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ABSTRACT

No-reference image quality metrics are of fundamental interest as they can be embedded in practical applications.
The main goal of this paper is to perform a comparative study of seven well known no-reference learning-based
image quality algorithms. To test the performance of these algorithms, three public databases are used. As a
first step, the trial algorithms are compared when no new learning is performed. The second step investigates
how the training set influences the results. The Spearman Rank Ordered Correlation Coefficient (SROCC) is
utilized to measure and compare the performance. In addition, an hypothesis test is conducted to evaluate the
statistical significance of performance of each tested algorithm.

Keywords: No-reference quality assessment, training, machine learning-based algorithms, compressed images.

1. INTRODUCTION

Lossy image compression techniques such as JPEG2000 allow high compression rates, but only at the cost of some
perceived degradations in image quality. The way to evaluate the performance of any compression scheme is a
crucial step, and more precisely available ways to measure the quality of compressed images. There is a very rich
literature on image quality criteria, generally dedicated to specific applications (optics, detector, compression,
restoration, . . . ).

From several years, a number of researches have been conducted to design robust No-Reference Image Quality
Assessment (NR-IQA) algorithms, claiming to have made headway in their respective domains. NR-IQA algo-
rithms generally follow one of three trends. 1) Distortion-specific approaches: they assume a prior knowledge
of the degradations involved and employ a specific distortion model to drive an objective algorithm to predict
a subjective quality score. These algorithms quantify one or more distortions such as blockiness,1 blur,2–4 or
ringing5 and score the image accordingly. 2) Training-based approaches: they train a model to predict the image
quality score based on a number of features extracted from the image.6–10 Algorithms following this approach
often use a large number of features without perceptually justifying each of them. 3) Natural scene statistics
(NSS) approaches: they rely on the hypothesis that images of the natural world (i.e. distortion free images)
occupy a small subspace of the space of all possible images and seek to find a distance between the test image
and the subspace of natural images.10–12

Training-based approaches are as reliable as the features used to train the learning model. For example, DI-
IVINE13 is a recent wavelet-based algorithm using a two-stage framework, where the distortion type is predicted
first and then, based on this prediction, image quality is estimated. DIIVINE uses a Support Vector Machine
(SVM) to classify an image into a distortion class and Support Vector Regression (SVR) to predict quality scores.
A large number of features are used for classification and for quality score prediction (88 features) to achieve high
performance against human rates. Jung et al. in14 propose a no-reference IQA method that is based on training
a neural network. The method proposed can be described in four steps. Initially, a learning set of images is
built to be used for the model calibration. The set consists of distorted images subjectively rated by observers
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as well as by an objective full-reference image quality assessment index. Step two consists of mathematically
characterizing the image defects. Next, the neural network is trained, and then applied to a set of test images.

In,15 an interactive neuro-evolution approach is proposed as a way to learn the properties of a users visual
perception. Interactive evolution algorithms are based on evolutionary computational algorithms that invoke
probabilistic, heuristic search techniques inspired from principles of heredity, mutability, and natural selection.

In,6 a no-reference IQA method is described based on object/region detection and training a radial based
neural network. The approach can be summarized in two steps; 1) an object/region detection algorithm is
applied to an image, and then 2) the spectrum distribution of a detected region is compared with an empirical
model to determine a quality score for the detected region. The signal features that are used for object/region
detection are chosen to avoid overlap with those features that are used for quality assessment. The features
for quality assessment are chosen to take into account recurrent problems in consumer photography such as
blurriness (including poor focus and motion blur), under- and over-exposure, and noise (including Gaussian
white noise and salt and pepper noise).

In,8 a NR method for assessing JPEG image quality is proposed, using a sequential learning algorithm to grow
and prune a radial basis function (GAP-RBF) neural network. The metric is designed to account for the 8 × 8
blocking artifacts that arise from JPEG encoding. This approach proceeds by extracting features to quantify the
encoding distortions. These features are then used in conjunction with the GAP-RBF network model to predict
image quality.

Moorthy et al. in10 propose a NR IQA approach based on a two-stage process. The first stage of the approach
is essentially a classification stage in which the test image is assigned a probability pi of belonging to a set of
distortion classes i = 1, · · · , N , where N is the number of distortion classes. The second stage then performs
an SVM-based quality assessment in a specific distortion class.

Concerning NSS-based algorithms, many of them apply a combination of learning-based approach with fea-
tures extracted from natural scene statistics . Natural images, like most other natural signals, are highly hetero-
geneous and variable; yet despite this variability, they contain a large number of statistical regularities.

Visual systems have evolved to exploit these regularities so that the eye can accurately encode retinal images
and the brain can correctly interpret them. Thus, characterizing the structure of natural images is critical for
understanding visual encoding and decoding in biological vision systems and for applications in image processing
and computer vision.

In,16 Saad et al. propose a framework that derives entirely from a simple statistical model of local DCT coef-
ficients. The developed algorithm, namely, BLIINDS-II (BLind Image Integrity Notator using DCT Statistics),
greatly improves upon a preliminary algorithm (BLIINDS-I),17 which uses no statistical modeling and a different
set of sample DCT statistics. BLIINDS-I was a successful experiment to determine whether DCT statistics could
be used for blind IQA. BLIINDS-II fully unfolds this possibility and provides a leap forward in both performance
and in the use of an elegant and general underlying statistical model. A generalized NSS-based model of local
DCT coefficients is then derived, and transformed the model parameters into features used for perceptual image
quality score prediction. A generalized probabilistic model is obtained for these features, and is used to make
probabilistic predictions of visual quality.

In this paper, we present an extensive comparative study of well-known NR-IQA training-based algorithms.
Section 2 summarizes the used trial NR-IQA algorithms and the used trial databases. It also specifies how the
effectiveness of algorithms is evaluated. As a first step of this study, section 3 compares the trial algorithms
when no new learning phase is performed. Section 4 deals with the second step and investigates how the training
set influences the results.

2. NO-REFERENCE IQA ALGORITHMS COMPARISON SETUP

2.1 Trial NR-IQA algorithms

The tested NR-IQA algorithms are 1) BIQI,10 2) DIIVINE13 , 3) BLIINDS,17 4) BLIINDS-II,16 5) BIQ-
Anisotropy11 6) BRISQUE18 and 7) NIQE.19 They are summarized in Table 1. These algorithms, which are



NR-IQA algorithm comments

BIQI Machine learning-based approach (SVM).
DIIVINE Classification (SVM) and Regression (SVR).
BLIINDS Machine learning-based approach (Probalistic model).
BLIINDS-II Machine learning-based approach (Probalistic model).
BIQ-Anisotropy Renyi entropy measure along various orientations.
BRISQUE Natural scene statistic-based distortion-generic.
NIQE Space domain natural scene statistic model.

Table 1. NR-IQA trial Algorithms

usually used in comparative studies are selected here mainly because their implementations are publicly avail-
able either on the Internet or from the authors. Even if it seems that it is ineffective to analyze only brightness
component,20 all of these algorithms are luminance based.

2.2 Trial databases

To provide comparison of NR-IQA algorithms, three publicly available databases are used: 1) LIVE database,21

2) TID2008 database22 and 3) CSIQ image database.23 The LIVE database contains 29 original images on which
five kinds of distortions have been applied to generate 770 degraded images. The TID2008 database contains
1700 distorted versions of 25 original images (from Kodak Lossless True Color Image Suite) applying 17 distortion
types. The CSIQ database consists of 30 original images, each distorted using six types of distortions at four to
five different levels.

2.3 Statistical Significance and hypothesis testing

The Spearman Rank Order Correlation Coefficient (SROCC) is computed between the subjective values and the
predicted scores obtained from trial NR-IQA algorithms.

In addition, to ascertain which differences between NR-IQA schemes performance are statistically significant,
we applied an hypothesis test using the residuals between the DMOS values and the ratings provided by the trial
IQA algorithms. This test is based on the t-test that determines whether two population means are equal or
not. This test yields us to take a statistically-based conclusion of superiority (or not) of an NR-IQA algorithm.

3. ORIGINAL SETUP NR-IQA ALGORITHMS COMPARISON

As a first step, all trial algorithms have been compared without performing any new learning phase.

To be able to compare obtained results, only degradations that are common within the three image databases
are considered. This yields us to judge the influence of many factors such as the training set, the images used to
design databases, levels of degradation, etc.

Table 2 shows obtained SROCC for LIVE database and NR-IQA trial algorithms. Tables 3 and 4 give similar
results for TID2008 database and CSIQ image database respectively. From these results, three main observations
can be made. The first one is that the performance of each metric are dependent on the used database. This
is particularly true for BRISQUE when applied to Gaussian noise. It shows an SROCC that varies from 0.252
(CSIQ database) to 0.986 (LIVE database). Another example illustrating the variation in performance is that of
BLIINDS that displays for JPEG degradation an SROCC of 0.055, 0.264 and 0.839 for TID2008, CSIQ and LIVE
respectively. This first observation suggests that particular attention should be paid to the selection of databases.
The three used databases, as stated in,20 are probably not well suited to the NR metrics evaluation. The second
observation deals with the performance comparison of each metric for the three used databases. Except for BIQ-
An, a higher SROCC is always observed for the LIVE database. This behavior was somewhat expected since
all metrics have been trained on LIVE subsets. The third and last observation deals with the general behavior
of each metric. In this case, one can notice that three schemes perform best for all used databases: DIIVINE,
BLIINDS-II and BRISQUE. For the three common distortions (JP2K, JPEG, and Gaussian blur), BLIINDS-II
outperforms both DIIVINE and BRISQUE.



LIVE subset BIQI DIIVINE BLIINDS BLIINDS-II BIQ-An NIQE BRISQUE
JP2K 0.802 0.913 0.912 0.943 0.173 0.906 0.938
JPEG 0.879 0.910 0.839 0.954 0.086 0.847 0.923

White Noise 0.958 0.984 0.974 0.980 0.686 0.975 0.986
Gaussian Blur 0.821 0.921 0.957 0.941 0.595 0.945 0.978

Fast fading 0.730 0.863 0.750 0.933 0.541 0.882 0.929
Entire db 0.824 0.916 0.799 0.912 0.323 0.877 0.941

Table 2. SROCC values between actual subjective scores and predicted ones for the LIVE database without specific
training.

TID2008 subset BIQI DIIVINE BLIINDS BLIINDS-II BIQ-An NIQE BRISQUE
JP2K 0.694 0.853 0.821 0.901 0.672 0.897 0.866
JPEG 0.844 0.631 0.055 0.878 0.078 0.864 0.799

Add. Gaussian Noise 0.738 0.809 0.334 0.663 0.055 0.780 0.821
Gaussian blur 0.747 0.824 0.663 0.839 0.570 0.817 0.799

JPEG trans. errors 0.283 0.265 0.018 0.165 0.070 0.123 0.289
Cumulative subsets 0.552 0.566 0.403 0.584 0.293 0.559 0.619

Table 3. SROCC values between actual subjective scores and predicted ones for the TID2008 database without specific
training.

Table 5 gives obtained results when a One-sided t-test is used to provide statistical significance of NR-
IQA/DMOS on LIVE database. Each entry in this table is coded using six symbols. The position of each
symbol corresponds to one subset of the LIVE database: JP2K, JPEG, White noise, Gaussian blur, Fast fading,
all data. Each symbol gives the result of the hypothesis test on the subset. If the symbol equals ’1’, the NR-IQA
on the row is statistically better than the NR-IQA on the column (’0’ means worse, ’-’ is used when NR-IQAs
are indistinguishables).

Tables 6 and 7 show similar results for TID2008 and CSIQ databases. For table 6, the position of the symbol
represents the tested subsets: JP2K, JPEG, Additive Gaussian noise, Gaussian blur, JPEG transmission error,
all data. Considering table 7, the position of the symbol represents the tested subsets: Additive pink Gaussian
noise, JP2K, JPEG, Gaussian noise, Gaussian blur, Global Contrast Decrements, all data.

These results confirm that, without any training, performance of NR-IQA algorithms remain highly dependent
on the used databases even if BRISQUE seems to be the best performing in each case.

4. INFLUENCE OF THE TRAINING SET

As a second step of this study, we investigate how the selection of the training set influences the results. To
perform such investigation, we proceed as follows : the training set is generated using different subsets randomly
extracted from all databases. The remaining subsets are used to construct the test set. All trial NR-IQA
algorithms are trained on this new training set. Finally, performances of the used NR metrics are estimated on
the new test set.

CSIQ subset BIQI DIIVINE BLIINDS BLIINDS-II BIQ-An NIQE BRISQUE
JP2k 0.708 0.830 0.575 0.895 0.460 0.906 0.866
JPEG 0.867 0.799 0.264 0.901 0.012 0.883 0.903

Gaussian Noise 0.324 0.176 0.293 0.379 0.091 0.299 0.252
Add. Gaussian Pink Noise 0.879 0.866 0.555 0.801 0.303 0.810 0.925

Gaussian Blur 0.771 0.871 0.774 0.891 0.739 0.892 0.903
Global Contrast Decrement 0.585 0.396 0.078 0.012 0.767 0.232 0.029

Cumulative subsets 0.619 0.596 0.170 0.577 0.286 0.628 0.566

Table 4. SROCC values between actual subjective scores and predicted ones for the CSIQ database without specific
training.



BIQI DIIVINE BLIINDS BLIINDS-II BIQ-An NIQE BRISQUE
BIQI ------ 00-000 01-0-1 00-000 111111 0--00- 000000

DIIVINE 11-111 ------ -1-011 00-00- 111111 -1-0-1 00-000

BLIINDS 10-1-0 -0-100 ------ 00--00 111111 ----11 00-000

BLIINDS 2 11-111 11-11- 11--11 ------ 111111 11--10 11-0-0

BIQ-An 000000 000000 000000 000000 ------ 000000 000000

NIQE 1--11- -0-1-0 ----00 00--01 111111 ------ 00-000

BRISQUE 111111 11-111 11-111 00-1-1 111111 11-111 ------

Table 5. Statistical significance matrix of NR-IQA/DMOS on LIVE database. Each entry in the table is a codeword
consisting of 6 symbols. The position of the symbol represents the tested subsets: JP2K, JPEG, White noise, Gaussian
blur, Fast fading, all data. Each symbol gives the result of the hypothesis test on the subset: ’1’ means that the
algorithm for the row is statistically better that the algorithm for the column, ’0’ means it is worse, and ’-’ means it is
indistinguishable.

BIQI DIIVINE BLIINDS BLIINDS-II BIQ-An NIQE BRISQUE
BIQI ------ 01---- -11--1 0----0 -11--1 0----- 0----0

DIIVINE 10---- ------ -111-- -0---0 1111-1 -0---- -0---0

BLIINDS -00--0 -000-- ------ 0000-0 1----1 0000-0 000--0

BLIINDS 2 1----1 -1---1 1111-1 ------ 1111-1 -----1 --0---

BIQ-An -00--0 0000-0 0----0 0000-0 ------ 0000-0 0000-0

NIQE 1----- -1---- 1111-1 -----0 1111-1 ------ -----0

BRISQUE 1----1 -1---1 111--1 --1--- 1111-1 -----1 ------

Table 6. Statistical significance matrix of NR-IQA/DMOS on TID database subsets. Each entry in the table is a codeword
consisting of 6 symbols. The position of the symbol represents the tested subsets: JP2K, JPEG, Additive Gaussian noise,
Gaussian blur, JPEG transmission error, all data. Each symbol gives the result of the hypothesis test on the subset: ’1’
means that the algorithm for the row is statistically better that the algorithm for the column, ’0’ means it is worse, and
’-’ means it is indistinguishable.

BIQI DIIVINE BLIINDS BLIINDS-II BIQ-An NIQE BRISQUE
BIQI -------- --0-01- 11---1 100-01- 111-1-1 100-01- 000-010

DIIVINE --1-10- ------- 111--01 100--0- 111-101 10--00- 00--000

BLIINDS 00---00 000--10 ------- 000---0 1-1-10- 000-0-0 000-0-0

BLIINDS 2 011-10- 011--1- 111---1 ------- 111-101 ----0-- 0---0-0

BIQ-An 000-0-0 000-010 0-0-01- 000-010 ------- 000-010 000-010

NIQE 011-10- 01--11- 111-1-1 ----1-- 111-101 ------- 0-----0

BRISQUE 111-101 11--111 111-1-1 1---1-1 111-101 1-----1 -------

Table 7. Statistical significance matrix of NR-IQA/DMOS on CSIQ database subsets. Each entry in the table is a
codeword consisting of 7 symbols. The position of the symbol represents the tested subsets: Additive pink Gaussian
noise, JP2K, JPEG, Gaussian noise, Gaussian blur, Global Contrast Decrements, all data. Each symbol gives the result
of the hypothesis test on the subset: ’1’ means that the algorithm for the row is statistically better that the algorithm for
the column, ’0’ means it is worse, and ’-’ means it is indistinguishable.



TID2008 subset BIQI DIIVINE BLIINDS BLIINDS-II BIQ-An NIQE BRISQUE
Additive noise in color com-
ponents is more intensive
than additive noise in the
luminance component

0.46 0.366 0.441 0.778 0.117 0.742 0.495

Spatially correlated noise 0.589 0.722 0.245 0.446 0.311 0.758 0.584
Masked noise 0.897 0.872 0.688 0.866 0.175 0.854 0.623
High frequency noise 0.787 0.864 0.583 0.586 0.016 0.687 0.582
Impulse noise 0.406 0.188 0.039 0.719 0.110 0.812 0.723
Quantization noise 0.747 0.824 0.663 0.839 0.570 0.817 0.799
Image denoising 0.306 0.759 0.509 0.760 0.481 0.605 0.570
JPEG2000 transmission er-
rors

0.367 0.021 0.211 0.606 0.262 0.493 0.260

Non eccentricity pattern
noise

0.010 0.032 0.033 0.142 0.067 0.016 0.163

Local blockwise distortions
of different intensity

0.022 0.060 0.150 0.457 0.124 0.183 0.175

Mean shift (intensity shift) 0.024 0.050 0.355 0.057 0.384 0.138 0.091

Cumulative subsets 0.282 0.145 0.072 0.342 0.037 0.134 0.225

Table 8. SROCC values between actual subjective scores and predicted ones for the remaining subsets the TID2008
database.

4.1 Performance without training

Before investigating the influence of the training set on the performance of machine learning-based algorithms,
all trial NR-IQA algorithms were tested on the remaining subsets of TID 2008 (remaining degradations) that
have not been employed in previous section. As for previous section, no new training phase has been performed.
Obtained results are given in Table 8. As expected, the performance of all metrics drops significantly. However,
except BIQ-An, one can notice that SROCC values remain somewhat interesting for subsets (masked noise, high
frequency noise, quantization noise...) similar to the learnt ones (remember that all metrics have been trained
on LIVE subsets). On these non learned subsets, BLIINDS-II seems to be the best.

4.2 Training set design

To determine whether the design of the learning base can influence the performance of machine learning-based
NR-IQA algorithms, we selected degradations that do not overlap all databases. In addition, this will help us to
have an idea on the generalization capability of tested algorithms.

Table 9 presents existing degradations in the three trial databases.

The subsets that are candidate to design the training set are those who are only present in the TID database
but not in the two others (LIVE and CSIQ). From Table 9, one observes that eleven subsets are candidate.
All associated images to those eleven subsets will define the set from which the training set is designed. A
leave-one-out cross validation approach is applied to construct the training base. This means that each subset
is included once within the test set (including both LIVE and CSIQ databases) while the remaining sets form
the final training set.

Once the training phase is completed, all trial algorithms are tested on both LIVE and CSIQ databases.

4.3 Results

Tables 10 and 11 present obtained results respectively for LIVE and CSIQ databases. Several observations can
be made. First, One can observe a drop of SROCC values of all metrics when these values are compared to those
in Tables 2 and 4. Knowing that for tables 2 and 4 all metrics have been trained on LIVE subsets, the observed
drop in performance is then mainly induced by the unlearnt degradations of the test set. If one observes the



Degradation
Databases

LIVE TID CSIQ

Addtive Gaussian Noise X X X
Additive noise in color components is more intensive
than additive noise in the luminance component

X

Spatially correlated noise X
Masked noise X
High frequency noise X
Impulse noise X
Quantization noise X
Gaussian blur X X X
Image denoising X
JPEG compression X X X
JPEG 2000 compression X X X
JPEG transmission errors X X
JPEG2000 transmission errors X
Non eccentricity pattern noise X
Local block-wise distortions of different intensity X
Mean shift (intensity shift) X
Contrast change X X

Table 9. Common degradation on the three trial databases.

LIVE subset BIQI DIIVINE BLIINDS BLIINDS-II BIQ-An NIQE BRISQUE
JP2K 0.502 0.604 0.543 0.977 0.104 0.630 0.756
JPEG 0.655 0.756 0.439 0.877 0.207 0.754 0.732

White Noise 0.651 0.876 0.675 0.861 0.192 0.891 0.851
Gaussian Blur 0.672 0.725 0.493 0.810 0.204 0.698 0.901

Fast fading 0.261 0.460 0.376 0.612 0.015 0.680 0.715
Entire db 0.461 0.682 0.698 0.812 0.265 0.807 0.798

Table 10. SROCC values between actual subjective scores and predicted ones for the LIVE database after training.

CSIQ subset BIQI DIIVINE BLIINDS BLIINDS-II BIQ-An NIQE BRISQUE
JP2K 0.515 0.670 0.461 0.681 0.230 0.670 0.601
JPEG 0.691 0.703 0.192 0.617 0.014 0.599 0.710
Gaussian Noise 0.561 0.354 0.198 0.501 0.073 0.289 0.561
Add. Gaussian Pink Noise 0.710 0.789 0.456 0.798 0.267 0.698 0.810
Gaussian Blur 0.651 0.771 0.709 0.771 0.561 0.535 0.789
Global Contrast Decrement 0.234 0.126 0.165 0.189 0.235 0.432 0.381
Cumulative subsets 0.598 0.551 0.117 0.542 0.167 0.589 0.475

Table 11. SROCC values between actual subjective scores and predicted ones for the CSIQ database after training.



SROCC values of the entire database, the drop is on average higher for LIVE database. Secondly, for a given
degradation, the drop in performance varies from one metric to another. The relative drop can be quite small
(7.8% for LIVE database, Gaussian blur degradation and BRISQUE metric) or very important (140% for LIVE
database, JPEG degradation and BIQ-An degradation). Finally, for a given metric, the drop in performance
varies from one database to another. This variation is induced by the different image contents of the specific
databases. Hence, a minimum variation reflects the metric robustness against complexity of images. Based on
such analysis, NIQE and BRISQUE followed by BLINDS-II seem to be the most robust metrics.

5. CONCLUSION

In this paper, we perform a comparative study of seven well known no-reference learning-based image quality
algorithms. To test the performance of these algorithms, three public databases are used: 1) LIVE, 2) TID and
3) CSIQ databases that are publicly available. The SROCC is utilized to measure and compare the performance.

As a first step, the trial algorithms are compared when no new learning phase is performed. Results are
analyzed considering the same degradations for all subsets. One observes that the performance of each metric
are dependent on the used database, and that except for BIQ-An, a higher SROCC is always observed for the
LIVE database. This behavior was somewhat expected since all metrics have been trained on LIVE subsets.

The second step investigates how the training set influences the results. Before performing a new learning
page, we analyze quality scores obtained using all trial NR-IQA algorithms on no learnt distortions without
proceeding with a new learning process. As expected, the performance of all metrics drops significantly. However,
except BIQ-An, one can notice that SROCC values remain somewhat interesting for subsets similar to the learnt
ones. In a second way, a new learning phase is investigated to determine how it impacts the performance of
IQA schemes. From the three considered databases, only exclusive degradations with one database are used.
We identify eleven candidate subsets, all extracted from TID. A leave-one-out approach is used to generate the
learning process. The test set is designed from both LIVE and TID database.

From obtained results, one observes that 1) for a given degradation, the drop in performance varies from one
metric to another, and 2) for a given metric, the drop in performance varies from one database to another. This
variation is induced by the different image contents which depending on the database type.
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