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Using variation theory to design tasks to 
support students’ understanding of logarithms

AnnMarie H. O’Neil and Helen M. Doerr

Syracuse University, Syracuse, USA, ahoneil@syr.edu

In this paper, we discuss three implementations of a 
task in which students were asked to generate examples 
of logarithm expressions equal to a given value. We sit-
uate the design of the task in variation theory and in 
research on learner generated examples, which describe 
learning as developing students’ ways of seeing, particu-
larly in regards to the dimensions of variation and the 
range of permissible change. The analysis of the three 
implementations reveals students’ understanding of 
logarithms, as well as what is possible to learn given the 
task-as-implemented, or the enacted object of learning. 
We claim that using variation theory in task design can 
support students in developing important capabilities 
for reasoning about logarithms in powerful ways.

Keywords:  Logarithms, variation theory, learner generated 

examples.

While exponential functions have been emphasized 
as a key mathematical understanding in secondary 
school (Confrey & Smith, 1995), their inverses, loga-
rithmic functions, have received very little attention 
in the research literature. Besides the significance 
of logarithms for their relationship to exponential 
functions, the applications of logarithms to various 
phenomena, such as sound, earthquakes, and human 
growth (Wood, 2005), are important in their own right. 

According to the Common Core State Standards 
(National Governors Association Center for Best 
Practices & Council of Chief State School Officers, 2010), 
recently adopted in the United States, the emphasis 
on the algebra of logarithms in a typical Algebra II 
course, as well as subsequent courses in mathematics 
(e.g., precalculus), means that upwards of 2.5 million 
American students will be expected to engage with 
and develop an understanding of these ideas each 
year (National Center for Education Statistics, 2014; 
National Science Board, 2010). Despite this, there 

is a dearth of research literature involving student 
learning of logarithmic functions, in general, and the 
algebra of logarithms, in particular. Of the literature 
available, much of the focus is on suggested mathe-
matical and pedagogical approaches to logarithms 
with no empirical data related to students’ learning 
using these approaches. Weber (2002) concluded that 
many students do not have a process understanding 
of exponentiation and logarithms and suggested nu-
merical approaches to encourage the development of 
these understandings, but not for logarithms directly. 
Wood (2005) suggested verbal explanations from stu-
dents about the meaning of logarithmic expressions 
such as  in order to build an understanding of this 
expression as a numerical value. Confrey and Smith 
(1995) and Panagiotou (2011) both suggest drawing on 
the historical development of logarithms as a basis for 
teaching about logarithms. Confrey and Smith fur-
ther claim that building the isomorphism between the 
counting, or additive, world and the splitting, or mul-
tiplicative, world is building the rules of logarithms. 
The purpose of this study is to address this research 
gap by exploring a task design that develops students’ 
understanding of logarithms. In the recent ICMI 22 
Study, Margolinas (2013) indicated the importance of 
tasks for generating mathematical activity that afford 
students the opportunity to encounter concepts and 
strategies. This study focuses on three iterations of a 
task designed to elicit students’ current understand-
ing of logarithms, as well as lead them to generaliza-
tions related to the properties of logarithms. 

The task design and analysis is situated within both 
variation theory, developed by Marton and colleagues 
(Marton, Runesson, & Tsui, 2004), and research relat-
ed to learner generated examples, LGEs, (e.g. Watson 
& Mason, 2005). Variation theory is most concerned 
with the object of learning, comprised of three as-
pects: (1) the intended, (2) the enacted, and (3) the lived 
(Marton et al., 2004). The intended object of learning 
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is what the teacher intends the students to learn at 
the outset or in the planning of a lesson. The enacted 
object of learning is what was actually made possible 
for students to learn in the implementation of a les-
son. The lived object of learning is what the students 
actually did learn at the completion of the lesson, 
and beyond. Marton and colleagues (2004) defines 
learning as the development of capabilities, where 
a capability is described as seeing, experiencing, or 
understanding something in a certain way. In order to 
develop a particular capability (way of seeing, experi-
encing, or understanding), one must simultaneously 
focus on the critical features of the particular object 
of learning. A variation theory perspective claims 
that we can only focus on that which we discern; we 
can only discern what we experience to vary; we can 
only experience variation if we have experienced dif-
ferent instances previously and can juxtapose our 
previous experiences with our current experience 
simultaneously. 

Marton and colleagues (2004) contend that we can 
only learn that which we experience to vary. In or-
der to ascertain the enacted object of learning, it is 
necessary to be concerned with what varies and what 
remains invariant in a learning situation. Marton et 
al. describe what varies and what remains invariant 
as a pattern of variation and identify four of these: (1) 
contrast, (2) generalization, (3) separation, and (4) fu-
sion. The first pattern of variation, contrast, refers to 
the comparison between what something is and what 
it is not. For example, in the context of logarithms, 
log 100 = 2 can be contrasted with log2 8 = 3 in order 
to discern which aspects of a logarithm statement 
can vary. In order to understand what it means for 
a logarithm to have base ten, students need to expe-
rience logarithms that are not base ten. The second 
pattern of variation is generalization, which refers to 
experiencing the varying appearances of an object of 
learning in order to separate it from irrelevant fea-
tures. For instance, seeing log2 8, log 1000, log3 27, and 
ln e3 as equivalent log expressions that all equal three, 
can help students to generalize what it means for a 
logarithm to be equal to three. The base of the loga-
rithm is an irrelevant aspect here; but the power of 
the input in terms of the base is significant. The third 
pattern of variation, separation, involves varying a 
particular aspect of an object of learning while hold-
ing the other aspects invariant. This draws attention 
to the particular aspect that is allowed to change. The 
example above held the value of the logarithm invar-

iant while changing the base, which then determined 
the input. Marton et al. contend that systematically 
varying certain aspects, while keeping other aspects 
invariant, can prepare students for various other sit-
uations related to the capability in question. Fusion, 
the last pattern of variation, is the experiencing of 
all of the critical aspects simultaneously. Through 
fusion, learners develop the ability to make gener-
alizations that link the critical aspects of an object of 
learning (Holmqvist, 2011). For instance, discerning 
the relationship between the base of a logarithm and 
the input, in order to hold the value of the logarithm 
invariant, is a result of fusion and experiencing si-
multaneous changes in both the base and the input 
of the logarithm.

Drawing on Marton’s work, Watson and Mason (2005) 
suggest that LGEs are an appropriate way to introduce 
new concepts in mathematics. The use of LGEs, howev-
er, may appear to be in conflict with variation theory, 
as the task designer/instructor concedes control of 
the presentation of specific examples to the students. 
Variation theory, however, does not suggest particular 
ways of arranging for learning, only that variation 
must be present for discernment. Rather, Marton 
and colleagues (2004) claim that the particular way 
of arranging for learning is dependent upon the thing 
to be learned, and research can be undertaken to de-
termine the most conducive arrangement for student 
learning of that particular thing. In this sense, then, 
there is no tension between variation theory and the 
use of LGEs, as LGEs, when used in conjunction with 
collaboration, can create the variation in features 
necessary for discernment.

Watson and Shipman (2008) found that the use of 
LGEs, in a supportive classroom atmosphere, can suc-
cessfully introduce new concepts for both advanced 
and low-achieving learners. Watson and Shipman 
suggest that while the discernment of critical fea-
tures of a concept (Marton’s dimensions of variation) 
through a set of examples may reveal the structure of 
the concept, learning through exemplification occurs 
through discerning the generalization of relation-
ships across the dimensions of variation. Drawing on 
this work, the task used in this study was developed 
with the intended object of learning as generaliza-
tions related to the properties of logarithms, such as 
logb (xy) = logb x + logb y, logb ( xy ) = logb x − logb y, and 
logb xn = n⋅logb x, as well logb bx = x, which proceeds from 
the equivalence relationship between logarithmic and 
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exponential statements: logb a = x ↔ bx = a. As will be 
discussed in the analysis below, over the course of 
the three implementations of this task, the intended 
object of learning was shifted based on the insights 
gained in the first two implementations of the task.

METHODOLOGY

A task that involved learner-generation of examples 
of logarithm statements was enacted by the first au-
thor as the teacher/researcher with three groups of 
students: two sections of pre-freshman engineering 
students enrolled in a summer mathematics course, 
one of which was composed of students who had pre-
viously studied calculus (n=13) and the other of which 
was composed of students who had previously studied 
precalculus (n=12), and a small problem-solving ses-
sion comprised of two pre-freshman students who 
were recruited from a summer precalculus course. 
The task was enacted with groups of students of var-
ying achievement levels in order to expand on the 
teacher/researcher’s understanding of the variation 
in students’ reasoning about logarithms as revealed 
by the task. The first enactment was with the group 
of engineering students who had previously studied 
calculus; the second enactment was in a problem-solv-
ing session with two pre-calculus students; the third 
enactment was with the group of engineering stu-
dents who had previously studied precalculus. Each 
enactment of the task was carried out by the teacher/
researcher, and each of the enactments was video-re-
corded. Students’ written work was also collected.

By the time students encounter logarithms in a typical 
precalculus course in the United States, students have 
already been introduced to logarithmic functions, the 
properties of logarithms, and have used logarithms 
to solve exponential equations (in a typical Algebra II 
course). Hence, logarithms were not a new concept for 
these students, but rather a concept that many of the 
students still struggled with in terms of recalling, ap-
plying, and reasoning with and about the properties 
of logarithms. Prior research also suggests that stu-
dents tend to struggle with the relationship between 
logarithms and exponents, as well as the properties 
of logarithms (Weber, 2002; Wood, 2005). This study, 
then, expands on previous work related to the use of 
LGEs to introduce new concepts (Watson & Shipman, 
2008) by using LGEs to deepen students’ understand-
ing of and reasoning about a previously introduced 

concept. This research study addressed the following 
questions:

1) What does the task, as implemented, reveal about 
students’ understanding of logarithms?

2) What is the enacted object of learning, or what is 
possible to learn, given the task-as-implemented?

Task design and data analysis
As the task itself cannot be separated from its enact-
ment, the way in which the task was implemented in 
each iteration varied. The variation in the task-as-im-
plemented was influenced by the teacher/research-
er’s insights garnered from the previous implemen-
tation(s), as well as the particular space of variation 
opened in that implementation. Despite the differenc-
es in the implementation of the task among the three 
groups of students, commonalities between the spaces 
of variation opened in each of the implementations 
revealed much about students’ understanding of log-
arithms and served to focus the teacher/researcher’s 
intended object of learning for later implementations, 
as well as to refine the task.

The basic structure of the task in all three implemen-
tations involved (1) individual student generated ex-
amples, (2) group assessment and group generation 
of examples, (3) collective class organization/cate-
gorization of the student generated examples, and 
(4) generalization. In each iteration of the task, the 
teacher asked the students to write a log expression 
that was equal to three. Then the students were asked 
to write another. The student generation of examples 
was meant to draw on students’ prior knowledge of 
logarithms and elicit students’ understanding of 
logarithms, in general, and the value of a logarithm, 
in particular. The students were then arranged into 
groups of two to four students to share what they 
wrote with each other. The teacher distributed a set 
of index cards to each group, asking them to write a 
different log expression that equalled three on each 
card. This potentially required that the group gener-
ate additional examples as their original examples 
may have been duplicative. As groups of students fin-
ished writing their examples on the cards, the teach-
er asked them to tape their cards on the board. The 
teacher then gathered the students around the cards 
on the board and asked them to collectively categorize 
the cards. The collective student sorting of the log 
statements allowed the teacher to gain insight into 
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what critical features of logarithms the students were 
attending to, as well as the structure of logarithms, as 
perceived collectively by the students. A discussion 
of the students’ categories followed, along with addi-
tional student generation of examples of logarithm 
expressions equal to two and five, and finally, student 
generalizations.

Each of the three implementations were analysed us-
ing the framework of variation theory in an attempt 
to understand the intended object of learning and the 
enacted object of learning (or the space of variation). 
While this framework served to answer the second 
research question most directly, the analysis also 
addressed what was revealed about students’ under-
standing of logarithms. The variation in the student 
generated examples, as well as what was revealed 
about students’ prior understanding of logarithms, 
served to answer the first research question.

RESULTS

This section describes the insights garnered by the 
teacher/researcher primarily during the first two im-
plementations of the task and the refinement of the 
task through the third implementation. The intended 
object of learning shifted from the properties of loga-
rithms to the equivalence relationship between loga-
rithms and exponents and the generalization logbbx = x 
to generate additional examples, equal to any given 
number, x. In all three implementations of the task, 
the categorization of the LGEs, largely by the base, 
showed that the base of the logarithm and the input of 
the logarithm, were brought to the fore as aspects of a 
logarithm that were possible to change, and the range 
of permissible change for each of these aspects was 
explored, to some extent. While all students were able 
to generalize the process of writing a log statement 
equal to a given number, higher achieving students 
were more readily able to recognize a generalization 
comprised of a single statement, such as logbbx = x. 
Extending the task to include combinations of log-
arithm expressions may create an opportunity for 
students to verify the properties of logarithms and 
explore the relationship between the properties of 
logarithms and the properties of exponents.

The intended object of learning 
The intended object of learning in the first im-
plementation of this task was the generalizations 
related to the properties of logarithms, such as 

logb (xy) = logb x + logb y,  logb ( xy ) = logb x − logb y, and 
logb xn = n⋅logb x, as well as the equivalence relation: 
logb a = x ↔ bx = a. We had anticipated LGEs of the form 
log2 8 = 3, but had also anticipated that some students 
would extend their thinking to include an example 
such as log10 10 + log10 100 = 3. Goldenberg and Mason 
(2008) discuss how example generation is not just a 
memory lookup, but rather found that students of-
ten start with some known example(s) and through 
combinatorial approaches can construct new exam-
ples. As students began generating examples in the 
first part of the task, the teacher/researcher quickly 
realized that while the combinatorial approach was 
not appearing, other examples that had not been an-
ticipated were being generated by the students, such 
as examples with fractional bases.

In the second implementation the generalization 
logb bx = x was the intended object of learning, with 
b and x as the dimensions of variation. We were also 
interested in how to extend the task in such a way 
that allowed students to gain access to examples that 
included a combinatorial approach, as they did not 
appear in either the first implementation, or in the 
first portion of this problem solving session. The stu-
dents were asked to use the logarithm statements that 
they had already generated and combine them in some 
ways (using addition, subtraction, multiplication, or 
division) to generate other logarithm statements 
equal to three. While this allowed students to recall 
and verify the properties of logarithms that they had 
previously learned, students could not discern why 
these properties were valid and they were unclear 
about the relationship between the properties of log-
arithms and the properties of exponents.  

The third implementation of the task was a refined 
version, based upon our insights from the first two 
implementations of the task. In this implementation, 
the intended object of learning focused on the equiva-
lence relationship between logarithmic and exponen-
tial statements: logb a = x ↔ bx = a, as well as the general 
logarithm statement logb bx = x for generating loga-
rithm statements equal to a given value, x. Students 
were not asked to combine logarithm expressions to 
generate new statements equal to a given value in 
this task. Rather, the combination of logarithms was 
separated into a distinct, but linked task, for the sake 
of time and depth.
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Categorization of LGEs
After students shared their generated examples in a 
small group and on the board, the whole class catego-
rized the examples they had generated. The first class 
separated the examples into four categories, deter-
mined largely by the base of the logarithm: (1) whole 
number, (2) base 10, (3) fractional bases, (4) special, 
and (5) wrong. The students in the third implementa-
tion were not able to use graphing calculators (that can 
calculate logarithm expressions with various bases), 
but rather used simple four-function calculators to 
calculate a larger power of a number. As suspected, 
perhaps due to the change in the type of calculator 
available for a tool, fractional bases for the logarithm 
expressions did not appear in the third implementa-
tion of the task. In the first portion of the second im-
plementation, the students still organized their exam-
ples according to the base, first separating them into 
even and odd categories, then deciding to list them 
out from statements with base two up to statements 
with base ten. In the second part of the session, the 
students were asked to generate combinations of log-
arithm expressions equal to three and reorganize the 
examples, in consideration of the additional examples. 
The students chose, then, to categorize the LGEs by 
operation. The students in the third implementation 
also categorized the LGEs according to the base of the 
statement, however, they included four subdivisions 
or “branches”: (1) Odd, (2) Even, (3) Base 10, and (4) 
Fractional, under the “big tree” of the equivalence 
relationship logb a = x ↔ bx = a. This is similar to the stu-
dents in the first implementation who also explained 
how all of their correct examples “followed the same 
rule,” after they had determined a generalization for 
logarithms with whole number bases. The students 
in the third implementation also included a “wrong” 
category, a “natural log” category, which were actually 
exponential statements that included natural log in 
the exponent (e.g. eln 3 = 3), and a “unique” category, 
which included only the statement log3 ( 72927 ) = 3. 

In all three implementations of the task, the students’ 
categorization of the LGEs showed that the base of 
the logarithm, as well as the input of the logarithm, 
was brought to the fore as aspects of a logarithm 
that were possible to change. The combinatorial ap-
proach did not spontaneously appear. In terms of 
revealing student understanding, however, Watson 
and Goldenberg (2008), point out that, “the fact that 
[students] don’t display an example does not imply 
that it is not within their accessible [example] space, 

just that they have not perceived a reason to express 
it” (p. 189). As such, it appears that the task as enacted 
did not cue or trigger students to think of examples 
using the combinatorial approach. The enacted object 
of learning, in the first and third implementation, as 
well as the first portion of the second implementation, 
was restricted to the generalization logb a = x ↔ bx = a, 
the equivalence relationship between logarithm and 
exponential statements, and the generalization 
logb bx = x, which expresses the structure of the cor-
rect logarithm statements.

Range of permissible change
The LGEs served to reveal students’ understanding 
of the range of permissible change, particularly in the 
base of the logarithm statement. As mentioned above, 
the combination of logarithm statements did not arise 
spontaneously, indicating that students did not, in 
that instance, recognize combinations of statements 
as within the range of permissible change for the struc-
ture of a logarithm expression equal to three. Without 
this range of LGEs, students tended to categorize the 
examples of logarithm statements according to the 
value of the base, despite the common structural form. 
Their choice to separate logarithm statements with 
a whole number base from those with base ten was 
perhaps indicative of their greater familiarity with 
base ten, or their understanding of the common log as 
somehow more important than logs in other bases. We 
did not anticipate the use of fractional bases students’ 
generated examples; this may have been related to 
students’ graphing calculator usage while generating 
their examples, particularly since this did not occur 
in the subsequent implementations when students 
were restricted to four function calculators. Students’ 
choice of separating base e and base π logarithm 
statements as “special” could perhaps be indicative 
of students’ sense of e and π as symbols that represent 
something other than a specific number. Students’ rec-
ognition, however, of log1 1 = 3, log0 0 = 3, and log−1 −1 = 3 
as “wrong” logarithm statements served to restrict 
the range of permissible change. Student attempts at 
both justifying these statements and explaining why 
these logarithm statements were incorrect created 
an opportunity to deepen students’ understanding 
of both exponents and logarithms.

Only a single example began to directly confront the 
range of permissible change for the input of the log-
arithm. The students seemed to recognize that the 
input of the logarithm would change, dependent on 
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the base of the logarithm, but failed to see the range 
of possibilities in writing the input. In the third im-
plementation, the example  log3 ( 72927 ) = 3 was placed 
in the “unique” category. The statement log3 ( 72927 ) = 3 
is equivalent to the statement log3 27 = 3. Therefore, 
it has the same structure as the other LGEs, but the 
students did not recognize it as such. This indicates 
that students could use more exposure to varia-
tion in the input of the logarithm. This was also 
the only instance when combinations of logarithm 
statements arose spontaneously. Two students in 
the third implementation insisted that the way that 
you would deal with this statement is to rewrite it as 
log3 729 − log3 27 = 6 − 3 = 3. Thus, students recalled the 
logarithm property logb ( xy ) = logb x − logb y, and applied 
it, but this appeared to overshadow a more flexible 
and efficient means of simplifying the statement to 
show its equivalence to three. 

Generalizations
In the last part of the task, the teacher/researcher 
asked the students to write a logarithm statement that 
was equal to any number. Some students generated 
two separate statements that was often a restatement 
of the equivalence relation: logb a = x ↔ bx = a. Others 
were able to succinctly describe the generalization 
as logb bx = x. Being able to symbolically write down a 
generalization did not indicate that students would 
be successful at verbalizing the generalization. For 
instance, Evette, in the third class, wrote the symbolic 
statement logb a = x ↔ bx = a, and the verbal statement: 

“That ‘any number’ that you want it to equal, must be 
raised to the base value.” While Evette correctly wrote 
the symbolic statement, she incorrectly stated that the 
exponent would be the base value. It is also ambiguous 
what she is referring to with the use of “it”. This is per-
haps related to a lack of opportunities to explain and 
communicate verbally in the mathematics classroom.

Lower achieving students had more difficulty than 
higher achieving students in discerning a generaliza-
tion comprised of a single statement, such as logb bx = x. 
This is perhaps related to an underdeveloped sense 
of variable and equality, and the failure to recognize 
the substitution of equivalent expressions. This could 
also be related to a preference of seeing each “part” of 
the logarithm statement (the base, the input, and the 
output) as distinct and a failure to fuse these critical 
aspects together.

Combinations of logarithm expressions
The expansion of the example space to include com-
binations of logarithm expressions in the second im-
plementation served to broaden the space of variation 
when compared to the first and third implementations. 
Through opening up the variation of the statement 
to include combinations of logarithm expressions, it 
becomes possible to discern both how the logarithm 
expressions can be combined and the ways in which 
the dimensions of variation are related within a given 
statement. Watson (2000) described these two ways 
of seeing pattern as ‘going with the grain,’ indicating 
a recursive continuation of pattern to generate more 
instances that may not indicate structure (in this case, 
how the logarithm can be combined), and ‘going across 
the grain’, a metaphor that indicates the revelation of 
the internal structure itself (here, the relationship be-
tween the dimensions of variation). Thus, this opening 
of the space of variation has the potential to provide 
students with the opportunity to “see” the relation-
ship between logarithms and exponents in ways that 
they had, perhaps, not experienced before. One of the 
students wrote about what he had learned during the 
problem solving session:

The exponents in exponential equations are used 
as the values for logarithmic functions. For ex-
ample:

52 + 51 = 53

log5 (25) + log5 (5) = 3

2 + 1 = 3

While the exponential statement is erroneous, this 
student is beginning to discern variation ‘across the 
grain’, and we would argue, is on his way to develop-
ing a certain way of seeing logarithms, and hence de-
veloping important capabilities for reasoning about 
logarithms in powerful ways.

CONCLUSION

Based on the three iterations of this task, using LGEs 
with students who have had previous exposure to a 
concept can serve to reveal students’ understanding 
of the dimensions of variation of a concept, as well as 
the range of permissible change in those aspects. The 
use of LGEs, in this particular task, revealed students’ 
understanding of the range of permissible change in 
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the base of the logarithm and led to opportunities 
to connect exponential and logarithmic functions. 
Holding the value of the logarithm statement invari-
ant (for a time) created an opportunity for students to 
explore what happens when a single aspect, namely – 
the base of the logarithm, is varied. 

While this task draws students’ attention to the rela-
tionship among the dimensions of variation in a log-
arithm statement, as well as the range of permissible 
change of those dimensions, further consideration of 
how tasks can be designed to generate and develop 
an understanding of the relationship between com-
binatorial properties of exponents and logarithms is 
needed to more fully develop students’ facility with 
logarithms. 
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