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A pattern-based approach to elementary algebra

Heidi Strømskag1

Sør-Trøndelag University College, Faculty of Teacher and Interpreter Education, Trondheim, Norway, heidi.stromskag@hist.no

With a focus on epistemology, this paper discusses what 
pattern generalisation as an algebraic activity involves. 
Further, it presents a review of empirical studies where 
a pattern-based approach is used to teach algebra. This 
shows that students’ problems with establishing algebra-
ic rules from patterns and tables can be explained by:          
1) difficulties caused by students’ use of invalid meth-
ods to identify explicit formulae; 2) difficulties caused 
by students’ tendency to focus on recurrence relations; 
and 3) institutional constraints. As an alternative to a 
traditional task on a shape pattern, the paper presents 
an epistemological model designed to implement the 
equivalence statement: 1 + 3 + 5 + L + 2n − 1 = n2.

Keywords: Algebraic activity, pattern generalisation, 

epistemological model, milieu.

INTRODUCTION

According to Reed (1972), humans have a natural incli-
nation to observe patterns, and to impose patterns on 
different experiences. Inspired by Steen (1988), Devlin 
(1994), and others, I consider mathematics as the sci-
ence of patterns. Mathematicians seek patterns in 
different areas, including numbers (arithmetic and 
number theory), form (geometry), motion (calculus), 
reasoning (logic), possibilities (probability theory), 
and position (topology). In the development of mathe-
matical knowledge, generalisation is an essential pro-
cess. This is asserted by for instance Krutetskii (1976), 
who classifies generalisation as one of the higher cog-
nitive abilities demonstrated by mathematics learners. 

Generalisation of shape patterns and numerical 
sequences is part of the elementary and secondary 
curriculum in many countries, for example England 
(Department for Education, 2014); the United States 
(National Council of Teachers of Mathematics, 2000); 
Canada (Ontario Ministry of Education and Training, 

1 The author has earlier published under the name

2005); and, Norway (Directorate for Education and 
Training, 2013). A purpose of students’ engagement 
with patterns is to provide a reference context (phys-
ical, iconic or numerical) for generalisation and alge-
braic thinking. 

A shape pattern is usually instantiated by some con-
secutive geometrical configurations in an alignment 
imagined as continuing until infinity. In this paper, 
geometrical configurations will be referred to as ele-
ments, and the constituents of an element will be re-
ferred to as components. Generalising a pattern alge-
braically rests on noticing a commonality (a structure) 
of the components of some elements of the pattern, 
and using it to provide an expression of an arbitrary 
member of the number sequence mapped from the 
pattern. This will be explained in more detail below. 

PATTERN GENERALISATION AS 
AN ALGEBRAIC ACTIVITY

A model for conceptualising algebraic activity is pro-
posed by Kieran (2004), where she introduces three 
interrelated principal activities of school algebra: 
generational activity‚ transformational activity‚ and 
global/meta-level activity. The generational activities 
involve the creation of algebraic expressions and 
equations like (i) equations that represent quantitive 
problem situations; (ii) expressions of generality aris-
ing from shape patterns or numerical sequences; and 
(iii) expressions of the rules that determine numerical 
relationships (Kieran, 2004). I interpret the letters 
used in the three examples as having the role as un-
knowns, variables and parameters, respectively. The 
transformational activities involve syntactically-guid-
ed manipulation of formalisms including: collecting 
like terms; factoring; expanding brackets; simplifying 
expressions; exponentiation with polynomials; and, 
solving equations (Kieran, 2004). These are the activ-
ities with which school algebra has traditionally been 
associated. The global/meta-level activities involve ac-
tivities for which algebra is used as a tool, and include: 
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problem solving; modelling and predicting; studying 
structure and change; analysing relationships; and, 
generalising and proving (Kieran, 2004). 

The elements of a shape pattern are carriers of mul-
tiple structures which have to be interpreted by the 
students. The process of interpreting and represent-
ing these structures algebraically, involves general-
isation of arithmetical relationships in members of 
the sequence mapped from the shape pattern. A shape 
pattern can be generalised either through an indi-
rect approach, where the result is a recursive for-
mula (a relationship between consecutive elements), 
or through a direct approach, where the result is an 
explicit formula (a functional relationship between 
position and numerical value of an element). 

Måsøval (2011) distinguishes between two types of 
shape patterns: arbitrary patterns (Figure 1), and con-
jectural patterns (Figure 2). 

These patterns correspond respectively to two dif-
ferent mathematical objects aimed at in the process 
of generalising: formula (for the general member of 
the sequence mapped from the shape pattern; e.g., 
an = 3n + 1  in Figure 1), and theorem (in terms of a gen-
eral numerical statement; e.g., 1 + 3 + 5 + … + 2n − 1 = n2 in 
Figure 2). Institutionalisation of the knowledge in the 
case when algebraic generalisation aims at a formula 
(for an arbitrary pattern) is not institutionalisation 
of the formula per se. It is institutionalisation of how 
the formula can be derived through identification of 
an invariant structure in the elements of the pattern. 
Further, it is institutionalisation of how the invariant 
structure is interpreted into arithmetical relation-
ships and how these in turn are generalised algebra-

ically in terms of a formula. The cultural, reusable 
knowledge in this case is the nature of the relation-
ship between the algebraic expression and its referent 
(a generic element of the pattern). On the other hand, 
institutionalisation of the knowledge in the case when 
algebraic generalisation aims at a theorem (illustrated 
by a conjectural pattern) involves decontextualisation 
of the general numerical statement from the shape 
pattern on the basis of which it is developed. The cul-
tural, reusable knowledge in this case is a general re-
lationship between sequences of numbers (in Figure 
2, between odd and square numbers).  

In the following, I illustrate briefly a strategy for gen-
eralisation of an arbitrary pattern, where I focus on 
the connection between the iconic, the arithmetical, 
and the algebraic representation of the pattern. For 
a detailed epistemological analysis of shape pattern 
generalisation, see (Måsøval, 2011, Chapter 5). The 
target knowledge is the nature of the relationship 
between the sought generalisation (an algebraic ex-
pression) and its referent (a generic element of the 
pattern). A direct approach to generality is employed. 
The invariant structure of a shape pattern provides 
the possibility to decompose the elements into differ-
ent repetitive parts. Decomposition refers to diagram-
matic isolation (encircling, painting with different 
colours, or other techniques) of various parts of the el-
ements in order to visualise the invariant structure of 
the pattern. The point is to express the number of com-
ponents of each partition of an element as a function 
of the element’s position in the shape pattern. These 
arithmetical expressions are used to express the total 
number of components of the element. Generalisation 
of the sequence of arithmetical expressions will lead 
to a formula where letters are placeholders for po-
sitions. An example of the first three elements of a 
quadratic pattern is presented in Figure 3. 

Figure 4 presents a possible decomposition of this pat-
tern, with corresponding arithmetical expressions 

Figure 1: Example of the first three elements of an arbitrary pattern

Figure 2: Example of the first four elements of a conjectural pattern Figure 3: The first three elements of a shape pattern
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representing the number of components in the par-
titions of the first three elements.

The decomposition shown in Figure 4 corresponds to 
an interpretation which means that each element con-
sists of three components plus four times the square of 
the position of the element. The corresponding arith-
metical expressions suggest a generalisation in terms 
of the formula, f(n) = 4n2 + 3. An alternative decompo-
sition (discussed without illustration) involves filling 
in components at “empty places” to make each element 
into a square; this is compensated by subtraction in 
the arithmetical expression. In order to build a square, 
the n-th element would need to get an extra of 4n − 2 
components. The resulting formula would then be 
given by g(n) = (2n + 1)2 − (4n − 2). 

The example in Figure 3 conceptualised 
through Kieran’s (2004) framework
The process of interpreting and decomposing the 
pattern is a global/meta-level activity. It is a model-
ling process that involves studying and representing 
the quadratic relationship between the position and 
the corresponding member of the number sequence 
mapped from the pattern. Establishment of a formula 
(here, a function) is a generational activity, where the 
variable n is a placeholder for an element in the do-
main (natural numbers). The two different decompo-
sitions presented above result in different formulae, 
where transformational activity can be used to justify 
that they are equivalent. 

Justification of the new knowledge (the formula), 
which is a global/meta-level activity, can be done 
through decomposition of a generic example. This is 
done to illustrate references between the partitions 
of the generic element, on the one hand, and the math-
ematical symbols of the formula, on the other. 

EMPIRICAL STUDIES OF STUDENTS’ 
PATTERN GENERALISATION

Students’ difficulties in establishing 
algebraic rules from patterns and tables
Several studies have documented students’ difficul-
ties in establishing algebraic rules from patterns 
and tables. Stacey (1989) reports responses to linear 
generalising problems of 140 students aged between 
9 and 13. Generalisation of the given problems was 
of the type f(x) = ax + b with b ≠ 0. It turned out that 
mainly two ideas were used. Stacey refers to these 
as the difference method and the whole-object method. 
The difference method involves multiplying the com-
mon difference between members of a sequence by 
the rank of a member to calculate its numerical value. 
The whole-object method involves taking a multiple of 
the numerical value of a member of a sequence to cal-
culate the numerical value of a member with a higher 
rank; that is, implicitly assuming that f(mn) = mf(n). 
The two methods will be applicable only when the lin-
ear problems are direct proportionalities. Because the 
problems used in Stacey’s study were not of this type, 
the difference method and the whole-object method 
were invalid. The erroneous generalisations were 
not discovered by the students because they failed to 
check the validity of the rules they produced. 

Another finding from Stacey’s (1989) study was that 
students showed a tendency to focus on recurrence 
relations in one variable rather than on functional re-
lationships between two variables. The same conclu-
sion about students’ tendency to focus on recurrence 
relations was reached by MacGregor and Stacey (1995). 
They tested approximately 1200 students in Years 7 to 
10 in ten schools on recognising, using, and describ-
ing rules relating two variables; 14 students were 
interviewed. The results showed that the students 
had difficulties in perceiving functional relationships 
and expressing them in words and as equations. The 
students’ tendency to find recurrence relations in 
patterns and tables were in most cases counter-pro-
ductive to identification of a relationship between two 
variables. Hence, MacGregor and Stacey recommend 
teachers to use examples where it is not possible to 
find differences between consecutive members of a 
sequence.

Orton and Orton (1996) conducted a study in which 
1040 students from Years 6, 7 and 8 (ages 10 to 13) com-
pleted a written test on different pattern questions; 

f(1) = 4 ⋅ 12 + 3 f(2) = 4 ⋅ 22 + 3 f(3) = 4 ⋅ 32 + 3

Figure 4: A possible decomposition of elements of the pattern 

in Figure 3
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30 of the students were interviewed about their re-
sponses. Results from this study are consistent with 
findings from Stacey (1989) and MacGregor and Stacey 
(1995): students have a clear tendency to use differenc-
ing methods and identify a recursive pattern. 

Lannin, Barker and Townsend (2006) explored stu-
dents’ use of recursive and explicit relationships by 
examining the reasoning of 25 sixth-grade students, 
including a focus on four target students, as they 
approached three generalisation tasks while using 
computer spreadsheets as an instructional tool. Their 
results demonstrate students’ difficulty in moving 
from successful recursive formulae towards explicit 
formulae. One obstacle to students’ ability to connect 
recursive and explicit formulae was their limited un-
derstanding of connections between mathematical 
operations, such as addition and multiplication. 

Måsøval (2011) reports from a case study of six (two 
groups of three) student teachers’ collaborative 
engagement with four tasks on shape pattern gen-
eralisation (with some teacher involvement). Three 
categories of constraints to students’ generalisation 
processes emerged from a process of open coding 
of transcripts of video recordings, conceptualised 
through the theory of didactical situations (Brousseau, 
1997). The constraints are explained in terms of: 1) an 
inadequate adidactical milieu, in particular caused by 
unfavourable design of tasks (where the focus is on 
number of components rather than on the multiple 
structures inherent in the pattern); 2) complexity of 
transforming observations and conjectures repre-
sented in informal language into algebraic symbol-
ism (from action to formulation); and 3) complexity 
of justifying proposed generalisations (validation), in 
particular caused by students’ use of empirical rea-
soning instead of rigorous mathematical reasoning 
(Måsøval, 2011). 

The foregoing discussion of students’ difficulties in 
establishing algebraic rules from patterns and tables 
can be summarised in three points. First, there are 
difficulties caused by students’ use of invalid or un-
successful methods to identify explicit formulae (the 
difference method and differencing, and the whole-ob-
ject method). Second, there are difficulties caused by 
students’ tendency to focus on recurrence relations 
which are not easily transformed into explicit for-
mulae. Third, there is an institutional constraint 
caused by the use of stereotype tasks (focusing on 

“How many?”) and further, by the way pattern gener-
alisation is taught. 

Components of a successful pattern-
based approach to elementary algebra
Results from Redden’s (1996) study demonstrate a 
significant correlation between natural language de-
scriptions and symbolic notation used by students. On 
the basis of investigation of how 1435 children aged 10 
to 13 responded on requests to generalise shape pat-
terns, he found that natural language descriptions ex-
clusively in terms of functional relationships appear 
to lead to students’ successful use of algebraic nota-
tion. This finding points at the importance of relating 
the independent variable (the position of a member) 
to the dependent variable (the member itself ).  

Warren (2000) demonstrates significant correlation 
between students’ ability to reason visually (identify, 
analyse, and describe patterns) and successful alge-
braic generalisations from shape patterns and tables 
of values. Warren’s finding is based on responses on 
two written tests administered to 379 students (aged 
between 12 and 15 years); 16 of the students were inter-
viewed in groups of four. Warren, Cooper and Lamb 
(2006) examined the development of students’ func-
tional thinking during a teaching experiment that was 
conducted in two classrooms with a total of 45 Year 
4 students (average age nine and a half years). They 
found that tables with input values not increasing 
in equal steps assisted students to search for a rela-
tionship between two data sets instead of focusing on 
variation within one. Randomness of the input values 
encouraged students to think relationally instead of 
sequentially, a finding consistent with MacGregor and 
Stacey’s (1995) recommendation referred to above.

The results referred to above can be combined to 
provide a recommendation for students’ engagement 
with shape patterns: Students’ should be encouraged 
to express functional relationships in natural language, 
because this is important for the ability to use sym-
bolic notation. It is relevant here that students remain 
connected to the iconic representation and reason vi-
sually, which is a condition for successful algebraic 
generalisations. Further, visual reasoning can poten-
tially prevent students from senseless pattern spot-
ting in numerical sequences without connection to 
the original mathematical situation. The strategy pre-
sented above (exemplified by the pattern in Figure 3) 
for generalising a pattern algebraically is favoura-
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ble in that it has the recommended features: first, it 
involves analysis of geometrical configurations (de-
composition); and second, it involves identification of 
functional relationships between two sets (position 
and numerical value of element, respectively).

Several studies suggest that it is not generalisation 
tasks in themselves that are difficult; the problems 
that students encounter are rather due to the way 
tasks are designed and limitations of the teaching 
approaches employed (Moss & Beatty, 2006; Måsøval, 
2011, 2013; Noss, Healy, & Hoyles, 1997). Motivated by 
this, I designed an epistemological model – a situation 
(Brousseau, 1997) – that involves a problem that can 
be solved in an optimal manner by using the knowl-
edge aimed at. In the concluding section of the paper, I 
explain this epistemological model and its devolution 
to a class of twenty student teachers enrolled on a 
master programme for primary and lower secondary 
education. The data from the experiment are students’ 
notes and solutions in addition to my field notes.

AN EPISTEMOLOGICAL MODEL OF 
A PIECE OF KNOWLEDGE

Inspired by TDS, the theory of didactical situations 
(Brousseau, 1997), I created an epistemological model 
of the general numerical statement that “the sum of 
the first n odd numbers is equal to the n-th square 
number”. The choice of this piece of knowledge was 
motivated by Måsøval (2011) who reports from stu-
dents’ (less successful) engagement with this equiv-
alence statement through a traditional task, based on 
a shape pattern similar to the one in Figure 2. 

Devolution
I had cut out sets of twelve paper forms, consisting of 
from 1 to 25 unit squares (a selection of which is shown 
below). In the classroom I presented the context (be-
low), and gave each pair of students an envelope with 
a set of cut-outs. 

“The company TILEL (in class, represented by the en-
velopes) sells a special kind of tile formations that 
can be used to cover squares. The tile formations have 
shapes as Ls, and consist of an odd number of unit 
squares. There is also a degenerated L-form which 
consists of only one unit square. You and your partner 
are supposed to construct a quadratic area of tiles, 
using L-forms from TILEL. You decide on the size of 
a square, and the task is for your partner to go and 

get a selection of L-forms which precisely covers the 
chosen square. There is a restriction on the L-forms: 
they shall all be of different size.  

When your partner returns with the L-forms he/she 
has bought, the two of you shall arrange them into a 
square. If you lack some L-forms, or have anyone left 
over, your partner will have to go back to TILEL for 
supplements or returns. Each time this is necessary, 
a charge must be paid, so buying the right L-forms at 
once is important.” 

Some of the features of the milieu were, due to time 
constraints, hypothetical (e.g., purchase of tile for-
mations and the fee charged for supplements and 
returns). The adidactical situation might have been 
designed as a game, where the winner would be the 
group that solved the task with least costs, and/or had 
the best recipe, etc. Figure 5 shows the task given to 
the students for work in pairs, after the context was 
presented.

Features of the milieu derived 
from the knowledge at stake
The target knowledge in this case is the equivalence 
statement: “the sum of the first n odd numbers is 
equal to the n-th square number”, potentially repre-
sented by 1 + 3 + 5 + L + 2n − 1 = n2. A model of the target 
knowledge is created using a dissection of a square 
into L-forms consisting of consecutive odd numbers 

1.  One of you chooses the size of a square; 
the other one gets L-forms to cover it. 
Collaborate to arrange the L-forms into the 
chosen square. (ACTION) 

2.  On the basis of the work you have done, 
make a recipe for how to cover a square of 
random size with L-forms of different sizes, 
without having to go back for supplements 
or returns. Let another group try your reci-
pe and see if it works. (FORMULATION)

3.  Explain why your recipe will always work 
(for a random square). (VALIDATION)

Figure 5: The task given to the students for work in pairs
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of unit squares (1 is represented by one unit square, 
hence a degenerated L). A generic example is given in 
Figure 6, illustrating that 1 + 3 + 5 + 7 = 42. 

It is important that the L-forms given to the students 
are of different size; this is what guarantees that the 
square is made of a sum of consecutive odd numbers. 
The fee charged for not getting the correct L-forms 
is intended to motivate students’ (in the situation of 
action) to develop a model that relates odd numbers 
and square numbers. It is expected that the students 
(in the situation of formulation) express in natural 
language that it is necessary to add as many odd num-
bers (from 1 and upward) as the rank of the chosen 
square number. The situation of validation is intend-
ed to motivate reasoning based on the nature of the 
knowledge at stake, even if algebraic notation might 
not be used. For this to happen, it is necessary that 
the students have a technique (prior knowledge) for 
representing odd numbers in terms of 2 ⋅ 1 − 1, 2 ⋅ 2 − 1, 
2 ⋅ 3 − 1, and so on.

Due to limited space, I comment only on the validation 
phase (in whole class). Two approaches were used 
to justify the conjecture: One was a visual proof (cf. 
Figure 6), where students argued by a generic exam-
ple that the next square is reached by adding the next 
odd number (2(n + 1) − 1) to the current square. The oth-
er approach started with the statement in algebraic 
notation, 1 + 3 + 5 + L + 2n − 1 = n2; students showed that 
the sum on the left hand side is equal to n2 by using 
the Gaussian method (adding the first and last terms, 
then the second and last but one term, etc.). There 
was a discussion of implementation of the model in 
different grades in school.  

The adequacy of an epistemological model is based on 
the quality of the underlying epistemological analysis 
(EA). An EA should provide a rationale that would 
make the students’ engagement in the problem situ-
ation sensible. An EA is however “work in progress”; 

experiments feed back to, and might strengthen, the 
EA and hence the model based on it. A relevant direc-
tion for future research on pattern generalisation is 
therefore the design and study of implementation 
of epistemological models of pieces of algebraic 
knowledge – in order to improve the models. Due to 
its epistemological focus, TDS would be a favourable 
framework to use in this kind of research.   
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