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Abstract—Many real-world complex networks, like client-
product or file-provider relations, have a bipartite nature and 
evolve during time. Predicting links that will appear in them 
is one of the main approach to understand their dynamics. 
Only few works address the bipartite case, though, despite its 
high practical interest and the specific challenges it raises. We 
define in this paper the notion of internal links in bipartite 
graphs and propose a link prediction method based on them. 
We describe the method and experimentally compare it to a 
basic collaborative filtering approach. We present results 
obtained for two typical practical cases. We reach the 
conclusion that our method performs very well, and that 
internal links play an important role in bipartite graphs and 
their dynamics.

I. INTRODUCTION

Many real-world complex networks have a natural

bipartite structure and may therefore be modeled as

bipartite graphs [1], i.e. two sets of nodes with links

only between nodes in different sets. Typical exam-

ples include peer-to-peer file-provide graphs [2] where

peers are linked to the files they provided; and client-

product graphs where clients are linked to the products

they bought [3].

Most of these networks are dynamic: they evolve

during time, with node and link additions and re-

movals. One approach for studying such dynamics is

link prediction, which consists in predicting the links

that will probably appear in the future, given a snapshot

of the considered graph at a given time [4].

We address here the problem of link prediction in

bipartite graphs. To do so, we define a special kind

of links in bipartite graphs, which we call internal

links. We then propose an approach based on these

links and compare it to a basic classical approach. We

study the performance of our method on two real-world

datasets. We show that this method reaches very good

performances and that internal links play a key role in

the dynamics of real-world bipartite graphs.

The paper is organized as follows. We review related

work in Section II and present the bipartite framework,

including the notion of internal links, in Section III.

We formally state the considered problem and its

assessment in Section IV. We present in Section V

our prediction method, and our experiments in Sec-

tion VI. We discuss our conclusions and perspectives

in Section VII.

II. RELATED WORK

Link prediction is a key research problem in dy-

namic network analysis. Several works study this prob-

lem on classical (non-bipartite) graphs [4], [5], [6],

but they are not directly applicable to or appropriate

for bipartite graphs. For instance because they rely

on the presume of triangles in the graph. Up to our

knowledge, only two works target this problem [7],

[8]. The authors adapt some topological measures used

in classical graphs for predicting links in bipartite

graphs. In addition, they consider two transformations

of the bipartite graph into a classical one, and they

use a supervised learning algorithm to perform link

prediction.

Another research problem is closely related to link

prediction in bipartite graphs: the recommendation

problem [9]. Recommendation systems are used to

suggest items to users, such as products to customers

for instance. Notice however that the two problems

are quite different: recommendation aims typically at

finding products of interest for all customers; predic-

tion aims at finding links that will appear in the future.

Predicting a huge number of new links for a given node

and no links for the other nodes will therefore be of

little interest regarding recommendation but may be a

great success regarding prediction.

The most successful and widely used approach for

recommendation is collaborative filtering [10], [11],

[3], which consists in ranking the most relevant items

for a given user in order of decreasing interest, and then

in recommending the top N items to this user. We will

use it in this paper for the purpose of comparison with

our method.
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Fig. 1: An example of bipartite graph G (left), and its

⊥-projection G⊥(right).

III. BIPARTITE GRAPHS, WEIGHTED PROJECTIONS,

AND INTERNAL LINKS

We present here bipartite graphs and their transfor-

mations into (weighted) classical graphs, called projec-

tion. We also introduce a new class of links in bipartite

graphs, which we call internal links. These links are

at the core of our work.

A bipartite graph G = (⊥,⊤, E) is defined by a set

⊥ of bottom nodes, a set ⊤ of top nodes and a set

E ⊆ ⊥×⊤ of links. The key point is that links exist

only between a node in ⊥ and one in ⊤. We denote by

N(u) = {v ∈ (⊥∪⊤), (u, v) ∈ E} the neighborhood

of a node u in G. If u ∈ ⊥ then N(u) ⊆ ⊤, and

conversely.

The ⊥-projection of G is the graph G⊥ = (⊥, E⊥)
in which (u, v) ∈ E⊥ if u and v have at least one

neighbor in common in G: N(u) ∩ N(v) 6= ∅. See

Figure 1 for an example. We denote by N⊥(u) the

neighborhood of a node u in G⊥: N⊥(u) = {v ∈
⊥, (u, v) ∈ E⊥} = N(N(u)). The ⊤-projection of

G, denoted by G⊤, is defined dually.

As explained for instance in [1], G⊥ contains much

less information than G. In particular, the fact that u
and v are linked in G⊥ means that they have at least

one neighbor in common in G but says nothing on their

number of common neighbors. One way to capture

such information is to use a weighted projection in

which a weight ω(u, v) is associated to each link

(u, v) ∈ E⊥. We present such weight functions in

Section VI-A.

We now introduce a special class of links, called

internal links, which play a key role in the whole paper.

Definition 1 (internal links): Let us consider a bi-

partite graph G = (⊥,⊤, E) and the bipartite graph

G′ = (⊥,⊤, E ∪{(u, v)}) obtained by adding the link

(u, v) ∈ ⊥×⊤ to G, with (u, v) /∈ E. The link (u, v)
is internal if G⊥ = G′

⊥.

In other words, an internal link in a bipartite graph G
is a pair of nodes (u, v) such that adding the link (u, v)
to G does not change its ⊥-projection. In Figure 1 for

instance, (B, l) is an internal link. Indeed, all neighbors

of l in G, namely N(l) = {C,D,E}, are already

linked to B in G⊥: the pairs of bottom nodes (B,C),
(B,D) and (B,E) already have a neighbor in common

in G, respectively, i, j and k. Adding link (B, l) to G
increases their number of common neighbors to 2 and

thus does not change ⊥-projection.

We finally introduce the notion of induced links.

Definition 2 (induced links): Given a bipartite

graph G = (⊥,⊤, E), the set of links induced

by any pair of nodes (u, v) in (⊥ × ⊤) is:

⊥(u, v) = {u} ×N(v) = {(u,w), w ∈ N(v)}.

In Figure 1, for instance, ⊥(A, j) = {A} ×
N(j) = {(A,B), (A,C), (A,D)}. Notice that E⊥ =⋃

(u,v)∈E ⊥(u, v): the links of the ⊥-projection of

G are the links induced by all the links of G. By

definition, a pair of nodes (u, v) ∈ (⊥×⊤) \ E is an

internal link if and only if all the links it induces are

already in G⊥. In Figure 1, for instance, ⊥(B, l) =
{(B,C), (B,D), (B,E)} ⊆ E⊥ and therefore (B, l)
is an internal link.

IV. THE BIPARTITE LINK PREDICTION PROBLEM

Let us consider a dynamic bipartite graph defined

by a set of n timestamped links D = {(ti, ui, vi), i =
1...n}. Let G = (⊥,⊤, E) be the graph observed

from a given instant a to another instant b > a:

⊥ = {u, ∃(t, u, v) ∈ D s.t. a 6 t < b}, ⊤ =
{v, ∃(t, u, v) ∈ D s.t. a 6 t < b} and E =
{(u, v), ∃(t, u, v) ∈ D s.t. a 6 t < b}. We call G
the reference graph and [a, b[ the reference period.

Now let us consider an instant c > b. This induces

a set E′ of links added to G during the period

[b, c[, which we call the prediction period: E′ =
{(u, v), ∃(t, u, v) ∈ D s.t. b 6 t < c} ∩ (⊥×⊤ \ E).
Notice that we consider only the links between nodes

of G (we ignore new nodes appearing in the period

[b, c[) which are not present in G (we consider links

in ⊥×⊤ \ E only).

In this framework, the goal of a link prediction

method is to find a set P of predicted links which

contains many of the links in E′ but only few which

are not in E′. Notice that in the extreme case where

one predicts all possible links, i.e. P = ⊥ × ⊤ \ E,

then one succeeds in predicting all links of E′ but also

predicts many links which are not in E′. Conversely,

predicting no link at all, i.e. P = ∅, trivially does not

predicting links not in E′ but fails in predicting any

link in E′.

false positives

P

E

true negatives

E\P

\ ET

T

X

P \ Efalse negatives

P

U

P

true positives

U

E
E

Fig. 2: A prediction method divides the set of possible

links ⊥ × ⊤ \ E into four categories: true positives,

P ∩E′; true negatives, P \E′; false positives, P \E′;

and false negatives, P ∩ E′.
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Let us denote by P the set of links that the method

predicts will not appear: P = (⊥ × ⊤ \ E) \ P . Link

prediction divides ⊥×⊤\E the into four classes (see

Figure 2): the set P ∩E′ of true positives is the set of

appearing links that the method successfully predicts;

the set P \E′ of true negatives is the set of unpredicted

links which indeed do not appear; conversely, the false

positives are the links in P \ E′, i.e. the links which

we predicted but do not appear, and the false negatives

are the links in P ∩ E′.

The aim of a link prediction method is to maximize

the number of true positives and negatives while min-

imizing the number of false positives and negatives.

This is classically captured by two quantities [12],

called precision, i.e.
|P∩E′|

|P | and recall i.e.
|P∩E′|
|E′| .

V. INTERNAL LINK PREDICTION

In this section, we introduce our link prediction

method for bipartite graphs, which we call internal link

prediction.

The key feature of our prediction method is that

it focuses on internal links: it predicts internal links

only (of which there are much less than possible links

between ⊤ and ⊥ nodes). The underlying intuition is

that two bottom nodes which already have a common

neighbor in G (i.e. they are linked in G⊥) will probably

acquire more in the future. Instead, if two nodes have

no common neighbor in G, then they will probably still

have none in the future. The links that can be added to

G which fit both criteria are precisely internal links.

Going further, two bottom nodes with many com-

mon neighbors in G will probably have more in the

future. We will capture this in a weight function

(defined in the next section), with the expectation that

the links that will appear are the internal links inducing

⊥-links with high weights.

This leads to the following prediction method, which

we call internal links prediction. Let us consider a

weight function ω, and a given weight threshold τ.

We denote by E⊥τ = {(u, v) ∈ E⊥, ω(u, v) ≥ τ} the

set of links in the projection that have a weight larger

than or equal to τ. We then predict all the internal links

which induce at least one link in E⊥τ.

Figure 3 shows an example of internal link

prediction. The set of internal links of G is

{(B, l), (C, k), (D, k), (E, j)}; let us focus on the

internal link (B, l). It induces (B,C), (B,D), and

(B,E). Given a threshold τ we predict (B, l) if one

of these links has weight at least τ. For instance (see

Figure 3):

• if τ = τ1, only 5 links in the projection have

weight larger than or equal to τ, including (B,C),
which is induced by (B, l); we therefore predict

(B, l);
• if τ = τ2, only one link has the weight larger

than or equal to τ, and it is not a link induced by

A B C D E
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G links induced by (B, l)

A

C

D
E

B

A

C

D
E

B

threshold = τ1 threshold = τ2

Fig. 3: Example of internal link prediction. First row

(left to right): a bipartite graph G and the links of G⊥

induced by the internal link (B, l). Second row (left to

right): the links E⊥τ1
and E⊥τ2

with weight at least

thresholds τ1 and τ2 respectively, with τ2 > τ1, for a

given weight function.

(B, l); therefore we do not predict (B, l).

The complexity of this method is the same as the

one of the collaborative filtering approach that we use

for comparison, and it is bounded by the computa-

tion of G⊥: it is in time O(∆⊥|E|), where ∆⊥ =
maxu∈⊥ |N⊥(u)| is the largest degree in G⊥, and

space O(|⊤| + |⊥|) in addition to the space needed

for storing G.

VI. EXPERIMENTAL RESULTS

The performances of link prediction methods depend

on various parameters, in particular the reference and

prediction periods durations, and the weight function.

In this paper we focus on the weight functions. We

first describe three classical weight functions used in

the literature. We then describe real-world datasets for

our experiments. We show that the amount of internal

links in them is high, which ensures the relevance

of predicting internal links. Finally, we compare the

performances of our approach for link prediction to the

ones of the collaborative filtering approach, a classical

recommendation technique.

A. Weight functions

Several approaches are used for weighting the links

of the ⊥-projection in order to capture more informa-

tion than raw projections. We present the main ones in

this section.

First, the weight of link (u, v) may be defined as

the number of (top) neighbors that u and v have in

common in the bipartite graph, called sum [13]:

σ(u, v) = |N(u) ∩N(v)|.

Notice that if u and v both have many neighbors,

then σ(u, v) will naturally tend to be high. Conversely,

if u and v have only few neighbors but these neighbors

3
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Fig. 4: Performances of the two considered link prediction methods internal link prediction (ILP) and

collaborative filtering (CF) (left: file-provider bipartite graph; right: user-tag bipartite graph) when the weight

function is the Jaccard coefficient. We plot precision and recall (vertical axis) as functions of the number of

predicted links (horizontal axis).

are the same, then σ(u, v) is low, which does not reflect

the fact that u and v are very similar. To capture this,

one may use the Jaccard coefficient [14]:

γ(u, v) =
|N(u) ∩N(v)|

|N(u) ∪N(v)|
.

The value of γ(u, v) may however be strongly biased

if one of the two nodes has many neighbors and the

other one only few: the value would then be very low,

even if all neighbors of one node are neighbors of the

other. From this point of view, though, nodes play an

unbalanced role: a ⊤-node x has an influence on the

similarity between
|N(x)|×(|N(x)|−1)

2 pairs of ⊥-nodes.

When N(x) is large, this is huge; on the contrary,

if a ⊤-node only has two neighbors then it probably

indicates a significant similarity between them. To

capture this, one may consider that each ⊤-node votes

for the similarity between its neighbors and that the

sum of its votes is only one (it has only one voice to

distribute). This leads to the delta function [15]:

δ(u, v) =
∑

x∈N(u)∩N(v)

2

|N(x)| × (|N(x)| − 1)
.

All weighting functions presented above are natural

and capture relevant informations about a bipartite

graph. Each has its own strengths and weaknesses, and

up to our knowledge there has been only limited com-

parison between them until now. By comparing their

performance in the context of link prediction below,

we expect to give some insight on their respective

relevance in this context.

B. Data

Evaluating our method in practice requires the avail-

ability of large scale bipartite data with their dynamics.

We use for our experiments a file-provider graph from

a peer-to-peer measurement [16] and user-tag graph

from delicious.com [17]. For each dataset, we choose

reference and prediction periods which are represen-

tative of wide ranges of values for these parameters.

Basic features of the reference graph G and the new

links E′ appearing during the prediction period are

presented in Table I, for the two datasets.

file-provider user-tag

number of ⊤-nodes 1, 920, 353 13, 851

number of ⊥-nodes 122, 599 21, 398

number of links in E 4, 502, 704 435, 830

number of links in E′ 1, 170, 504 1, 663, 799

fraction of internal link in E′ 34% 21%

TABLE I: Number of ⊤-nodes, ⊥-nodes, links in the

bipartite graph G, new links in the prediction period

and fraction of internal links among them, for file-

provider and user-tag bipartite graphs.

The fraction of internal links among the new links

E′ appearing during the prediction period is very high,

34% and 21% for file-provider and user-tag bipartite

graphs respectively. This motivates our approach of

focusing on this special class of links.

C. Impact of the number of predicted links

In order to illustrate the performances of our link

prediction method, we observe the impact of the

number of predicted links |P | on the two prediction

methods. We compute the precision and recall for all

possible values of |P | and plot them in Figure 4 as a

function of |P |.
Note that high values of |P | correspond to small

values of the threshold τ for internal links prediction.

If τ = 0 then all possible internal links are predicted,

which corresponds in this example to 34% and 21%
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of all appearing link for file-provider and user-tag

bipartite graphs respectively. However, many of these

links do not actually appear, and so the correspond-

ing precision is almost zero. Instead, if a very high

threshold is used then only few internal links are

predicted, and so the obtained recall is almost zero.

However, most of these few links do appear, which

corresponds to a precision of almost 100% and 45% for

file-provider and user-tag bipartite graphs respectively.

More generally, the number of predicted links |P |
has a strong impact on the performance of the predic-

tion methods. Figure 4 shows that precision decreases

and recall increases when |P | increases, as expected.

In practice, one has to choose a tradeoff between the

two performance indicators. Figure 4 also shows that

internal link prediction surpasses significantly collab-

orative filtering, but we do not detail this here.

D. Impact of the weight function

Let us now observe the impact of weight functions

on both considered prediction methods and real-world

datasets. We compute the precision and recall for all

possible values of the threshold τ for internal link pre-

diction and all possible values of N for collaborative

filtering; we plot the obtained precision as a function

of the obtained recall in Figure 5.

For internal link prediction (Figure 5, left), a first

important observation is that the considered weight

functions clearly split into two classes for the file-

provider graph (first row): sum and Jaccard reach very

high values of precision, and are also able to reach

very good compromises between precision and recall

(like a precision of 50% and a recall of 20%); instead,

delta leads to poor performances. In the user-tag graph

(second row), the three weight functions give good

compromises between precision and recall.

No such behavior is observable for collaborative

filtering (Figure 5, right), and for all weight functions

internal link prediction performs much better than

collaborative filtering (notice that the vertical axes are

at different scales to help readability).
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VII. CONCLUSION

In this paper, we introduce a new class of links

in bipartite graphs, which we call internal links, and

propose a method which uses them for solving the link

prediction problem. We evaluate the relevance of this

method by comparing it to a classical collaborative

filtering approach and perform experiments on two

datasets.

Our link prediction method has the following advan-

tages. First, it performs very well, much better than a

collaborative filtering approach, where no other method

was previously available. Moreover, our method is

purely structural: it relies on the identification of a

specific kind of links which will probably appear in

the future; this gives much insight on the properties

of the underlying dynamics. Finally, the use of weight

functions allows to tune the method in order to reach

target tradeoffs in the quality of the prediction: one

may use small thresholds to have excellent precision

at the cost of a poorer recall, and conversely.

Our work may be extended in several ways. In par-

ticular, other (maybe more specific) weight functions

may be introduced and tested. One may also predict

internal links that induce only links with weight above

the threshold (inducing one such link is sufficient in our

current algorithm), or use both ⊤- and ⊥-projections

(our current algorithm only uses the ⊥- one). There

is therefore room for improving the method and its

results.

Likewise, it would be interesting to conduct more

experimentations and compare results on different

datasets. Comparing our method with others, in par-

ticular machine learning approaches like the one pre-

sented in [7] is also appealing. Last but not least,

our work calls for the development of link prediction

methods for external links (those links which are not

internal).

Another interesting direction would be to modify

our approach in order to perform recommendation. As

already explained, link prediction and recommendation

are quite different problems, but they are strongly

related. Just like we adapted collaborative filtering for

link prediction in bipartite graphs, one may adapt our

method and evaluate its relevance for recommendation.

Finally, we think that the notion of internal links

introduced in this paper is fundamental and may be

used as a building block in a much wider scope, in

particular analysis of bipartite graphs in general. Al-

though different, it is close to the notion of redundancy

proposed in [1], which is one of the main statistics

currently used for studying real-world bipartite graphs.

The fraction of internal links in any bipartite graph and

similar statistics based on internal links may be used

for this same purpose, and have significant advantages

over redundancy (in particular, it is not a local measure,

and is related to the graph dynamics). We consider this

as one of the main perspectives of our work.
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