernels
achieve 8 operations per cycle.

As external interfaces, we enabled only the DDR3,

EMIF16, and the NetCP and we supposed working at 40° C

of temperature. The estimated power consumption is equal

to 7.2 W (watt) as shown in Fig. 9. This consumption value

is considered non-significant compared to GPU platforms

or GPP processors (General Purpose Processors) [29].

VI. Conclusion

In this paper, an optimized H264/AVC HD video

encoder implementation on a multicore DSP

TMS320C6678 was presented. GOP Level parallelism

approach was applied to accelerate encoding speed.

Exploiting the ping-pong buffers technique with a multi-

threading algorithm allows hiding communication overhead

and efficiently enhances the encoding performance.

Experimental results on 7 DSP cores running each at 1 GHz

proved that our enhanced implementation has met the real-

time encoding compliant. The achieved encoding speed is
up to 28 f/s in average for HD resolution. Our parallel

implementation allowed accelerating the encoding process

by a factor of 6.7 without inducing a PSNR drop or bitrate

increase compared to a single core implementation.

Compared to the JM18.6 reference software, our LETI’s

optimized software induced visual quality degradation by 1

db in terms of PSNR and 3% of bitrate increase. This rate

distortion is acceptable when looking at the important

encoding speedup and the HD real-time processing. The

proposed scheduling technique for hiding communication

overhead allowed saving up to 36% of the fully encoding

chain time. Power consumption of our multicore

implementation was estimated to 7.2 W which is

considered non-significant compared to GPU’s or GPP’s

power consumption. As perspectives, we will move to
implement the new video coding standard HEVC (High

Efficiency Video Coding) on our multicore DSP

TMS320C6678. The same proposed technique could be

reapplied for this recent encoder. In fact, HEVC almost

adopts the same hierarchical data video structure of

H264/AVC encoder (GOPs, frames, slices, MB), and

practically, the same dependencies in H264AVC encoder

exist among HEVC data units.

Acknowledgements

This work is fruit of cooperation between Sfax National

School of Engineers and ESIEE PARIS Engineering

School. It is sponsored by the French ministries of Foreign

Affairs and Tunisian ministry for Higher Education and

Scientific Research in the context of Hubert Curien

Partnership (PHC UTIQUE) under the CMCU project

number 12G1108.

References

[1] Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG,

“Advanced video coding for generic audiovisual services”, Avril
2013. Online available: http://www.itu.int/ITU-

T/recommendations/rec.aspx?rec=11830&lang=en

[2] Zhibin Xiao, Stephen Le and Bevan Baas,” A Fine-grained Parallel
Implementation of a H.264/AVC Encoder on a 167-processor

Computational Platform,” ACSSC 2011 – Pacific Grove, CA, 2011.

[3] Ming-Jiang Yang; Jo-Yew Tham; Rahardja, S.; Da-Jun Wu, "Real-

time H.264 encoder implementation on a low-power digital signal
processor," Multimedia and Expo, 2009. ICME 2009. IEEE

International Conference on , vol., no., pp.1150,1153, June 28 2009-
July 3 2009

http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=11830&lang=en
http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=11830&lang=en

[4] Seongmin Jo, Song Hyun Jo, Yong Ho Song, “Exploring
parallelization techniques based on OpenMP in H.264/AVC encoder

for embedded multi-core processor,” Journal of Systems
Architecture, Volume 58, Issue 9, October 2012, Pages 339-353.

[5] Hajer Krichene Zrida, Ahmed C. Ammari, Abderrazek Jemai,

Mohamed Abid,” High Level Optimized Parallel Specificationof a
H.264/AVC Video Encoder,” International Journal of Computing &

Information Sciences Vol. 9, No. 1, Pages 34 – 46 April 2011.

[6] TMS320C6000 DSP Cache User's Guide, online available:
http://www.ti.com/lit/ug/spru656a/spru656a.pdf

[7] S.Sankaraiah, H.S.Lam, C.Eswaran and Junaidi Abdullah, "GOP

Level Parallelism on H.264 Video Encoder for Multicore
Architecture,” International Conference on Circuits, System and

SimulationIPCSIT vol.7 IACSIT Press, Singapore 2011.
[8] S. Sankaraiah ,Lam Hai Shuan, C. Eswaran and Junaidi Abdullah ,

“Performance Optimization of Video Coding Process on Multi-Core
Platform Using Gop Level Parallelism” International Journal of

Parallel Programming,ISSN:1573-7640, DOI 10.1007/s10766-013-
0267-4, September2013.

[9] Rodriguez, A.; Gonzalez, A.; Malumbres, M.P., "Hierarchical

Parallelization of an H.264/AVC Video Encoder," Parallel
Computing in Electrical Engineering, 2006. PAR ELEC 2006.

International Symposium on , vol., no., pp.363,368, 13-17 Sept. 2006

[10] Fang Ji; Xing-yuan Li; Chang-long Yang, "An Algorithm Based on
AVS Encoding on FPGA Multi-Core Pipeline," Computational and

Information Sciences (ICCIS), 2013 Fifth International Conference
on , vol., no., pp.1521,1524, 21-23 June 2013.

[11] Zhuo Zhao; Ping Liang, "A Highly Efficient Parallel Algorithm for

H.264 Video Encoder," Acoustics, Speech and Signal Processing,
2006. ICASSP 2006 Proceedings. 2006 IEEE International

Conference on , vol.5, no., pp.V,V, 14-19 May 2006.

[12] H264/AVC software Joint Model JM, online available:
http://iphome.hhi.de/suehring/tml/download/old_jm/

[13] Yen-Kuang Chen; Tian, X.; Steven Ge; Girkar, M., "Towards

efficient multi-level threading of H.264 encoder on Intel hyper-
threading architectures," Parallel and Distributed Processing

Symposium, 2004. Proceedings. 18th International , vol., no., pp.63,,
26-30 April 2004.

[14] Olli Lehtoranta, Timo Hämäläinen, Ville Lappalainen, Juha
Mustonen, “Parallel implementation of video encoder on quad

DSPsystem,”Microprocessors and Microsystems, Volume 26, Issue
1, Pages 1-15, 25 February 2002.

[15] Sun, S.; Wang, D. & Chen, S. Perrott, R.; Chapman, B.; Subhlok, J.;

Mello, R. & Yang, L. (Eds.), “A Highly Efficient Parallel Algorithm
for H.264 Encoder Based on Macro-Block Region Partition,” High

Performance Computing and Communications, Springer Berlin
Heidelberg, 2007, 4782, 577-585

[16] Shenggang Chen; Shuming Chen; Huitao Gu; Hu Chen; Yaming

Yin; Xiaowen Chen; Shuwei Sun; Sheng Liu; Yaohua Wang,
"Mapping of H.264/AVC Encoder on a Hierarchical Chip Multicore

DSP Platform," High Performance Computing and Communications
(HPCC), 2010 12th IEEE International Conference on , vol., no.,

pp.465,470, 1-3 Sept. 2010

[17] Huayou Su, Mei Wen, Nan Wu, Ju Ren, and Chunyuan Zhang,
“Efficient Parallel Video Processing Techniques on GPU: From

Framework to Implementation,” The Scientific World Journal, vol.
2014, Article ID 716020, 19 pages, 2014.

[18] António Rodrigues, Nuno Roma, and Leonel Sousa,” p264: Open

Platform for Designing Parallel H.264/AVCVideo Encoders on
Multi-Core Systems,” NOSSDAV '10 Proceedings of the 20th

international workshop on Network and operating systems support
for digital audio and video Pages 81-86, Amsterdam, The

Netherlands, 2010.

[19] TMS320C6678 Multicore Fixed and Floating-Point Digital Signal
Processor Data Manual, Literature Number: SPRS691D April 2013,

online available:http://www.mouser.com/ds/2/405/sprs691d-
256638.pdf

[20] BeagleBoard-xM Rev C system Reference Manual, online available:
http://beagleboard.org/static/BBxMSRM_latest.pdf

[21] Raspberry Pi reference manual, online available:

http://www.raspberrypi.org/tag/raspberry-pi-user-guide/

[22] TI Network Developer's Kit (NDK) v2.21 User's Guide, online
available: http://www.ti.com/lit/ug/spru523h/spru523h.pdf

[23] Open source computer vision library,online available:
http://opencv.org/

[24] SYS/BIOS and Linux Multicore Software Development Kits

(MCSDK) for C66x, C647x, C645x Processors, online available:
http://www.ti.com/tool/bioslinuxmcsdk

[25] I. Werda, F. Kossentini, M.A.B. Ayed, and N. Masmoudi,

"Analysis and Optimization of UB Video's H.264 Baseline Encoder
Implementation on Texas Instruments' TMS320DM642 DSP", ;in

Proc. ICIP, 2006, pp.3277-3280.

[26] N.Bahri, I.Werda, T.Grandpierre, M.Ben Ayed, N.Masmoudi,
M.Akil,” Optimizations for Real-Time Implementation of

H264/AVC Video Encoder on DSP Processor,” International Review
on Computers and Software (I.RE.CO.S.), Vol. 8, n. 9, pp.2025-2035

september 2013.

[27] Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

organizations, online available:http://www.itu.int/en/ITU-
T/studygroups/com16/video/Pages/jvt.aspx

[28] Nejmeddine Bahri, Imen Werda, Amine Samet, Mohamed Ali Ben

Ayed and Nouri Masmoudi. Article, “Fast Intra Mode Decision
Algorithm for H264/AVC HD Baseline Profile

Encoder,” International Journal of Computer Applications 37(6):8-
13, January 2012.

[29] Imen Werda, Haithem Chaouch, Amine Samet, Mohamed Ali Ben

Ayed, Nouri Masmoudi, “Optimal DSP Based Integer Motion
Estimation Implementation for H.264/AVC Baseline Encoder,” The

International Arab Journal of Information Technology - IAJIT , vol.
7, no. 1, pp. 96-104, 2010.

[30] Throughput Performance Guide for C66x KeyStone Devices, online

available:http://www.ti.com/lit/an/sprabk5a/sprabk5a.pdf

[31] C6678 power spreadsheet, online available:
http://www.ti.com/lit/zip/sprm545

[32] Power Consumption Summary for KeyStone C66x Devices, online

available: http://www.ti.com/lit/an/sprabi5a/sprabi5a.pdf

[33] C6678 Power spreadsheet, online available:

http://e2e.ti.com/support/dsp/c6000_multi-

core_dsps/f/639/t/171805.aspx

http://www.ti.com/lit/ug/spru656a/spru656a.pdf
http://iphome.hhi.de/suehring/tml/download/old_jm/
http://www.mouser.com/ds/2/405/sprs691d-256638.pdf
http://www.mouser.com/ds/2/405/sprs691d-256638.pdf
http://beagleboard.org/static/BBxMSRM_latest.pdf
http://www.raspberrypi.org/tag/raspberry-pi-user-guide/
http://www.ti.com/lit/ug/spru523h/spru523h.pdf
http://opencv.org/
http://www.ti.com/tool/bioslinuxmcsdk
http://www.itu.int/en/ITU-T/studygroups/com16/video/Pages/jvt.aspx
http://www.itu.int/en/ITU-T/studygroups/com16/video/Pages/jvt.aspx
http://academic.research.microsoft.com/Author/3627141/imen-werda
http://academic.research.microsoft.com/Author/3803641/haithem-chaouch
http://academic.research.microsoft.com/Author/3560372/amine-samet
http://academic.research.microsoft.com/Author/50057232/mohamed-ali-ben-ayed
http://academic.research.microsoft.com/Author/50057232/mohamed-ali-ben-ayed
http://academic.research.microsoft.com/Author/47382297/nouri-masmoudi
http://journalogy.com/Journal/63/iajit-the-international-arab-journal-of-information-technology
http://journalogy.com/Journal/63/iajit-the-international-arab-journal-of-information-technology
http://www.ti.com/lit/an/sprabk5a/sprabk5a.pdf
http://www.ti.com/lit/zip/sprm545
http://www.ti.com/lit/an/sprabi5a/sprabi5a.pdf
http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/f/639/t/171805.aspx
http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/f/639/t/171805.aspx

