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In a previous paper, we proposed a characterization of 
algebraic reasoning in primary education, based on the 
onto-semiotic approach to mathematical knowledge 
and instruction, where we distinguish three levels of 
algebraization. In defining these levels we took into ac-
count the types of representations used, the generaliza-
tion processes involved and the analytical calculation 
performed in mathematical activity. In this paper, we 
extend this previous model by including three more 
advanced levels of algebraic reasoning in order to ana-
lyze the mathematical activity carried out in secondary 
education. These new levels are based on the following 
considerations: 1) using and processing parameters to 
represent families of equations and functions; 2) the 
study of algebraic structures themselves, their defini-
tions and properties.

Key words: Algebraic reasoning, primary education, 

secondary education, onto-semiotic approach, teachers’ 

education.

INTRODUCTION

Recognizing the characteristic features of algebraic 
thinking is an issue that has attracted many mathemat-
ics education researchers, because it is necessary to 
promote such reasoning at different levels of elemen-
tary and secondary education (Kieran, 2007; Filloy, 
Rojano, & Puig, 2008; Kaput, 2008). Depending on how 
the school algebra is conceived, decisions are taken 
concerning whether to introduce such algebra since 
early levels, or to delay its teaching until secondary ed-
ucation as well as to change the corresponding instruc-
tional strategies. In fact, the “early algebra” research 
and development program (Carraher & Schliemann, 

2007; Cai & Knuth, 2011) is supported on a conception 
of algebra that recognizes signs of algebraic thinking 
in mathematical activities of initial educational lev-
els, as shown in NCTM (2000). While there has been 
progress in the characterization of school algebra, the 
interconnection between primary and secondary ed-
ucation algebra is not completely solved.  

In previous publications (Aké, Godino, Gonzato, & 
Wilhelmi, 2013; Godino, Aké, Gonzato, & Wilhelmi, 
2014) we proposed a model of algebraic thinking for 
primary education, with three different levels of alge-
braic thinking. Furthermore, we established criteria 
to delimit these algebraic levels from 0 (arithmetic 
nature of mathematical activity) to 3 (clear algebraic 
activity), with two intermediate levels of proto-alge-
braic activity.  The criteria to define these levels were 
based on the type of mathematical objects and pro-
cesses involved in mathematical activity, according 
to the onto-semiotic approach (OSA) to mathematical 
knowledge (Godino, Batanero, & Font, 2007; Godino, 
Font, Wilhelmi, & Lurduy, 2011)1. These algebraization 
levels are assigned to the operative and discursive 
practices performed by a mathematical subject that 
solves a mathematical task, rather than to the task 
itself, which can be solved in different ways, and may 
bring into play different algebraic activity.

1	  The Onto-Semiotic Approach of mathematical knowledge 

and instruction (OSA) is a theoretical framework that adopts 

semiotic and anthropological assumptions about mathemat-

ics, and socio-constructivist and interactionist principles for 

the study of teaching and learning processes. Due to space 

limitation, it is not possible to include a synthesis of the main 

theoretical tools that compose this framework; the readers 

might consult Godino and colleagues (2007) and Godino and 

colleagues (2011).
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In this paper, we extend that model of algebraization 
levels to secondary school, mathematical activity. 
This extension is also supported by the onto-semi-
otic distinctions considered in the OSA; particularly 
by the presence, use and processing of functions and 
equations parameters. The work is organized in four 
sections. In the following section we summarize the 
features of algebraic reasoning levels in elementary 
education; next, we define three new levels of alge-
braization, include some illustrative examples and 
connect the new levels to the presence of discontinu-
ities in the onto-semiotic configurations involved in 
mathematical practices.

LEVELS OF ALGEBRAIC REASONING 
IN PRIMARY EDUCATION

In Table 1 we summarize the essential features of the 
three preliminary algebraization levels described by 
Godino, Aké, Gonzato and Wilhelmi (2014), complet-
ed by level 0 (absence of algebraic characteristics). An 
example is also included to help understanding the dis-
tinction among levels. In summary, the definition of lev-
els is based on the following onto-semiotic distinctions:

―― Presence of intensive algebraic objects (i.e., enti-
ties of general or indeterminate character).

―― Transformations (operations) based on structur-
al properties applied to these objects.

―― Type of used language (natural, iconic, gestural, 
symbolic).

Obviously, these levels do not exhaust the algebraiza-
tion processes of school mathematical activity. Instead, 
they describe the gradual enrichment of solving prob-
lems tools with an increasing degree of symbolization 
in other contexts of use. These processes, in the end 
of primary school and junior secondary school, may 
evolve to higher algebraization levels. The criteria 
used to distinguish the different algebraic levels have 
been gradually refined through its application to the 
analysis of responses from different samples of stu-
dent teachers (Aké et al., 2013; Godino et al., 2014).

LEVELS OF ALGEBRAIC REASONING 
IN SECONDARY EDUCATION

In this section, we extend the model of algebraization 
levels to secondary and high school mathematical ac-

tivity, in describing three additional algebraization 
levels for this educational stage.

The use and treatment of parameters is a criterion 
for defining higher levels of algebraization, as it is 
linked to the presence of equations and functions 
families, and, therefore it implies new “layers” or 
levels of generality (Radford, 2011). The intervention 
of parameters will be linked to the fourth and fifth 
algebraization levels, while the study of specific al-
gebraic structures will mark a sixth algebraization 
level of mathematical activity.

Fourth algebraization level: using parameters 
The use of parameter for expressing equations and 
function families is indicative of a higher level of 
algebraic reasoning, as compared to the third alge-
braization level considered by Aké and colleagues 
(2013), which is linked to operations with unknowns 
or variables. This “first encounter” with parameters 
and variable coefficients involves the discrimination 
of the domain and range of parametric functions, i.e. 
functions that assigns a specific function or equation 
to each value of the parameter. As suggested by Ely 
and Adams (2012, p. 22) “A significant conceptual shift 
must occur in order for students to be comfortable 
using placeholders in algebraic expressions rather 
than just numbers”.

Example 1: The linear function
In the algebraic expression, y = 2x, the literal symbols 
x and y represent variables, symbols that can take any 
value from a previously established number set, usu-
ally R. The numerical values x and y ​​co-vary in terms 
of each other, according to the rule laid down in the 
corresponding expression; in this case, y is twice the 
value assigned to x. The factor multiplying x can be 
generalized to any value in a certain domain; as we see 
in the expression y = ax. Here the letter a intervenes 
as a parameter: it can take different values ​​within a 
certain domain, so that for each possible value a, we 
obtain a particular function. For example, for a = 2, 
we have y = 2x. 

Consequently, a parameter is a literal symbol involved 
in an expression with other variables, such that for 
each particular value assigned to it, a function is 
obtained.  We express such families of functions as 
F = {f(x) = ax/aR}, or more precisely, a family of func-
tions that depend on the domain D of definition of the 
functions f: FD = {f(x) = ax | aR; xD}.
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The symbols x and y (f(x)) are variables indicative of a 
first level of generality; their definition domains and 
range are the numeric sets in which they are defined. 
The symbol a is also a variable; however a second level 
of generality is involved, since its  definition domain 
could either be (D) as before or just another number 
set, and the range of values ​​is the family of functions 
FD.

Example 2: Quadratic equation
Parameters are used not only to express and operate 
with function families, but also with equation families 
(Ely & Adams, 2012). For example, ax2 + bx + c = 0 (a ≠ 0) 
is the general expression for the quadratic equations 
family. There is only one unknown, x. The letters a, 
b, c, usually considered as variable coefficients, take 

Task: Students either go by car or they walk to a certain school. There are 3 students walking for every 3 student go-
ing by car. If the school has 212 students, how many of them use each means of transportation?

LEVELS OBJECTS TRANSFORMATIONS LANGUAGES

0 No intensive objects 
are involved.
In structural tasks 
unknown data can be 
used. 

Operations are carried out with extensive 
objects.

Natural, numerical, iconic, ges-
tural; symbols referring exten-
sive objects or unknown data can 
take part. 

Example of resolution: 
For every 3 students who walk, there is 1 going by car. Hence, in every group of 4 students (3 + 1) there is 1 
going by car (a fourth of students). Thus, 50 out of 200 students go by car and 3 out of 12 students use the 
car. Therefore, 53 students use the car and three times that amount, that is, 159, walk to the school.

1 In structural tasks 
unknown data can be 
used.  
In functional tasks 
intensive objects are 
recognized. 

In structural tasks relations and properties 
of operations are applied. 
In functional tasks calculation involve exten-
sive objects.

Natural, numerical, iconic, ges-
tural; symbols referring to inten-
sive recognized can be used.

Example of resolution:
For every 4 students there are 3 which walk. We write out the following proportion: 
                            4 (children) ------> 3 walk 
                       212 (children) ------> x walk 

4
3  = 212

x ; x = 3 × 212
4 ; x = 159

Once we obtain the number of children who walk to the school, the number of students going by car is eas-
ily obtained, 212 – 159 = 53.

2 Indeterminate or vari-
ables are involved.

In structural tasks equations are of the form 
Ax ± B = C.  
In functional tasks generality is recognized 
but operations with variables are not carried 
out to get canonical forms of expressions. 

Symbolic – literal, used to re-
fer the intensive recognized, 
although linked to the spatial, 
temporal and contextual infor-
mation.

Example of resolution: 
212 = x + 3x

212 = 4x;    x = 212 / 4;    x = 53
53 children go by car and 212 − 53 = 159 walk.

3 Indeterminate or vari-
ables intervene.

In structural tasks equations are of the form 
Ax ± B =Cx ± D.  
Operations with indeterminate or variables 
are carried out.

Symbolic – literal; symbols are 
used analytically, without refer-
ring to contextual information. 

Resolution example:
x = Children going by car
y = Children walking 
                              x + y = 212                      x + 3x = 212; 
                                    y = 3x            4x = 212; x = 212/4 = 53

Table 1: Characteristic features of elementary algebraic reasoning levels
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specific values ​​within a set of possible values ​​(real 
numbers and a ≠ 0) to produce a particular equation. 

Therefore, a parameter is a variable that is used with 
two or more other variables to specify a family of 
functions or equations. For families of equations the 
parameter is commonly named coefficient. In some 
way, the parameter plays the role of independent var-
iable in a function whose domain is the set in which 
the parameter takes its values ​​and whose rank is a 
set of functions. For each value assigned to the pa-
rameter a function image is obtained. Therefore, the 
expression y = ax2+bx+c, is not a function but a family 
of functions, though it is usually referred to as “the 
quadratic function.” It is an expression in which three 
parameters indicated by the letters a, b, c are involved. 
Giving a particular value to each of the parameters a 
specific quadratic function is obtained.

Fifth level of algebraization: 
treatment of parameters
We can assign a higher level of algebraization to 
mathematical activity displayed, when analytical (syn-
tactic) calculations are carried out involving one or 
more parameters. Operations with parameter involve 
a higher semiotic complexity level, since the objects 
emerging from these systems of practices are built 
on algebraic objects of the previous level (equations 
or functions families).

Example 3: Obtaining the general formula for quadratic 
equations
To obtain the general formula for quadratic equations 
we perform symbolic manipulation and use succes-
sive equivalences. Assuming the director coefficient 
a is not 0 (a ≠ 0) – otherwise the equation would not 
be quadratic – we have:

ax2 + bx + c = 0 ⇔ x2 + bax + ba  = 0 ⇔ x2+ bax = − c
a  ⇔

x2 + bax + b2
4a2  = − c

a  + b2
4a2  ⇔ x2 + bax + b2

4a2  = −4ac4a2  + b2
4a2  ⇔ 

(x + b2a)2 = b2 − 4ac
4a2  ⇔ x + b2a  = ± √ b2 − 4ac

4a2  ⇔ x = − b
2a  ± √b2 − 4ac

2a  ⇔

x = −b ± √b2 − 4ac
2a  

Thus, in this case the solution is written in terms of 
the parameters linked by rational operations (addi-
tion, subtraction, multiplication, division) and square 
roots.

Example 4: Geometric progressions 
We define the general term of a geometric progression 
(Figure 1) by discursive practices in which two param-
eters, a1 (first term of the sequence) and r (progression 
ratio) are involved. The sequence is a function with 
domain N and range R; therefore the parameters a1 
and r define a family of functions (sequences), and con-
sequently this discursive practice uses an algebrai-
zation level 4. The description and proof of the  sum 
of the first n terms of a geometric progression (r ≠ 0) 
involves a computation with parameters, as shown in 
Figure 1; therefore it implies the algebraization level 5.

Sixth level of algebraization
The introduction of certain algebraic structures 
(such as vector spaces, or groups) and the study of 
functional algebra (addition, subtraction, division, 
multiplication, and composition) start at high school. 
These practices bring into play higher level algebraic 
objects and processes according to its onto-semiotic 
complexity than those considered at level five. It may 
be useful, therefore, to characterize a sixth algebraiza-
tion level to focus our attention on the specific nature 
of the mathematical activity involved. High school 

36.8 Finite Geometric Series
When we sum a known number of terms in a geo-
metric sequence, we get a finite geometric series. We 
know that we can write out each term of a geometric 
sequence in the general form:
an = a1 ⋅ rn-1 
where
• n is the index of the sequence;
• an is the nth-term of the sequence;
• a1 is the first term;
• r is the common ratio (the ratio of any term to the 
previous term).

By simply adding together the first n terms, we are actu-
ally writing out the series
Sn = a1 + a1 r + a1 r

2 + . . . + a1 r
n-2 + a1 r

n−1 
We may multiply the above equation by r on both sides, 
giving us
rSn = a1r + a1r

2 + a1r
3 + . . . + a1r

n−1 + a1r
n

....
Dividing by (r − 1) on both sides, we arrive at the general 
form of a geometric series:

Figure 1: Finite geometric series (Free High School Science Texts, Mathematics Grades 10 – 12, p. 469, 2008)
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books include texts and activities corresponding to 
this sixth algebraization level:

Example 5: Vector space
Figure 2 shows a general formulation for the vector 
space algebraic structure. In this first encounter with 
this algebraic structure a set of mathematical objects 
(vectors) are defined on which operations satisfying 
a set of specific properties are carried out. An initial 

“structural study” of vectors is required, since in this 
type of (axiomatic) presentation, the properties of the 
vector addition and multiplication by numbers have 
to be established. 

Example 6: Composition of functions
In Figure 3 the notion of function is used in all its gen-
erality, in replacing a particular family of functions 
by any function. Operations are carried out over func-
tions to produce new functions, whose properties will 
be studied in general. For example, properties such 
as “the composition of functions is not commutative” 
would arise. In fact, a set of functions (polynomials, 
for example) satisfying certain operations (addition, 
multiplication, etc.) is an “algebra”.

Algebraization levels and strands 
of algebraic reasoning
In various studies Kaput has proposed a model of al-
gebraic reasoning as a complex composite organized 
around five interrelated forms, or strands of reason-
ing listed below (Kaput & Blanton, 2001; Kaput, 2008):

1)	 Algebra as Generalizing and Formalizing 
Patterns & Constraints,

2)	 Algebra as Syntactically-Guided Manipulation 
of Formalisms.

3)	 Algebra as the Study of Structures and Systems 
Abstracted from Computations and Relations.

4)	 Algebra as the Study of Functions, Relations, and 
Joint Variation

5)	 Algebra as a Cluster of Modeling and Phenomena-
Controlling Languages

The algebraization levels we propose are related to 
strands 1 and 2. Strand 1 is specified in our model 
by levels 1 and 2 of proto-algebraic reasoning, while 
strand 2 is associated with level 3, where algebra is al-
ready consolidated.  Strands 3, 4 and 5 basically corre-
spond to fields or areas of school algebra (generalized 
arithmetic, study of abstract structures, functions, 
modeling).

Our algebrization levels of primary and second-
ary school mathematical activity can be identified 
in each mathematical content strands, and involve 
a progressive epistemic and cognitive complexity 
degree due to the level of generality of mathemati-
cal objects, ostensive representations and syntactic 
calculation used. The presence and manipulation of 
parameters associated with levels 4 and 5 take place 
within the strands “Algebra as the study of functions”, 
and “Algebra as a cluster of modeling of phenomena”. 
Kaput’s (2008) algebraic reasoning model is oriented 
mainly to characterize algebra as institutionalized 
mathematical content, while our model attempts to 

Imagining a vector idea as an arrow help conceive 
the vector space: sets of vectors among which some 
operations satisfying certain properties are defined. 
But there are other mathematic entities with the same 
operations and properties. So, the definition of vec-
tor space is much broader and open than collections 
of “arrows”. We have a set, V; among their elements 
(called vectors) two operations are defined:

SUM OF TWO ELEMENTS OF V: if  u, v ∊ V , 
then  u, v ∊ V

PRODUCT BY A REAL NUMBER: if a ∊ R and u ∊ V, 
then a ⋅ u ∊ V

If (V, +, ⋅) satisfies the following properties then is a 
vector space on R.

SUM OF VECTORS

ASSOCIATIVE (u + v) + w = u + (v + w)

COMMUTATIVE u + v = v + u

NULL VECTOR
It is a vector called 0 such that if v ∊ V  
fulfils: v + 0 = v

OPPOSITE 
VECTOR

All v has its opposite −v:
v + (−v) = 0

MULTIPLYING A VECTOR BY A NUMBER

ASSOCIATIVE (a ⋅ b) ⋅ v = a ⋅ (b ⋅ v)

DISTRIBUTIVE I (a + b) ⋅ v = a ⋅ v + b ⋅ v

DISTRIBUTIVE II a ⋅ (u + v) = a ⋅ u + a ⋅ v

PRODUCT BY 1 If  v ∊ V then 1⋅ v = v

Figure 2: Vector space (Colera & Oliveira, 2009, p. 62)
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characterize the algebraic activity performed by the 
individuals solving mathematical tasks. Therefore 
both theoretical school algebra models are compatible 
and complementary. 

ALGEBRAIZATION LEVELS AND ONTO-
SEMIOTIC DISCONTINUITIES 

Algebraization levels are basically generality levels, 
combining various registers of semiotic representa-
tion (RSR), theirs transformations and conversions 
(Duval, 1995). Under the OSA these levels can be 
characterized by the presence of different types of 
onto-semiotic configurations (Godino, Font, Wilhelmi, 
& Lurduy, 2011) which involve practices, objects and 
processes implying new levels of generality or syntac-
tic calculus, supported by symbolic representations 
of the corresponding objects. Furthermore, they im-
ply unitization, materialization and reification pro-
cesses involved in generalization and representation 
(Godino et al., 2014).

Considering algebraization levels of mathematical 
activity can help raise awareness of gaps or disconti-
nuities in didactical trajectories. These gaps involve 
the use of different registers of semiotic representa-
tion, their treatment and conversion, as well as the 
establishment of relations between conceptual, prop-
ositional, procedural and argumentative objects of 
higher generality. In other words, these gaps can be 
explained by analyzing how the numerical-iconic and 
analytical – algebraic onto-semiotic configurations 
involved are articulated, and not only by the treatment 
or conversion of RSR. Strømskag (2015) referring sev-
eral studies emphasizes that it is not generalization 
tasks that are difficult for students but they are relat-
ed to the way tasks are designed. We think that taking 
into account the levels of algebraization could help 
in selecting and design tasks that increase students’ 
opportunities to learn algebra.

SYNTHESIS AND IMPLICATIONS 
FOR TEACHER EDUCATION

In this work we complemented the work by Ake and 
colleagues (2013) and Godino and colleagues (2014) on 
the identification of algebraization levels of mathe-
matical activity in primary education, including three 
new levels that characterize secondary mathematics. 
As a summary we propose the following six levels of 
algebraic thinking in primary and secondary educa-
tion (along with level 0, indicating absence of alge-
braization):

Level 0:	 Operations with particular objects us-
ing natural, numerical, iconic, gestural 
languages are carried out.

Level 1:	 Use of intensive objects (generic enti-
ties), the algebraic structure properties 
of N and the algebraic equality (equiva-
lence).  

Level 2:	 Use of symbolic – alphanumeric rep-
resentations to refer the intensive rec-
ognized, although linked to the spatial, 
temporal and contextual information; 
solving equations of the form Ax ± B =C.   

Level 3:	 Symbols are used analytically, without 
referring to contextual information. 
Operations with indeterminate quan-
tities or variables are carried out.

Level 4:	 Studying families of equations and func-
tions using parameters and coefficients.

Level 5:	 Analytical (syntactic) calculations are 
carried out involving one or more pa-
rameters.

It is possible to combine two functions by adding, subtracting, multiplying or dividing two given func-
tions. 
There is another way to combine two functions to create a new function. It is called composition of two 
functions. It is a process through which we will substitute an entire function into another function. 
First let’s get acquainted with the notation that is used for composition of functions. When we want to 
find the composition of two functions we use the notation (f ∘ g)(x). 
Another way to write this is (f(g(x)). This is probably the more practical notation although the first nota-
tion is what appears most often in books. 

Figure 3: Composition of functions (AlgebraLAB. Project Manager. Mainland High School)
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Level 6:	 Study of algebraic structures them-
selves, their definitions and structural 
properties. 

These algebraic reasoning levels have implications 
for teacher training, both in primary and secondary 
education. In addition to develop curricular propos-
als (NCTM, 2000) including algebra from the earliest 
levels of education, the teacher need to act as the main 
agent of change in the introduction and development 
of algebraic reasoning in elementary classrooms, and 
its progression in secondary education. Reflecting on 
the recognition of algebraic thinking objects and pro-
cesses can help identify the features of mathematical 
practices on which the teachers can intervene to grad-
ually increase the algebraization levels of students’ 
mathematical activity.

Consequently, recognizing the algebraization levels 
4, 5 and 6 by secondary school teachers, along with its 
articulation with the previous levels, can help raise 
their awareness of the gaps or onto-semiotic discon-
tinuities which may appear when carrying out tasks 
proposed to their students.
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