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Flexible algebraic action on quadratic equations

Jan Block

Technische Universität Braunschweig, Braunschweig, Germany, jan.block@tu-braunschweig.de

This paper describes a study that explores the compe-
tencies of flexible algebraic action of German students 
in grade nine and ten when dealing with quadratic 
equations. A theoretical framework for the concept of 
flexibility in algebraic action in the context of quadratic 
equations is provided. Further on, data analysis and 
some important early results of the study are discussed. 
The study examines which features of quadratic equa-
tions the students perceive, what meanings they infer 
from these features and to what extent this is conducive 
to or obstructive for flexible algebraic action. Two types 
of meta-tasks were used in the study and analyzed with 
qualitative data analysis methods.
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INTRODUCTION

When professional mathematicians solve quad-
ratic equations like (1) x2 + x − 6 = 0, (2) x2 + 2x = 0, 
(3) (x − 3)(x + 5) = 0 or (4) (x − 3)(x + 5) = 7 they will use 
different methods to find the solutions in effective 
and less error-prone ways. They do so, because they 
recognize different features of the equations and 
they are able to draw appropriate conclusions for 
solving the equations. E.g., equation (1) and (2) look 

very similar with a sum as the term on the left-hand 
side and zero on the right-hand side. The difference 
is the missing constant in (2), which indicates that 
this equation can be easily solved by factoring. In 
contrast, using the pq-formula1 is a suitable proce-
dure for solving equation (1). The equations (3) and 
(4) have the same structure on the left-hand side. The 
only, but important difference is the number on the 
righthand side. The solutions of (3) can be immedi-
ately determined without any calculation, whereas 
for solving (4), it is necessary to expand the brackets 
and use the pq-formula. Although all quadratic equa-
tions can be solved by using the pqformula, for (2) und 
(3) it is not an effective way because the calculations 
performed before or while using the pq-formula are 
not necessary. Furthermore these calculations are 
error-prone, especially for students with problems in 
algebraic conversions. When they use the pq-formula 
for (2) a common mistake is using a wrong value for 
q in the formula. The expanding of brackets in (3) is 
also a wellknown field of mistakes. Using different 
solution methods depending on the characteristics of 
the equation can be called flexibility in contrast to the 
use of only one standard routine like the pq-formula 
for each type of quadratic equations.

Figure 1: Comparison of flexible algebraic action and algebraic action
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QUADRATIC EQUATIONS AND 
FLEXIBLE ALGEBRAIC ACTION

Flexible algebraic action is defined as the ability to 
choose an adequate processing method depending on 
the specific features of the task and the abilities of the 
individual. This definition refers to the concept of flex-
ibility in mental calculation (e.g., Rathgeb-Schnierer, 
2006; Threlfall, 2002) and a general discussion about 
what flexibility can mean (e.g., Star & Newton, 2009). 
Figure 1 shows the comparison of flexible algebraic 
action and algebraic action just with one standard 
routine. 

For quadratic equations a didactical map can show 
the complexity of the situation students have to cope 
with, when they learn to solve this type of equation. 
A didactical map is a graphic depiction on an issue 
which contains important information for didactical 
considerations under special questioning. To clarify 
the difference between linear and quadratic equations 
in situations of learning and regarding the necessi-
ty of flexibility, a didactical map of linear equations 
(Figure 2) will be contrasted to a didactical map of 
quadratic equations (Figure 3). The construction re-
fers to the “Didactical cut” which was first named by 
Filloy and Rojano (1984, 1989) and later on discussed 
by several researchers (e.g., Herscovics & Linchevski, 
1994; Lima & Healy, 2010; Vlassis, 2002). 

The map shows, that linear equations can be divided 
into two main groups: In the first, the unknown is only 
appearing once on one side of the equation. These 
equations can be solved by arithmetical procedures. 
It is not necessary to act on or with the unknown 
because they can be solved by using the reverse op-
erations, e.g. 3x + 7 = 19 can be solved by calculating 
(19 − 7) ÷ 3. To solve the second group of equations, 

in which the unknown occurs on both sides or more 
than once on one side, it is necessary to use algebraic 
procedures to act on or with the unknown. According 
to this classification, Lima and Healy (2010) call these 
two groups ‘evaluation’ and ‘manipulation’ equations 
which resembles the classification by Filloy and 
Rojano (1984, 1989) for linear equations, but which is 
farther-reaching also for classifying quadratic equa-
tions. Lima and Healy focus on the activities which are 
necessary to solve an equation and not on the question, 
where or how often the variable occurs. In contrast to 
the evaluation equations, for the manipulation equa-
tions it is necessary to manipulate algebraic symbols. 
The group of manipulation equations can be divided 
into two subgroups. For the first, where the variable 
is only appearing on one side but more than once, al-
gebraic procedures are only necessary for the terms 
on one side. For the second, where the variable ap-
pears on both sides, equivalent transformations on 
both sides of the equation are necessary. To describe 
the important differences between the three groups 
regarding the different requirements of arithmetical 
and algebraic skills, the author suggests using the 
term “cognitive step” which is also suitable for the 
quadratic equations.

The aim of each algorithmic solving process for lin-
ear equations is to transform the equation into the 
form of the first group. The possible transformations 
are indicated by the arrows on the map. One facet of 
flexibility on acting with linear equations should be 
e.g. the ability to recognize that 3x + 4 = 3x + 5 has no 
solution without starting algebraic procedures on 
this equation. The map shows that the field of line-
ar equations has got a manageable number of cases. 
Nevertheless, there are also flexible and intelligent 
strategies to solve linear equations by simplifying 
the given equation without strictly using algebraic 

Figure 2: Didactical map of linear equations
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algorithms (e.g., Star & Rittle-Johnson, 2008). For ex-
ample for solving the equation 5(x + 2) = 20 it is not 
necessary to expand the brackets, when recognizing 
that the term in brackets has to be 4 and then solving 
the equation x + 2 = 4 instead of the given equation. But 
this type of flexibility is depending only on special 
numbers. The idea behind this is to get an equation 
which is solvable with arithmetic procedures but the 
way to achieve this type depends on the numbers and 
the structure and it is not strictly algorithmically per-
forming. 

In contrast to this fairly simple model, the didacti-
cal map of quadratic equations (Figure 3) shows the 
wide variety of types of quadratic equations under 
the view of different effective solution methods. 
The study is only focussing on basic types of quad-
ratic equations and not on non-standard examples 
like sin2(x) + 2sin(x) + 1 = 0 or x4 − 6x2 + 9 = 0, for which 
identifying and interpreting of features as a basis 
for acting flexible is also very important. There are 
two main groups of equations: The first is solvable 
with quasi-arithmetical procedures such as inverse 
operations, extracting radicals or using the fact, that 
a product equals zero if one of the factors equals zero. 
The last case is indicated as a special case by the verti-
cal spotted line, because a special knowledge is needed 
and no arithmetic operations are necessary. To solve 
the second group, algebraic procedures are necessary. 
This group can be divided into two subgroups: The 
first is characterized by the fact that the algebraic 
procedures are explicitly done when factoring the 
equation with the missing constant term. After this, 
the solutions are obvious using the knowledge about 
cases when a product equals zero. Using the pq-for-

mula for all other types, the algebraic procedure of 
solving is not completely visible, so it is called implicit. 
This classification of the two main groups is according 
to the terms ‘evaluation’ and ‘manipulation’ equations 
Lima (2007) used. In contrast to the linear equations, 
the cognitive steps do not depend on the fact where 
and how often the variable appears.

The dashed arrows indicate that some equations 
can be interpreted as special cases of other types of 
equations. The types of equations differ in the types 
of the terms appearing. The structure of the terms 
is indicated by the form of the frames. A product is 
indicated by a frame shaped like an ellipse and a sum 
by a hexagon. The rectangle indicates the special case, 
where the unknown appears linear in a product but 
the term is a sum. To indicate the different suitable 
methods of solving, the frames have different kinds 
of lines. The dashed lines indicate the pq-formula, the 
dot-dash-lines extracting radicals as an appropriate 
method and the dot-dot-dash-lines stand for the pos-
sibility to get the solutions by factoring the term. 

It is obvious that the types of quasi-arithmetical and 
algebraic solvable equations correspond in a complex 
way. For choosing an effective solution method it is 
not sufficient to look just at the type or structure of 
the term on one side of the equation. It is also neces-
sary to look at the structure of the equation as a whole 
and the appearing numbers at special places in the 
equation (e.g. zero on one side of the equation). The 
main difference between the linear and the quadratic 
equations in the process of flexible solving is, that for 
quadratic equations it is not the aim to transform all 
types just into one, which can be solved by a stand-

Figure 3: Didactical map of quadratic equations
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ard method, as it is with the linear equations where 
it is the aim to produce a type of equation which can 
be solved by arithmetical procedures. Flexibility in 
solving quadratic equations means choosing different 
algorithmic solving methods, depending on special 
features of the equations. To master this, it is required 
to consider the relationships shown in the didactical 
map and to know, which features of an equation are 
important to indicate a suitable more or less algorith-
mic solving method.

METHOD OF THE STUDY

The three main questions in this study are: 1. Which 
features of quadratic equations do students perceive? 
2. What meanings do they infer from these features? 
3. To what extent is this conducive to or obstructive 
for flexible algebraic action?

To answer these questions two types of studies were 
made: 1. Laboratory study in a one-to-one situation (re-
searcher and participant) with eleven students from 
grade nine from four different classes from two differ-
ent German high-schools (Gymnasium). 2. Classroom 
study with 26 students from grade nine and 20 stu-
dents from grade 10 from yet another Gymnasium. 
In the classroom study the tasks were integrated in a 
lesson by a teacher who was exactly instructed how to 
moderate the lesson. In the German high-school cur-
riculum normally quadratic equations are a topic at 
the end of grade eight, so that all participants had tak-
en part in lessons about quadratic equations and re-
garding this the groups are comparable. From another 
point of view potential varieties of the two groups 
in the classroom study can be recognized during the 
process of data-analysis. The frame-data from the 
participants in the laboratory study, marks for math-
ematics and results of the DEMAT 9-Test (Schmidt, 
Ennemoser, & Krajewski, 2013) reveal that this is a 
mixed group regarding the level of general mathemat-
ical skills. For the classroom study frame-data couldn’t 
be collected. The teacher reported that both classes 
show no abnormality regarding the level of general 
mathematical skills.

In the laboratory study, the participants had to pro-
cess three tasks. In the first task, a quadratic equation 
was given and the students were asked to create new 
equations by varying the given one. In the second task, 
they had to solve five quadratic equations of different 

types to check which strategies the students use to 
solve the equations. 

The third task, which is at the centre of the study, is 
a meta-task like the first one. 20 quadratic equations 
were given on cards of carton and the participants 
had to assort them. These equations represent the 
different categories shown in the didactical map of 
quadratic equations, e.g. the equations discussed in 
the introduction are part of the selection. The number 
20 was chosen based on the time needed to get an over-
view of the equations and the capacity of the visual 
field. There were no rules given and the participants 
had all freedom to assort the equations as they like. It 
was remarked that there was not only one possibility 
to assort them. While working on the tasks, the partic-
ipants were video recorded and asked to think aloud. 
The students were asked to explain the meanings of 
the features of the groups. 

The participants of the classroom study had to process 
two tasks. The variation-task was left out because the 
laboratory study showed that the most interesting 
information of this task was given by the thinking 
aloud of the participants which was not recordable 
in the classroom study. Deviating from the labora-
tory study, the students had to work in pairs on the 
sorting-task to encourage multiple solutions for the 
assorting. This seemed to be necessary because there 
was no researcher beneath the participants during 
process on the task like in the laboratory study to in-
itiate more than one solution. The participants had to 
write down their assorting with an explanation of the 
meanings of the features on a special documentation 
sheet which referred to a tool used in sorting-tasks in 
a study with teachers by Zaslavsky and Leikin (2004). 
Selected pairs of students presented their arguments 
for assorting and their reasoning in the class which 
was recorded by video. 

The transcriptions of the videos and the documenta-
tion sheets for the sorting-task were analyzed with 
qualitative data analysis methods, like an open cod-
ing, with the aim to develop categories (cf. Corbin 
& Strauss, 2008) of reasoning for assorting and the 
meanings of the recognized features of the equations. 
The sorting-task as an analyzingmeta-task is particu-
larly suitable to examine the questions of the study. To 
process on this task it is insufficient to know a routine 
to handle quadratic equations. It is necessary to have 
an explicit look on the features of the equations and 
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to detect the syntactic or semantic differences which 
are preconditions for flexible algebraic action. By rea-
soning for assorting, the meanings of the features can 
be explained. Evaluating the identified categories of 
assorting and meanings can show how far the mental 
structures of the students are conducive to or obstruc-
tive for flexible action. 

DATA ANALYSIS: SELECTED RESULTS 
OF THE SORTING-TASK

Analyses of the data in the classroom studies reveal 
that there were six main categories for assorting the 
equations, which were also found in the laboratory 
study. These categories and some main sub-categories 
are shown in Figure 4.

The meanings inferred from the features for assort-
ing the equations were first and mainly evaluated by 
analyzing the interviews from the laboratory study 
because the videos contain much more information 
than the documentation sheets from the classroom 
study. The meanings can be divided into helpful and 
conducive to or obstructive for flexible algebraic ac-
tion. There are also features and meanings which are 
obscure for flexible action but they show insight into 
the students’ mental concept concerning the dealing 
with equations. In the following selected examples, 
features and reasons for assorting are discussed. 

One dominating reason for the assorting in the cat-
egory “Term” was the appearing of brackets in the 
equations. A lot of participants argued, that terms 
with brackets had to be expanded to simplify them. 
This result is in accordance with a result Lima and 
Tall (2006) found in a study, where the quadratic equa-

tion (x − 3) ⋅ (x − 2) = 0 was (not successfully) solved 
by the most participants by expanding the brackets. 
Similar difficulties with equations in this structure 
were also noticed by Vaiyavutjamai, Ellerton and 
Clements (2005). The brackets operate as a signal to 
expand the term regardless whether it is necessary or 
useful or not. In other studies (e.g., Dreyfus & Hoch, 
2004; Wenger, 1987), other signals like radicals or frac-
tions, which evoke routines regardless of the context 
or the questions that should be answered, were iden-
tified. Focussing on such signals could be an indica-
tion, that the students do not plan their approach (cf. 
Wenger, 1987) which is a necessary step in flexible 
action. Expanding the brackets can prevent an effi-
cient solving process and can lead to mistakes during 
expansion or the subsequent use of the pq-formula. 
One reason for this habit can be the way transforming 
terms is taught. When transforming is called “simpli-
fying” and most of the tasks require expanding prod-
ucts then it is obvious that for most students, brackets 
have to be expanded in any case. This hypothesis is 
supported by the explanation that terms with brack-
ets are more complicated, which was remarked by a 
lot of participants of the laboratory study.

The remarks about brackets often occur together with 
remarks about solving methods. The participants de-
scribe that it is more difficult to isolate the variable 
when it occurs in brackets. This argument mirrors 
the strategy for linear equations, i.e. isolating the 
variable on one side of the equation, which was used 
in the solvingtask for 26.8% of the equations (from all 
samples) but successful only for 45.1% of these equa-
tions. The correct solutions with this strategy were 
all produced for the equation (x − 8)2 = 0 by using the 
inverse operations or arguing with the semantics of 

Figure 4: Categories and main sub-categories of assorting quadratic equations
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this equation. The other strategies used for isolating 
the variable, misapplied on equations for which the 
pq-formula or factorizing is a suitable solving meth-
od, were division by the variable x or eliminating 
the exponent of x2 by a division by 2, by extracting 
radicals just from this monomial or by summarizing 
monomials with different exponents. These faulty 
strategies of isolating the variable are all related to the 
idea of solving the equation by extracting the linear 
variable on one side of the equation to find the solu-
tion then on the other side. This is the idea of solving 
linear equations which works for quadratic equations 
only in special cases. Obviously, a generalization of 
this strategy leads to the effect that it is used in situ-
ations where it is unsuitable. The argumentation of 
the participants in the sortingtask points to a lower 
level of understanding of the concept of equations in 
general and especially of different types of equations 
like linear and quadratic equations. This hypothesis 
is promoted by results of studies about the under-
standing of equations (e.g., Lima & Tall, 2008). The 
isolation-strategy, which evokes the expanding of 
brackets, is opposed to strategies for solving quad-
ratic equations where brackets are produced when 
factoring a term or where the brackets indicate a sim-
ple way to find the solutions because they show that 
the term is a product. 

A more general problem is the mentioned difficulty to 
identify the equations as quadratic when brackets are 
appearing. This topic responds to the aspect of symbol 
sense in algebra in the context of understanding the 
meaning of variables and parameters in equations 
(cf. Postelnicu & Postelnicu, 2015) and to the ability to 
anticipate the effect of transforming terms.

Another feature that appeared in the category 
“Equation” for nearly every participant as a category 
was the presence of zero on one side of the equation. 
In contrast to the reasons of the importance for the 
occurrence of brackets, no blocking points for flexible 
action were found in the argumentation for this fea-
ture. However, only one pair of students in the class-
room study explained, that the occurrence of zero on 
one side of the equation is the necessary precondition 
to use the pq-formula or to find the solutions when 
the term on the other side is a product. A lot of par-
ticipants explained that zero on one side is necessary 
to use the pq-formula. This explanation is not wrong, 
but it was referred to all equations with zero on one 
side, regardless of the type and structure of the term 

on the other side of the equation, e.g. (x − 3)(x + 5) = 0 or 
4x2 − 10 = 0 which can be easily solved by the fact that 
a product should be zero or by extracting a radical. 
The students focussed only on one single feature not 
following the need to analyse potential sub-features 
of this group of equations. If this feature works as 
a signal to use the pq-formula, it can be obstructive 
for flexible algebraic action. This is as much more 
remarkable when looking on the results of the solving-
task. From all samples 34.3% of the equations were 
solved by using the pq-formula, 70.3% of these correct. 
This indicates, that the pq-formula as a standard-meth-
od is not executed as well as you can expect for a 
standard algorithm. These results are compatible to 
a study by Lima and Tall (2006) where most partici-
pants solved quadratic equations with trial-and-error 
or with the pq-formula, but mostly unsuccessfully. 
Similar to this focussing on only one single feature, 
for the feature x2on one side of the equation some par-
ticipants argued that if x2 is on one side, extracting 
radicals is a suitable solving method without regard-
ing what is on the other side of the equation, e.g. x2 = x 
or x2 = −16x − 64. Following the faulty meaning of this 
feature and the revealing solving method can produce 
individual faulty strategies to handle the other side 
and wrong solutions. 

Another explanation for assorting by zero on one side 
was that there are special rules to be regarded when 
a zero appears. It is true that the special rules (like 
division by zero is not possible) are valid for handling 
equations. This argumentation, at a first glance, seems 
not to be connected to flexibility therefore it is neither 
conducive to nor obstructive for flexible action. But 
if this is the only and dominating importance of this 
feature in the awareness of the students, it can overlay 
meanings which are important for flexible action and 
in this way it can be obstructive.

CONCLUSION

The first data analyses of the sorting-task show some 
important findings regarding the competencies of 
flexible algebraic action in the context of quadratic 
equations. A lot of explanations in the sorting-task 
which can be obstructive for flexible action were 
identified and only a few participants show that their 
understanding of quadratic equations and solving 
methods is based on a concept of flexibility. The qual-
itative analyses used in this study are appropriate to 
identify the reasons for the established deficits. This 
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knowledge can be used to develop improvements for 
teaching. The results show that some problems the 
students have with quadratic equations are founded 
in the teaching of previous topics (like transforming 
terms and the dominance of expanding brackets). 
Other problems like focussing just on one feature (e.g. 
zero on one side or x2 on one side) should be addressed 
in the lessons by using suitable types of tasks which 
focus not on finding solutions of equations but on clas-
sifying different types of equations. It would seem that 
the meta-tasks, used in this study, have the potential to 
be a useful tool for the design of mathematic lessons 
which aim to enable the learners to act flexibly.
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ENDNOTE

1. The pq-formula for solving quadratic equations:

x2 + px + q = 0 ⇔ x = − p
2  ± √( p2 )2 − q


