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Abstract –To overcome high computational complexity of advanced video encoders for 

emerging applications that require real-time processing, using multicore technology can be one of 

the promising solutions to meet this constraint. In this context, this paper presents a parallel 
implementation of the H264/AVC high definition (HD) video encoder exploiting the power 

processing of eight-core digital signal processor (DSP) TMS320C6678. GOP Level Parallelism 

approach is used to improve the encoding speed and meet the real-time encoding compliant. A 

master core is reserved to handle data transfer between the DSP and the camera interface via a 

Gigabit Ethernet link. Multithreading algorithm and ping-pong buffers technique are used to 

enhance the classic GOP level parallelism approach and hide communication overhead. 

Experimental results on seven slave DSP cores, running each at 1 GHz, show that our 

implementation allows performing a real-time HD (1280x720) video encoding. The achieved 

encoding speed is up to 28 f/s. The proposed parallel implementation accelerates the encoding 

process by a factor of 6.7 without inducing quality degradation in terms of PSNR or bit-rate 

increase compared to  single core implementation. Experiments show that our proposed scheduling 
technique for hiding communication overhead allows saving up to 36% of the fully encoding chain 

time which includes frames capturing, frames encoding and bitstream saving in a file. 
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I. Introduction 

Nowadays, embedded processors occupy the majority of 
multimedia systems such as smart cameras, digital  TV, 

Smartphone, and  video surveillance platforms. In the 

other side, facing the rapid evolution of digital cameras 

technology, HD resolution becomes widely used in 

several multimedia applications in order to ensure better 

video quality. Consequently, video encoding with high 

compression performance is required to overcome the 

huge amount of data transmission, memory storing 

requirement, and transmission bandwidth limitation. 

H264/AVC [1] encoder represents one of the most 

efficient video standards. It is characterized by a better 
video coding efficiency compared to previous ones. 

However, this efficiency is followed by a high 

computational complexity that requires a high-

performance processing capability to meet the real-time 

constraint of 25 f/s. Moreover, this complexity is 

drastically increased with HD resolution which makes it 

hard to achieve real-time encoding with low frequency 

processors. 

 With the fast evolving of embedded processors 

technology in terms of high processing frequency and 

multicore architectures, developers become actually able 

to perform more complex applications that require real-
time processing and high computing performance. In 

fact, multicore technology allows overcoming the 

frequency limitation of mono-core processors and makes 

it possible to process several tasks simultaneously with 

the minimum of power consumption. In this context, 

many researchers have been conducted on the parallelism 

of H264/AVC video encoder on multicore platforms. 

Different partitioning techniques have been discussed in 

order to accelerate the encoding process and meet the 
real-time encoding compliant. 

 In this context, this paper presents an optimized 

H264/AVC  HD video encoder implementation on a 

multicore DSP TMS320C6678. GOP Level Parallelism 

approach is used to accelerate the encoding speed. A 

real-time video coding demo is described taken into 

account image capture from a camera interface, DSP 

encoding, and bitstream saving in a file. Our 

implementation is enhanced by performing a multi-

threading algorithm and exploiting the standard ping-

pong buffers technique in order to hide communication 
overhead. 

 The remainder of this paper is outlined as follows: 

next section presents the different partitioning methods 

for H264/AVC video encoder and discusses some 

parallel implementations of this standard. TMS320C6678 

multicore DSP architecture is described in section 3. 

Section 4 details our proposed implementation based on 

the classic GOP Level Parallelism approach which is 

performed on seven slave DSP cores. It highlights also 

our video encoding demo including image capture and 

bitstream saving. This section is then concluded by 

discussing the achieved encoding performances. The 
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enhanced GOP Level Parallelism approach, based on 

optimizing communication overhead, is detailed in 

section 5. At the end of this section, experimental results 

are presented and discussed. Finally, section 6 concludes 

this paper and presents some prospects. 

II. Partitioning approaches and related 

works for the H264/AVC video encoder 

II.1. Partitioning approaches 

To profit from the potential parallelism in H264/AVC 

encoder, two mainly techniques could be exploited to 
parallelize this encoder on a multicore platform: 

II.1.1. Task-level parallelization (TLP) 

This approach splits the encoder into several tasks, equal 

to the number of threads available on the system and run 

these tasks simultaneously as a pipeline. Consequently, 

we have to choose the appropriate functions that should 

be grouped together to be processed in parallel and the 

other functions that will be executed in serial to respect 

data dependencies. Furthermore, tasks computational 

complexity should be considered to maximize the 

encoding speedup and ensure a workload balance for the 

different tasks. Finally, when grouping functions, 
synchronization overhead should be minimized as much 

as possible by eliminating data dependency between the 

different function blocks. 

II.1.2. Data-level parallelization (DLP) 

This technique exploits the hierarchical data structure of 

H264/AVC encoder by simultaneously processing several 

data levels on multiple processing units. In fact, 

H.264/AVC encoder baseline profile splits a video 

sequence into an hierarchical structure as shown in Fig 

.1. The video sequence consists of one or more groups of 

pictures (GOP). Each GOP includes one or more frames 

and always starts with intra frame (I) where only the intra 
prediction [1] is performed to reduce the spatial 

redundancy. The remaining frames are a predicted frames 

(P) where both intra and inter predictions [1] are 

performed to reduce both spatial and temporal 

redundancies respectively. Finally, the frames are also 

divided into one or more slices, subdivided themselves 

into macroblocks (MB) and blocks. 

I p ppp
….

Frame

I p ppp
….

GOP (Group of Pictures)

slice

slice

slice

Block

MB

 

Fig. 1. Hierarchical decomposition of a video sequence in H264/AVC 

standard 

DLP is restricted by data dependencies among 

different data units (spatial dependencies in the same 

frame required for the intra prediction and temporal 

dependencies between successive frames required for the 

inter prediction). 

According to data structure of H264/AVC encoder, 

several parallelism approaches can be applied such as: 

GOP Level Parallelism: several GOPs can be 
encoded in parallel as no dependencies exist among 

different GOPs. In fact, each GOP starts with intra frame 

“I frame” where the current MB intra encoding requires 

only data from its neighboring MBs. This approach is 

characterized by high performance scalability, thus 

speedup is enhanced as the number of available cores is 

increased. This technique does not require a high 

synchronization cost and does not induce any rate 

distortion. However, this approach requires a high 

memory amount to handle all the GOP frames which 

makes it not well suitable for System on Chip (SOC) 
platforms as the Chip surface is an important factor for 

the design evaluation. 

Frame Level Parallelism: a partial dependency 

between successive “P frames” in the same GOP is 

existed. In fact, to calculate the current MB motion 

vector, a motion estimation algorithm is performed in a 

specific area named “search window” in the reference 

frames (previously encoded) as shown in Fig. 2. 

Consequently, several frames can be encoded in a 

pipeline way as well as the search window is already 

encoded. 

Reference

 Frame

Current Frame

Search 

window

Current MB

 

Fig. 2. Data dependency for inter prediction 

Slice Level Parallelism: H264/AVC standard gives 

the choice to split the frame into independent slices. 

Thus, several slices can be processed in parallel in 

function of the number of available threads or processing 

units. This approach presents high performance 

scalability. No synchronization cost among threads is 

needed. This approach does not require a lot of memory 

amount. However, slice level parallelism technique 

induces bit-rate degradation because intra dependencies 

are not respected for TOP MBs of each slice. 
MB Level Parallelism: in the frame itself, several 

MBs can be processed in parallel once their neighboring 

MBs (TOP, TOP Left, Top Right and Left) are already 

encoded to respect intra data dependency. This approach 

is characterized by low encoding latency and does not 

require a lot of memory amount. However, low 

performance scalability and high synchronization cost are 

the major drawbacks of this approach. 



 

II.2. Related works 

To overcome the high complexity of H264/AVC video 

encoder, several works have exploited the parallelism in 

H264/AVC encoder to meet the real-time encoding 

compliant and achieve a good encoding speedup which 

can be presented by the following equation (1). 

        
                           

                         
                            (1) 

Several implementations exploiting multi-thread, 

multiprocessor, and multicore architectures are discussed 

in many papers. Different methods of partitioning have 

been applied as: 

II.2.1. Task Level parallelism approach 

Several works have applied TLP approach to accelerate 

the encoding run-time. As examples, we note: 

Zhibin Xiao et al [2] mapped the dataflow of 

H.264/AVC encoder on 167-core asynchronous array of 

simple processors (AsAP) computation platform. They 
processed the luminance and the chrominance 

components in parallel. Intra4x4 modes and intra16x16 

modes are processed in parallel. Only 3 modes for 

intra4x4 instead of 9 and 3 modes for intra16x16 are 

considered to reduce the top right dependency. Eight 

processors are used for ICT (Integer Cosine Transform) 

and quantification. Seventeen processors are reserved for 

CAVLC (Context Adaptive Variable Length Coding) 

entropy coding and a hardware accelerator is used for 

motion estimation. Despite all these optimizations, the 

real-time is not achieved. The presented encoder is able 
to encode only 21 f/s for VGA resolution (640 x 480). 

Also, reducing the number of candidate modes for 

intra16x16 and intra4x4 affects the visual quality in 

terms of PSNR and induces a bit-rate increase. 

Ming-Jiang Yang et al [3] implemented the 

H264/AVC encoder on a dual-core DSP processor ADSP-

BF561 chipset using functional partitioning. Core A of 

BF561 processor is devoted to perform mode decision, 

motion compensation, intra prediction, integer transform 

(IT), quantization, de-quantization, inverse integer 

transform, and entropy encoding. Core B is dedicated to 

perform boundary extension, in-loop filtering, and half-
pel interpolation. Core A and core B perform tasks in two 

pipeline stages. The proposed system achieves real-time 

encoding for CIF format (352x288) but not yet for higher 

resolutions (SD (720x480) and HD (1280x720). 

Seongmin Jo et al [4] used OpenMP programming 

model to parallelize H264/AVC encoder with the TLP 

approach. They executed motion estimation modes 

(16x16, 16x8, x8x6 and 8x8), intra prediction modes 

(intra4x4 and intra16x16) and de-blocking filter for the 

previous MB in parallel as seven different tasks on ARM 

Quad MPCore platform. Mode decision and entropy 
coding are processed thereafter in serial. The obtained 

speedup on 4 cores is 1.67 which looks not significant 

compared to the number of used cores. This is justified 

by that OpenMP programming model is a generic 

parallelization approach which is not optimized for 

specific applications such as H264/AVC encoder. 

Hajer et al. [5] presented a high level parallelization 

approach to develop an optimized parallel model of 

H264/AVC encoder for embedded SoCs. The proposed 

implementation is based on the exploration of task level 
parallelism and the use of the parallel Kahn process 

network (KPN) model of computation, and the YAPI 

programming C++ runtime library. They partitioned the 

H264/AVC encoder into several tasks and run each task 

on a processor. Moreover, they divided the motion 

estimation and compensation modules into 3 processes to 

accelerate their processing. Experiments on a SOC 

platform including 4 MIPS processors show that a 
speedup of 3.6 is achieved for QCIF format but real-time 

encoding performance is still not achieved (7.7 f/s for 

QCIF format). 

Although task level partitioning ensures low encoding 

latency, it has some drawbacks. In fact, it provides less 

encoding efficiency due to a lot of data dependencies 

among tasks that require a large amount of data transfers 

among processors; thus, consumption of the system 

bandwidth. Moreover, functions in H.264/AVC encoder 

have not the same load balance which makes it hard to 
uniformly map functions among processors. As a result, 

the final performance is always limited by the heaviest 

load processor. Furthermore, for some multicore 

platforms, cache memory is not automatically coherent 

as it is for general purpose multiprocessor. This may 

impose cache coherence problems [6] when a core reads 

a shared data which was processed by another core. 

Consequently, cached data write-back and invalidation 

cache lines are required for each data reading and writing 

among the different cores. These instructions relatively 
reduce the implementation efficiency especially when 

there are a lot of data dependencies. 

II.2.2. GOP Level parallelism approach 

GOP level parallelism approach was applied in several 

works to benefit from the high performance scalability 

and low synchronization cost. 

S.Sankaraiah et al. [7] [8] applied this technique and 

exploited a multithreading algorithm for H264/AVC 

encoder. Each GOP is handled by a separate thread. 

Frames in each GOP are encoded by two threads: I and P 
frames by the first thread and B frames by the second 

thread. The obtained speedup using dual and quad core 

processors are 5.6 and 10 respectively. Real-time is not 

noticed in the paper. 

Rodriguez et al. [9] proposed an H264/AVC encoder 

implementation using GOP level parallelism combined 

with slice level parallelism. They used a clustered 

workstations solution with the MPI technique (Message 
Passing Interface) to ensure data communications among 

the different processors. The drawback of this solution is 

that clustered workstations are a costly solution and they 

are not devoted for embedded applications. Moreover, a 

bit-rate increase is noticed owing to the use of slice level 

parallelism technique. 



 

Fang Ji et al. [10] implemented this encoder on an 

MPSOC platform (Multi-Processor System On Chip) 

using GOP level parallelism technique. They build three 

Microblaze soft cores based on XILINX FPGA. A master 

processor is devoted to allocate frames into the shared 
memory. Thus, each slave coprocessor encodes its 

appropriate GOP. Experiments show that the obtained 

speedup is 1.831. The real-time encoding compliant is 

not achieved. In fact, this solution can encode only 3 f/s 

for QCIF (176x144) resolution. 

II.2.3. Frame Level Parallelism approach 

Generally, frame level parallelism approach is combined 

with another technique as it is mentioned in Zhuo Zhao’s 

paper [11]. Authors proposed a new wave-front 

parallelization method for H264/AVC encoder. They 

mixed two partitioning methods: frame level parallelism 
and MB row level parallelism. All the MBs in the same 

row are processed by the same processor or thread to 

reduce data exchanges among processors. MBs in 

different frames can be processed concurrently once the 

search window is already encoded. A Pentium 4 

processor running at 2.8 GHz is used to run the 

H264/AVC Joint Model software (JM) 9.0 [12]. 

Simulations on 4 processors show that a speedup factor 

of 3 is achieved (3.17 QCIF and 3.08 for CIF). However, 

real-time encoding is not reached and only 1frame/1.72s 

is encoded for CIF resolution. 

II.2.4. slice Level parallelism approach 

Slice level parallelism approach was applied in several 

works to profit from low synchronizations among 

different threads or processors. 

Yen-Kuang et al. [13] used OpenMP programming 

model to accelerate the encoding process. Slice level 

partitioning is performed on 4 Intel Xeon™ processors 

with Hyper-Threading Technology. Simulations show 

that a speedup factors ranging from 3.74 to 4.53 are 

obtained on 4 processors with Hyper-threading 

technology for CIF and SD resolutions. 

Olli lehtoranta et al. [14] implemented a row-wise data 

parallel video coding method on quad TMS320C6201 
DSP system. The frame is divided into slices by row-

wise and each slice is processed by one DSP. A DSP 

master is devoted to swap data to/from the remaining 

DSPs.  Real-time encoding performance (30f/s) is 

achieved only for CIF resolution but not yet for higher 

resolutions.  

Despite its simplicity, slice level parallelism approach 

has two mainly drawbacks. First, it provides quality 

degradation in terms of PSNR and second, it induces an 

important increase in bit-rate especially when splitting 

the frame into a great number of slices. 

II.2.5. MB Level parallelism approach 

In several papers, MB level parallelism is used to 

accelerate the encoding speed and ensure a low encoding 

latency with the minimum of memory requirement. 

Sun et al. [15] implemented a parallel algorithm for 

H264AVC encoder based on a MB region partition 

(MBRP). They split the frame into several MB regions 

composed by adjoining columns. Then, they mapped the 

MB regions onto different processors to be encoded. 

Data dependencies in the same MBs row are all 

respected. Simulation results on 4 processors running at 

1.7 GHz show that the proposed partitioning achieves a 

speedup factor of 3.33 without inducing the rate 
distortion compared to the software JM10.2. However, 

real-time is not achieved. In fact, the achieved encoding 

speed is only 1frame/1.67s for CIF resolution and 

1frame/6.73s for SD resolution. 

Shenggang Chen et al. [16] introduced an on-chip 

parallel H264/AVC encoder implementation on 

hierarchical 64-cores DSP platform. This platform 

consists of 16 super nodes (4 DSP cores for each node). 

2D Wave-front algorithm is used and each MB is 
assigned to one super node. Subtasks for encoding one 

MB such as motion estimation, intra prediction, and 

mode decision are further parallelized to keep busy the 

four DSP cores that form a node. Speedup factors of 13, 

24, 26 and 49 are achieved for QCIF, SIF (352x240), 

CIF, and HD sequences respectively. The proposed wave-

front parallel algorithm does not introduce any quality 

loss. However, the use of CABAC-based bit-rate 
estimation and the parallel CABAC evolutional entropy 

coder cause a bit-rate increase. Real-time processing is 

not indicated in this paper. 

Seongmin Jo et al [4] applied as second method, a 

DLP approach with OpenMP programming model. 2D 

wave-front approach is performed by processing several 

MBs in the same frame in parallel way. Experiments on 

an ARM MPCore platform show that this approach 

achieves a speedup factor of 2.36 using 4 threads. 

However, real-time encoding performance is not noticed 
also in this work. 

II.2.6. Combined approaches 

Multiple partitioning methods are combined in several 

works to ensure more encoding efficiency and well 

exploit the H264/AVC encoder parallelism. 

Huayou Su et al [17] proposed a parallel framework 

for the H264/AVC encoder based on a massively parallel 

architecture implemented on NVIDEA’s GPU (Graphic 

Processor Unit) using CUDA (Compute Unified Device 

Architecture). They presented several optimizations to 
accelerate the encoding speed. A parallel implementation 

of the inter prediction is proposed based on a novel 

algorithm MRMW (Multi-resolutions Multi-windows) 

that consists in using the motion trend of a lower 

resolution frame to estimate that of the original frame ( 

higher resolution). MRMW steps are parallelized with 

CUDA on different GPU’s cores. In addition, they 

performed a multi-level parallelism for intra-coding by 
performing a multi-slice encoding. Each frame is 

partitioned into independent slices and the wave-front 

method is adopted to parallelize MBs encoding in the 

same slice. Some dependencies within MBs are not 

respected in order to maximize the parallel processing. 



 

Moreover, CAVLC coding and filtering processes are 

also parallelized by dividing these modules into several 

tasks. Experimental results show that a speedup factor of 

20 is obtained. The presented parallel H264/AVC 

encoder is able to perform a real-time HD video 
encoding. However, this implementation affects the 

visual quality by inducing a PSNR degradation ranging 

from 0.14 dB to 0.77 dB and induces a little increase in 

bitrate. 

António Rodrigues et al. [18] implemented the 

H264/AVC encoder on a 32-core Non-Uniform Memory 

Access (NUMA) computational architecture with eight 

AMD 8384 quad-core chip processors running at 2.7 

GHz. Two parallel levels are combined: slice level and 

MB level.  A multi-threading algorithm using openMP is 
used for the JM software. The frame is divided into 

several slices and each slice is processed by a group of 

cores. Several MBs in the same slice are encoded in 

parallel. Data dependencies are respected by the different 

cores of the group. The achieved speedup using the 

whole set of 32 cores is between 2.5 and 6.8 for 4CIF 

video (704 × 576). These speedups are not significant 

compared to the number of exploited cores. Using a MB 

level parallelism requires that data must be shared which 

may lead to a memory bottleneck and higher latency. 

Also, increasing the number of slices induces a bit-rate 

distortion. Finally, real-time encoding performance is not 
noticed in this work. 

III. DSP platform description 

New DSP processors represent a promising solution for 

high performance applications and embedded systems 

implementations. They are characterized by a software 

flexibility, high performance computing, low power 
consumption, competitive price tag, and time to market. 

VLSI (Very Large Scale Integration) technology 

evolution allows designing new generations of DSP 

processors characterized by high frequency processing 

and multicore architecture. This gives more efficiency to 

DSP platforms and motivates developers to perform more 

complex applications that require high performance 

computing.  For these reasons, we chose to implement 

the H264/AVC encoder on the multicore DSP 

TMS320C6678 to profit from its new features to meet 

the real-time encoding compliant (25 f/s). 

TMS320C6678 DSP [19] belongs to the latest generation 
of multicore DSPs made by Texas Instrument (TI). It is 

the highest-performance fixed/floating-point DSP which 

is based on TI’s KeyStone multicore architecture. This 

platform includes multicore navigator, teraNet, 

hyperlink, and multicore shared memory controller 

which provide adequate internal bandwidth for non-

blocking access to all processing cores, coprocessors, 

peripherals, and I/O. As presented in Fig. 3, eight 

TMS320C66x DSP Core Subsystems (C66x CorePacs) 

running each at 1GHz, very long instruction word 

(VLIW) architecture, Single Instruction Multiple Data 
(SIMD) set instruction and 8.5 Mega-bytes (Mb) of 

memory on chip are combined to deliver 64000 MIPS 

performance. Each C66x DSP core integrates a large 

amount of on-chip memory. In addition to 32 Kilo-bytes 

(KB) of L1 program and data cache, 512 KB of internal 

memory per core that can be configured as mapped RAM 

or cache is integrated on the chip. The platform also 

integrates 4Mb of shared memory. To support 

applications that require a large amount of memory such 
as ultra HD video applications, TMS320C6678 includes 

512 Mb of DDR3-1333 external memory. This platform 

comes with the TI’s Multicore Software Development 

Kit (MCSDK) for SYS/BIOS Real-Time Operating 

System (RTOS). Performance is also enhanced by an 

EDMA controller (Enhanced Direct Memory Access) 

which is able to manage memory transfers independently 

from the CPU. TMS320C6678 supports several high 

speed standard interfaces including RapidIO for DSP-to-

DSP communications, PCI Express Gen2, and Gigabit 

Ethernet for Internet Protocol (IP) networks. It also 
includes I2C, UART and Telecom Serial Interface Port 

(TSIP). 

 

Fig. 3. Internal architecture of TMS320C6678 multicore DSP 

IV. The Classic multicore implementation 

of the GOP Level Parallelism approach 

IV.1.  Partitioning strategy 

From previous works, several partitioning methods have 

been applied and each of them has as advantages as also 

some drawbacks. Choosing the appropriate partitioning 

approach depends also on the target platform. In fact, the 
number of available processing units and processors inter 

communication medium (shared memory, point to point, 

FIFO memory, message passing interface) should be 

necessarily taken into account to perform an efficient 

parallel implementation. Consequently, several points 

should be considered: 

 Memory constraint is not an important factor for 

DSP-based implementations as well as for SOC 

platforms. Consequently, this gives more liberty to 

choose a partitioning method. 



 

 Since C6678 DSP memory cache is not automatically 

coherent, a simple partitioning method which does 

not require an important inter-processors 

communications and characterized by a low 

synchronization cost should be selected. This allows 

reducing the required write-backs and cache lines 

invalidations to avoid cache coherence problem. 

 The selected method should not affect the bit-rate 
performance or the visual quality and preferably 

characterized by a high encoding scalability. 

Based on these points, we adopt the GOP level 

parallelism approach to achieve real-time encoding 

processing without inducing any rate distortion. In fact, 

no dependencies among GOPs make this approach easy 

for implementation. It does not require data transfers or 

synchronizations among processors and characterized by 

a high encoding scalability. Finally, cache coherence 

problem with GOP level parallelism method is almost 

abolished compared to TLP approach. 

IV.2. System platform description 

To perform a real-time video encoding demo, frames 

acquisition by the DSP platform should be also 

performed in real-time. Consequently, 277Mbits/s as 

transmission bandwidth (35 Mbytes/s) at least is required 

to transfer HD frames (1280x720) at 25 f/s in YCrCb 4:2:0 

format ((1280 x 720 x 1.5) x 8 bits x 25 f/s). Since our 

DSP evaluation board has not yet a frame grabber 

interface, a personal computer (PC) linked to a Universal 

Serial Bus (USB) HD webcam is used as a preliminary 

step to send the raw captured frames to the DSP. Our 
DSP board and the PC support both a Gigabit Ethernet 

interface (1000 Mbits/s) which allows a real-time data 

transfer between them. The PC could be thereafter 

replaced by another embedded platform including camera 

interface and a Gigabit Ethernet communication 

peripheral such BeagleBoard-xM [20] or raspberry Pi 

[21] platform.  

As the C6678 DSP includes eight cores, the first core 

“core0” is considered as master. It is devoted to establish 

TCP/IP (transmission Control Protocol / Internet 

Protocol) connection with the client (PC: camera 

interface) exploiting Network Developer’s Kit library 
[22]. It firstly receives the GOPs sent by the camera 

interface and saves them into the external memory which 

is a shared memory for all the DSP cores. Then, the 7 

remaining DSP cores are considered as slaves and they 

are used to encode the 7 received GOPs. Once they finish 

encoding, core0 sends the bitstream of all encoded 

frames to the PC in order to be stored in a file or decoded 

later. 

As shown in Fig. 4, for each slave core (1 to 7), a 

memory section is reserved including the GOP current 

frames (img1 to imgGOPsize), the reconstructed frame 
(RECT) and finally the bitstream buffers where the 

bitstream of each frame from the GOP will be saved. 

In the internal memory of core0, a TCP server 

program is loaded to establish Gigabit Ethernet 

connection between the DSP and the PC. The H264/AVC 

program is loaded into each internal memory of the 7 

remaining cores. The local variables used during the 

encoding such as predicted MB buffers, transform and 

quantification matrixes, and best predicted modes are 

also allocated into the internal memory of each core to 

avoid data overlaps among different cores and reduce 

memory bottleneck situation. 
A C/C++ project is implemented on the PC side in 

order to capture raw frames from the HD camera using 

OpenCv library [23]. This library allows also converting 

the captured frames from RGB to YCrCb 4:2:0 format.
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Fig. 4. Video encoding demo using the classic GOP Level parallelism approach 
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Fig. 5. The chronological steps of the classic GOP Level Parallelism approach on amulticore DSP TMS320C6678 

Encoding steps using the classic GOP level 

parallelism approach on 7 DSP cores are described in Fig 

.5 and detailed as follows: 

 TCP/IP connection is firstly established between the 

PC and the DSP (core0). The PC sends thereafter 7 

GOPs to core0 which will receive them and load each 

GOP into its appropriate buffers as shown in Fig. 4. If 
only one core is used for encoding, only one GOP is 

sent to core0 etc. 

 Once core0 finishes receiving the 7 GOPs, it sends 7 

inter processor communication interruptions (IPC) to 

core1-core7, which are waiting for an interruption 

from core0, to notify them that the current frames are 

already in the SDRAM memory and encoding 

process can be started. 

 As no dependencies exist among GOPs, the 7 DSP 

cores start the encoding process simultaneously. Each 

core processes its appropriate GOP frame by frame 

until finishing the entire GOP. For each encoded 
frame, a bitstream is generated and saved into its 

appropriate buffer in the memory section reserved for 

each core.  

 Once the entire GOP is encoded, each core sends an 

IPC interruption to core0; which is in a wait state; to 

notify it that the bitstreams are ready to be transferred 

to the PC. 

 When receiving the 7 IPCs from core1-core7, core0 

sends the bitstream of the 7 GOPs to the PC via the 

Gigabit Ethernet link. Core0 sends at first the 

bitstream of core1 then the bitstream of core2 and 
finishes by the bitstream of core7 to respect the final 

bitstream order when it will be received by the PC 

and saved in a file. Before sending the bitstream data, 

core0 sends also the bitstream size of each frame to 

inform the PC about the data size which it should 

receive. When core0 transfers the bitstreams to the 

PC, the remaining cores are in a wait state for the 

next GOPs. 

 After receiving the bitstreams and saving them in a 

file, the PC captures another 7 GOPs and sends them 
to core0. The same work thereby will be reproduced 

until finishing the entire video sequence.  

IV.3. Cache coherency 

In order to overcome the cache coherence problem [6] 

among DSP cores which process (read, write) the same 

data in a shared memory as shown in Fig. 6, TI provides 

the MCSDK Kit [24] which includes several libraries as 

the CSL  (Chip Support Library) which includes also 

different API commands such as: 

 CACHE_wbL2: it writes back the cached data from 

the cache memory of coreA to its location in the 

shared memory which allows coreB processing the 
updated data. 

 CACHE_invL2: it invalidates the cache lines in the 

cache memory and forces coreA to read data from the 

original location in the shared memory in order to use 

the updated data which was processed by coreB. 

In our implementation, after reading the captured 

frames from the PC, core0 should write back the cached 

data (current frames) to their locations in the external 

memory to be encoded later by the remaining cores. In 

the other side, core1-core7 should invalidate the current 

frames addresses in the cache memory before starting 



 

encoding. This allows encoding the updated data written 

by core0 and not the old data existed in their cache 

memories. Moreover, once the encoding process is 

finishes, core1-core7 should write back the bitstreams 

from their cache memories to the external memory and 

similarly core0 should invalidate the bitstreams in its 

cache memory in order to send the new values to the PC.  

Core A Core B

External Memory CacheCache

X Y Y

X : old data

Y: New data

 
Fig. 6. Cache coherence problem 

IV.4. Experimental results 

The H264/AVC encoder is implemented on the 

TMS320C6678 multicore DSP using the LETI 

laboratory’s software [25] [26]. This software is an 

optimized version of the Joint Model (JM) software. 

Experiments are performed on the most commonly used 

video test sequences in HD 720p (1280x720) resolution 

using different QP (Quantification Parameter) values.  
These sequences are a raw data in YCrCb 4:2:0 format 

recommended by the Joint Video Team (JVT) of 

ISO/IEC MPEG & ITU-T VCEG organizations [27].  

Encoding parameters are described in TABLE I. 

TABLE I  ENCODING PARAMETERS 

Video resolution 1280x720 

Intra period (GOP size) 8 

Search range 16 

QP values 30, 37 

Frames to be encoded 280 

Error metric for mode 

decision 
Sum of Absolute Difference 

Entropy encoder CAVLC 

Rate control off 

Nb of reference Frames 1 

Optimizations 
Fast intra/inter mode decision 

algorithms [28] [29] 

 

For performance evaluation, encoding speed is 

computed with different number of slave cores and can 

be presented by the following equation: 

encoding speed        
DSP frequency

                      
x number of frames      

Number of clock cycles indirectly represents the 

required time to encode a number of frames without 

considering communication overhead (receiving GOPs 

and sending bitstreams). This time is computed between 

sending the last IPC interruption by core0 to the last core 

to trigger the encoding process and the reception of the 

last IPC interruption from the last core which has 

finished the encoding process. 

Table  II and III show respectively the encoding 

speeds of the classic GOP implementation for HD video 

sequences with different number of cores using QP=30 

and QP=37. 

TABLE II ENCODING SPEEDS FOR HD720P RESOLUTION USING THE 

CLASSIC GOP LEVEL PARALLELISM APPROACH WITH QP=30 

Video 

Encoding 
speed 
using 
one core 
(f/s) 

Encoding 
speed 
using 3 
cores 
(f/s) 

Encoding 
speed 
using 5 
cores 
(f/s) 

Encoding 
speed 
using 7 
cores 
(f/s) 

Shields 4.26 11.93 19.91 28.11 

Parkjoy 4.91 14.22 22.52 32.09 

Parkrun 4.05 11.96 19.83 27.96 

sunflower 4.29 12.14 21.08 28.79 

Crowdrun 3.98 11.71 18.58 25.92 

Birds 4.80 13.70 23.61 32.46 

Mob_cal 4.11 12.09 20.16 28.26 

Stokholm 3.97 11.72 19.60 27.31 

Average 

(f/s) 
4.29 12.43 20.66 28.86 

TABLE III ENCODING SPEEDS FOR HD720P RESOLUTION USING THE 

CLASSIC GOP LEVEL PARALLELISM APPROACH WITH QP=37 

Video 

Encoding 
speed 
using 
one core 
(f/s) 

Encoding 
speed 
using 3 
cores 
(f/s) 

Encoding 
speed 
using 5 
cores 
(f/s) 

Encoding 
speed 
using 7 
cores 
(f/s) 

Shields 4.53 12.14 20.13 28.32 

Parkjoy 5.02 14.38 22.73 32.23 

Parkrun 4.36 12.26 19.96 28.19 

sunflower 4.42 12.31 21.34 28.93 

Crowdrun 4.12 11.83 18.78 26.24 

Birds 4.96 13.84 23.86 32.72 

Mob_cal 4.46 12.26 20.31 28.48 

Stokholm 4.21 11.91 19.76 27.56 

Average 

(f/s) 
4.51 12.61 20.87 29.08 

 

Experimental results show that using 7 DSP cores 

allows surpassing the real-time constraint 25 f/s. 

Encoding speed is increased from 4.29 f/s on a single 

core to 28.86 f/s in average on 7 cores and can reach 29 

f/s with QP=37. The encoding speed is enhanced when 

the QP value is increased. This returns to our fast intra 
mode decision algorithm which is applied in the LETI’s 

software encoder [28]. Our multicore implementation 

achieves an important encoding speedup of 6.73 in 

average with QP=30 and 6.44 with QP=37. These 

speedups are very close to the theoretical value (7). This 

tiny drop in speedup factor firstly returns to the required 

inter-communications among core0 and core1-core7 such 

as write-backs and cached data invalidations. Secondly, it 

returns to the impossibility of simultaneous access to 

SDRAM memory by the fully cores to read and write 



 

data. Our parallel approach allows improving the 

encoding speed and performing a real-time HD video 

encoding. Our parallel implementation does not induce 

video quality degradation in terms of PSNR or bit-rate 

increase compared to a single core implementation. 

V. Enhanced GOP Level Parallelism 

approach: hiding communication 

overhead 

V.1. Implementation strategy 

As we have mentioned earlier, the majority of published 

works do not consider data transfer time in their 

computations. When performing a real-time video coding 

application including video capture, frames encoding, 

and bitstream saving it in a file, communication overhead 

will be imposed and should be taken into account. As 

shown in Fig. 5, a lot of waiting time is noticed with the 
classic GOP implementation. Communication overhead 

is not optimized. This significantly reduces our multicore 

implementation efficiency. In fact, core1-core7 should 

wait the reception of 7 GOPs to trigger encoding process 

whereas encoding could be started as soon as the 

reception of the first frame by core0. Moreover, core0 

remains in a wait state until core1-core7 finish the 

encoding process. However, this time could be exploited 

to prepare in advance the next 7 GOPs. Consequently, 

core1-core7 can immediately start encoding the next 

GOPs without waiting core0 finishing bitstream 

transferring and receiving the next 7 GOPs. 

To enhance the classic GOP level parallelism 

implementation, hiding communication overhead 

technique is presented. Our optimization is based on two 

strategies as shown in Fig. 7: First, using the ping-pong 

buffers technique on the DSP side in order to overlap 

GOPs encoding process with reading and writing GOPs 

processes. Second, a multi-threading approach is used on 

the PC side. Thus, three threads are created to handle 
reading raw frames, sending them to DSP via Ethernet, 

receiving bitstreams from DSP and saving them in a file. 

On the DSP side, for each slave core, a ping-pong GOP 

buffer is allocated for both the current frames and the 

generated bitstreams. A single buffer is allocated for the 

reconstructed frame since it will not be transferred.  

Consequently, one buffer for the reconstructed frame, 

2* GOP size buffers for the current frames and 2* GOP 

size buffers also for the bitstreams are allocated in the 

memory section of each slave core in SDRAM memory. 

Our implementation strategy is described in Fig. 8 and 
consists of the following steps: 

 Thread1 captures the first frame from a camera or a 
file and sends it to core0 which will save it into the ping 
buffer SRC[0][0] of core1. Then, Core0 notifies core1 by 
sending an IPC interruption to start encoding its first 
current frame.  

 When receiving an IPC interruption from core0, core1 
starts encoding the first frame of its GOP. At the same 
time, thread1 continues reading the next frames of the 
first GOP and sending them to core0 which will save 
them into the ping buffers of core1 SRC1[0][i] (i=1 to 
GOP size-1). 
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Fig. 7. Description platform using the enhanced GOP Level Parallelism approach   



 

 When finishing reading and sending the first GOP, 

thread1 starts reading the second GOP and sends it to 

core0 which will store it into the ping buffers of core2 

SRC2[0][i]. Similarly to the first GOP, when receiving 

the first frame of the second GOP, core0 sends an IPC 

interruption to core2 to notify it that it can start encoding 

the first frame of its GOP.  This step is repeated until 

finishing the reception of the 7 GOPs. Thus, each core 
starts the encoding process immediately after receiving 

the first frame of the corresponding GOP without waiting 

the reception of all the frames. 

 During encoding the first ping GOPs by core1-core7, 
thread1 sends the next 7 GOPs to core0 which will store 
them into the pong buffers SRC[1][i] of each core (i=0 to  
GOP size-1). As encoding process takes more time than 
reading process, communication delays are hidden and 
they do not contribute to the parallel run-time. 

 Once core i finishes the encoding process and saves 
the bitstream into the ping buffers Bistream[0][i], it sends 
an IPC interruption to core0 to notify it that it can forward 
its bitstream to the PC. Then, this core starts encoding its 
pong GOP, already received and stored into the pong 
buffers SRC[1][i] without any wait. Consequently, the 

new generated bitstream will be stored into the pong 
buffers Bistream[1][i] to not overwrite data stored in the 
ping buffers Bistream[0][i] which are being transferred by 
core0 to the PC.  

 During encoding the pong GOPs, core0 sends the ping 

bitstreams (Bistream[0][i]) to the PC starting with  those 

of core1 and finishing with the bitstreams of core7 in 

order to be saved in a chronological order. Thus, thread2 

receives these ping bitstreams and stores them into the 

ping buffers Bitstream[0][i]. Finally, thread3 writes them 

in a file and at the same time thread1 sends the next 7 

GOPs to core0 which will store them into the ping buffers 
SRC[0][i] of each core. With this strategy, the ping 

bitstreams writing, the pong SRC GOPs encoding and the 

next 7 ping GOPs capturing and sending are practically 

processed in parallel. 

 The encoding process is then reproduced in a reverse 
order for SRC frames and bitstreams through ping-pong 
buffers. 

When looking at Fig. 8, no significant delays are 

noted. Core1-core7 process their corresponding data 

without any waiting time. 
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Fig. 8. The chronological steps of the Enhanced GOP Level Parallelism on the multicore DSP TMS320C6678 



 

V.2. Experimental results for the Enhanced GOP 

implementation 

To evaluate our enhancement, communication overhead is 

considered in the encoding time computation. Frames 
capture, transferring them to DSP, receiving them by core0 

and loading them to DSP memory are taken into account in 

our calculation. Table IV shows the encoding speeds for 

both: the classic GOP implementation (without including 

data transfer times: only encoding time) and the enhanced 

GOP implementation for HD resolution with QP=30. The 

same encoding parameters, used in the first 

implementation, are reused for the enhanced approach. 

TABLE IV ENCODING SPEED FOR HD RESOLUTION USING THE ENHANCED 

GOP LEVEL PARALLELISM APPROACH 

HD Video 
sequences 

Encoding speed  on 7 

DSP cores: Classic GOP 

imlementation (data 

transfer is not included) 

(f/s) 

Encoding speed  on 7 

DSP cores: Enhanced 

GOP imlementation 

(data transfer is 

included) (f/s) 

Shields 28.11 27.38 

Parkjoy 32.09 31.14 

Parkrun 27.96 27.25 

sunflower 28.79 27.86 

Crowdrun 25.92 25.27 

Birds 32.46 31.58 

Mob_cal 28.26 27.48 

Stokholm 27.31 26.43 

Average 

(f/s) 
28.86 28.04 

 

As shown in Table IV, a non-significant drop in encoding 

speed is induced. This clearly affirms that our proposed 

data transfer scheduling technique efficiently hides 

communication overhead. The obtained encoding speeds 

for the enhanced implementation are very close to those of 

the classic GOP implementation. In fact, data transfer time 

is only noticed at the first GOPs. After that, these transfers 

are overlapped with the encoding process.  

Experiments show that our enhanced implementation 

allows surpassing the real-time compliant (25 f/s) by 

reaching up to 28 f/s in average for HD video sequences. 

An important speedup factor of 6.7 is obtained on 7 DSP 
cores. Regarding rate distortion, our multicore 

implementation does not induce visual quality degradation 

or bitrate increase compared to a unique core 

implementation. 

It may be noted that several factors are contributed to 

achieve this performance despite that encoding steps, 

detailed above, transmit the idea that there is always a 

simultaneous accesses to the external memory by the 

different cores which may cause a significant latency. 

First, our encoding implementation is based on a “MB 

row level architecture” [26]; so each core copies a MB row 
from the current frame in the external memory into a 

current MB row buffer in the internal L2 memory. The 

encoding process will be thereafter performed by the CPU 

between the L1 and L2 level memories which reduces the 

external memory bottleneck situation. Secondly, 128 kbytes 

of L2 memory are configured as cache for each core. Thus, 

access to a memory location triggers a prefetch of a line of 

memory locations into the cache memory. This allows 

reducing the cache misses; so accelerating encoding run-

time. Reconstructed MBs row and bitstream are not directly 

copied into the external memory after their processing but 

they remain in the cache memory which reduces the 
external memory access. Third, in addition to eight 

processing units for each core which allow performing 

eight instructions per cycle, code composer studio IDE 

(Integrated Development Environment for DSP 

programming) allows generating an optimized assembler 

code that exploits the maximum of pipeline. Thus, the 

different cores may do not perform the same load 

instruction from the external memory at the same time, a 

core i can perform prefetch instructions, other core can 

perform load instruction and another one can execute ADD 

instructions for example etc. Moreover, our enhanced 
implementation is a pipelined design; there is a timing 

delay between the different cores. So reading current MB 

rows and writing bitstreams are not necessarily performed 

at the same time by all cores. Furthermore, the C6678 

external memory is characterized by large bandwidth. In 

fact, it is a 64-bit DDR3 SDRAM operating at 1333 MHz 

with up to 10664 Mbyte/s of throughput 

((64bits)/(8bits/byte)*1333 MHz). Several tests show that 

this bandwidth is enough to support multiple DSP cores 

accessing the DDR3 memory simultaneously [30].  

To more evaluate our enhanced approach, the total 

required time to perform the entire video encoding chain 
(frames capturing, DSP encoding, and bitstream in a file) is 

computed for the both implementations: the classic and the 

enhanced one. 

Table V shows the computed time of the fully encoding 

chain for these two implementations. The number of HD 

encoded frames is 1200. This time depends on the PC 

performance (reading/writing data from/in a file), DSP 

performance (H264/AVC encoding process) and the data 

transmission bandwidth between the PC and the DSP 

(sending/receiving data using TCP/IP Ethernet protocol).  

Our DSP frequency is 1 GHz.  The used PC is Intel i3 
running at 2.33 GHz and including a Gigabit Ethernet 

communication interface. 

TABLE V THE TOTAL TIME OF THE ENTIRE ENCODING CHAIN  

HD video 

sequences 

 

The total time for 

the classic GOP 

implementation 

(second) 

The total time for the 

enhanced GOP 

implementation 

(second) 

Saving 

time 

(%) 

Shields 241 148 38.58% 

Parkjoy 210 132 37.14% 

Parkrun 256 162 36.71% 

sunflower 237 143 39.66% 

Crowdrun 231 147 36.36% 

Birds 242 151 37.60% 

Mob_cal 216 136 37.03% 

Stokholm 234 155 33.76% 

Average 

time (s) 
233 147 36.90% 

 

Experimental results show that our enhancements allow 

saving up to 36% of the total time for HD video encoding 

chain. Exploiting multi-threading algorithm with ping-pong 

buffers technique significantly reduces the processing time 

by overlapping the encoding process with that of data 

transferring. 



 

TABLE VI COMPARISON WITH PREVIOUS WORKS 

approach Our approach [2] [10] [11] [14] [15] [17] 

Partitioning 

method 

GOP Task  GOP  MB/Frame slice MB region 

partition 
(MBRP) 

Task  

platform Multicore  DSP 
TMS320C6678 
(7 cores for 
encoding) 

167-core 
asynchronous 
array of simple 
processors  

3 Microblaze 
soft cores 
based on 
XILINX FPGA 

Pentium 4 
processor 
running at 2.8 
GHz  
 

quad 
TMS320C6201 
DSP system 

PC with a P4 
1.7GHz 
processor  
4 cores 
 

NVIDEA’s 
GPU using 
CUDA with 
448 cores 

Reference 
software and 
encoding 
parameters 

LETI’s H264 
codec, baseline 
profile, ME 
algorithm is 
LDPS, search 
range=16, 
Number of 
reference 

frame=1, R-D 
optimization is 
not used, 
entropy coding 
is CAVLC. 

JM baseline 
profile, search 
range=3, ME 
algorithm is 
Diamond 
Search, 
Number of 
reference 

frame=1, 
entropy coding 
is CAVLC. 

AVS reference 
code RM5.2, 
ME algorithm 
is full search, 
entropy coding 
is CAVLC. 

JM9.0, one 
reference 
frame for MV, 
search 
range=10, R-D 
optimization is 
used, entropy 
coding is 

CAVLC. 

H263/MPEG4 
baseline 
profile, search 
range=16, ME 
algorithm is 
diamond 
search, entropy 
coding is VLC. 

JM 10.2 
baseline 
profile, ME 
algorithm is 
the Full search, 
Number of 
reference 
frame=1, 

R-D 
optimization is 
used, entropy 
coding is 
CAVLC. 

X264 codec, 
search 
range=32, 
ME 
algorithm is 
MRMW, 
Number of 
reference 

frame=1, 
entropy 
coding is 
CAVLC. 

Encoding 
speed (f/s) 

28 f/s for HD 21 f/s for VGA 
(640 x 480) 

3 f/s for QCIF 0.58 f/s for CIF 30 f/s only for 
CIF resolution 

0.6 f/s for CIF 
and 0.15 f/s for 
SD 

30 f/s for 
HD720p 

Distortion 
PSNR/bitrate  

No yes No No yes No Yes  

 
For low and medium video resolutions such as 

CIF(352x288), VGA (640x480) and SD (720x480), real-

time is achieved on less than 7 cores which allows 

exploiting the remaining cores to perform other tasks such 

biometric recognition, access control, objects detection and 

surveillance application etc. This will give an important 

advantage for our multicore DSP if integrated into a smart 

system. 

For more performance evaluation, our solution is 

compared to previous works which have been performed on 

several platforms and applied different parallelism 

methods. As shown in Table VI, several implementations 
have not satisfied the real-time constraint. In fact, JM 

software is not an optimized algorithm which makes it hard 

to reach a real-time encoding performance. Some works 

have achieved the real-time compliant for low resolution 

but not yet for higher resolutions. GPU implementation 

[17] allows performing a real-time HD video encoding 

thanks to the great number of processing cores. However, 

this proposed scheme induces some rate distortion (PSNR 

degradation and bitrate increase). Finally, we can note that 

our implementation has ensured a good encoding scalability 

without inducing any rate distortion compared to a single 
core implementation. 

In addition to the performance evaluation with previous 

works, our H264/AVC encoder implementation based on 

LETI’s codec is also compared to the JM 18.6 reference 

software. Encoding performance is evaluated in terms of: 

 ΔPSNR (dB):  it presents the visual quality degradation 
in terms of PSNR when using our encoder compared to the 
JM reference software. 

 ΔBitrate (%):  it presents the percentage increase in 
bitrate when using our encoder compared to the JM 
reference software. 

 Encoding speed (f/s): it depends on the CPU frequency 
and the encoder computational complexity.  
 

These above criteria are presented by the following 

equations: 

Δ        
                                           

                     
             (3) 

 

Δ                                                        (4) 

 

As we noted above, LETI’s codec is an optimized 

version of the JM software. We have applied various 

optimizations for the different modules (mode decision, 
motion estimation, ICT transform, and de-blocking filter) to 

reduce the computational complexity of this encoder and 

achieve a compatible DSP-based solution. Furthermore, 

some functions have been programmed in assembler 

language to efficiently exploit the internal resources of our 

DSP. 

The JM18.6 encoder software is processed on an Intel 

core2 Quad CPU running at 2.33 GHz. Our LETI’s encoder 

is evaluated on the multicore Keystone DSP 

TMS320C6678 running at 1 GHz each core. Simulation 

parameters are detailed in Table VII. 
Table VIII shows the encoding performances in terms 

of the three cited criteria for the both implementations. 

Experimental results show that the JM reference software 

ensures better encoding performances in terms of PSNR 

and bitrate compared to our encoder. In fact, our 

H264/AVC encoder induces PSNR degradation by 1 dB in 

average and an increase in bitrate by 3% compared to the 

JM18.6 reference software.  

 

 



 

TABLE VII ENCODING PARAMETERS USED FOR THE JM 18.6 AND THE LETI’S CODEC 

 JM 18.6 LETI’s Codec 

Target platform 
Intel core2 Quad CPU Q8200 running 
at 2.33 GHz each CPU 

Multicore DSP TMS320C6678 running at 
1GHz each core 

Video resolution HD (1280x720) HD (1280x720) 

Quantification parameter (QP) 30 30 

Frame rate 25 25 

Intra period 8 8 

Motion estimation algorithm EPZS LDPS 

Subpixel Motion Estimation on off 

Error metric SAD SAD 

Number of reference frame 1 1 

Entropy coding method CAVLC CAVLC 

Rate control off off 

Rate Distortion Optimized disabled disabled 

Function optimizations Non 
Fast intra and inter prediction algorithms, 
Fast mode decision algorithm, optimized 
filtering module 

Software optimizations 
Visual studio optimizations : 
Maximize speed, favor fast code, 
Multi-threaded Debug …etc. 

Code composer optimizations : intrinsic 
functions, using  assembler language for 
some modules+ Enhanced GOP Parallelism 
on 7 cores 

 

TABLE VIII ENCODING PERFORMANCES FOR THE JM 18.6 AND THE LETI’S CODEC 

HD video 
sequences 

PSNR 
(dB) (JM) 

ΔPSNR 
(dB) 

Bitrate 
JM 

(Kbit/s) 

ΔBitrate (%) 
Encoding 
time for  JM 

(f/s) 

Encoding 
time for our 

encoder (f/s) 

stockholm 34,68 -0,6 3934 +2,53 1,09 27,31 

sunflower 40,63 -0,98 2365 +2,69 1,10 28,79 

mob_cal 33,67 -0,98 7136 +2,68 1,11 27,48 

crowdrun 34,65 -1,5 11309 +3,16 1,06 25,92 

shields 34,88 -0,9 5161 +2,83 1,10 27,38 

 
Regarding encoding speed, we can note that our encoder 

is more optimized and faster than the JM reference 

software. Our multicore DSP implementation  allows 

performing a real-time HD video encoding by reaching up 

to 28 f/s whereas, JM reference software  is not able to 
meet the real-time compliant. This returns to the various 

optimizations applied to reduce the computational 

complexity and accelerate the encoding process. 

V.3. Power consumption estimation 

To estimate the power consumption of our H264/AVC 

encoder implementation on the TMS320C6678 DSP, we 

have adopted the TI’s spreadsheet [31] as shown in Fig. 9. 

It is an excel file which includes configurable parameters 

that allow estimating the power consumption based on 

configured usage parameters. 

These parameters are presented as follows:  

 Frequency: specifies the frequency of the DSP core or 
the frequency of the external interface as DDR3.  

 Modes: selects the peripheral-specific configuration 
mode.  

 Status: indicates whether a peripheral is Enabled (used) 
or Disabled (unused). 

 % Utilization: specifies the percentage of the time the 
module spends doing something useful, versus being unused 
or idle. It includes the % Signal Processing (SP) Utilization, 
% Control Code (CC) Utilization, and % Idle Utilization. 

 %SP: represents scenarios with high levels of DSP 
activity. This corresponds to all 8 instructions fetched by the 
DSP executed in parallel each DSP clock cycle. Thus all 8 
functional units are active every cycle.  

 %CC: represents scenarios with low levels of DSP 
activity. It represents execution of approximately 2 
functional units every clock cycle. 

 % Write: represents the relative amount of time the 
module is transmitting versus receiving. 

  Bits: specifies the number of data bits to be used in a 
selectable-width interface. 

 Lane: specifies the number of lanes used by that 
interface. 

 % Switching: specifies the probability that any one data 
bit on the relative data bus will change state from one cycle 
to the next. 

More details about these parameters are presented in the 

reference of Power Consumption Summary for KeyStone 

C66x Devices [32]. 



 

 

Fig. 9. Estimation of power consumption using TI’s spreadsheet  

In our estimation, we specify 30% and 40% respectively 

for the %SP and the %CC utilizations. This specification 

presents a more realistic scenario for a very signal 

processing intensive code [33]. In fact, a very few kernels 
achieve 8 operations per cycle.   

As external interfaces, we enabled only the DDR3, 

EMIF16, and the NetCP and we supposed working at 40° C 

of temperature. The estimated power consumption is equal 

to 7.2 W (watt) as shown in Fig. 9. This consumption value 

is considered non-significant compared to GPU platforms 

or GPP processors (General Purpose Processors) [29].  

VI. Conclusion 

In this paper, an optimized H264/AVC HD video 

encoder implementation on a multicore DSP 

TMS320C6678 was presented. GOP Level parallelism 

approach was applied to accelerate encoding speed. 

Exploiting the ping-pong buffers technique with a multi-

threading algorithm allows hiding communication overhead 

and efficiently enhances the encoding performance. 

Experimental results on 7 DSP cores running each at 1 GHz 

proved that our enhanced implementation has met the real-

time encoding compliant. The achieved encoding speed is 
up to 28 f/s in average for HD resolution. Our parallel 

implementation allowed accelerating the encoding process 

by a factor of 6.7 without inducing a PSNR drop or bitrate 

increase compared to a single core implementation. 

Compared to the JM18.6 reference software, our LETI’s 

optimized software induced visual quality degradation by 1 

db in terms of PSNR and 3% of bitrate increase. This rate 

distortion is acceptable when looking at the important 

encoding speedup and the HD real-time processing. The 

proposed scheduling technique for hiding communication 

overhead allowed saving up to 36% of the fully encoding 

chain time. Power consumption of our multicore 

implementation was estimated to 7.2 W which is 

considered non-significant compared to GPU’s or GPP’s 

power consumption.  As perspectives, we will move to 
implement the new video coding standard HEVC (High 

Efficiency Video Coding) on our multicore DSP 

TMS320C6678. The same proposed technique could be 

reapplied for this recent encoder. In fact, HEVC almost 

adopts the same hierarchical data video structure of 

H264/AVC encoder (GOPs, frames, slices, MB), and 

practically, the same dependencies in H264AVC encoder 

exist among HEVC data units. 
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