
HAL Id: hal-01286883
https://hal.science/hal-01286883

Submitted on 15 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A gyro-kinetic model for trapped electron and ion modes
Thomas Drouot, Etienne Gravier, Thierry Réveillé, Alain Ghizzo, Pierre

Bertrand, Xavier Garbet, Yanick Sarazin, Thomas Cartier-Michaud

To cite this version:
Thomas Drouot, Etienne Gravier, Thierry Réveillé, Alain Ghizzo, Pierre Bertrand, et al.. A gyro-
kinetic model for trapped electron and ion modes. The European Physical Journal D : Atomic, molec-
ular, optical and plasma physics, 2014, 68 (10), pp.280. �10.1140/epjd/e2014-50151-2�. �hal-01286883�

https://hal.science/hal-01286883
https://hal.archives-ouvertes.fr


 

A gyro-kinetic model for trapped electron and ion modess 

Thomas Drouot1,a, Etienne Gravier1, Thierry Reveille1, Alain Ghizzo1, Pierre Bertrand1, Xavier Garbet2, 
Yanick Sarazin2, and Thomas Cartier-Michaud2 
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Abstract. In tokamak plasmas, it is recognized that ITG (ion temperature gradient instability) and trapped 
electron modes (TEM) are held responsible for turbulence giving rise to anomalous transport. The present 
work focuses on the building of a model including trapped kinetic ions and trapped kinetic electrons. For  
this purpose, the dimensionality is reduced by averaging the motion over the cyclotron motion and the 
“banana” orbits, according to the fact that the instabilities are characterized by frequencies of the order of 
the low trapped particle precession frequency. Moreover, a set of action-angle variables is used. The final 
model is 4D (two-dimensional phase space parametrized by the two first adiabatic invariants namely the 
particle energy and the trapping parameter). In this paper, the trapped ion and electron modes (TIM and 
TEM) are studied by using a linear analysis of the model. This work is currently performed in order to 
include trapped electrons in an existing semi lagrangian code for which TIM modes are already taken into 
account. This study can be considered as a first step in order to include kinetic trapped electrons  in the 
5D gyrokinetic code GYSELA [J. Abiteboul et al., ESAIM Proc. 32, 103 (2011)]. 

 

1 Introduction 

Low frequency turbulence developing from micro insta- 
bilities is responsible for the phenomenon of anomalous 
radial energy transport in magnetically confined fusion 
plasmas. Among these instabilities, ion temperature gradi- 
ent (ITG), interchange instabilities, and trapped electron 
modes (TEM) may play an important role in explain- 
ing the anomalous heat and particle transport observed 
in tokamaks. These instabilities are driven by ion and 
electron equilibrium gradients [1–4]. ITG seems to be re- 
sponsible of the anomalous ion heat transport whereas the 
TEM turbulence drives electron particle and heat trans- 
port, and their interactions may play a non-negligible role 
in determining the whole properties of turbulent plasma 
transport [5]. Considering a model with trapped kinetic 
ions and electrons allows one to cover both TIM/TEM 
regimes simultaneously. These instabilities are character- 
ized by frequencies of the order of the trapped particle 
precession frequency, and their influence on anomalous 
transport is still under discussion. 

The present paper focuses on the building of a 4D re- 
duced model including trapped kinetic ions and electrons. 
The linear analysis of this model is performed. The paper 
is organized as follows. 
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Section 2 presents the motion of a charged particle in 
a tokamak. It can be noticed that this motion is integrable 
and can be divided into three parts: the cyclotron motion 
which consists of a fast rotation around the magnetic field 
lines, a “banana” like shape poloidal motion and a toroidal 
precession. Thus, in agreement with classical mechanics, 
it is interesting to use a set of action-angle variables where 
angles are related to these periodic motions and actions 
are three invariants related to the magnetic moment μ, the 
energy E and the toroidal kinetic momentum M . In this 
framework the Hamiltonian at the equilibrium only de- 
pends on actions so that using these coordinates provides 
great simplifications. In addition, the dimensionality is re- 
duced by averaging the motion over the cyclotron motion 
and the “banana” orbits, according to the fact that the 
instabilities are characterized by frequencies of the order 
of the low trapped particle precession frequency. 

The kinetic model for TEM and TIM instabilities is 
addressed in Section 3. It is a model parametrized by the 
two first adiabatic invariants namely the particle energy 
and the trapping parameter (or pitch angle). Vlasov equa- 
tions are much easier to solve using such a model. 

The quasi-neutrality constraint is used to ensure the 
self consistency of the model. This constraint is the main 
source of difficulties of the model for two reasons. Firstly 
the model dealing with the bounce averaged distribu- 
tion function allows us to calculate the “banana” density 
whereas the quasi-neutrality constraint requires the par- 
ticle density. The derivation of the polarization term is 
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required to obtain the particle density. Secondly, the den- 
sity is obtained by integrating the distribution function 
over the velocity which no longer appears in the model 
but which is a nontrival function of action-angle variables. 
In spite of this additional complexity, the gyro-bounce- 
averaged approach which is detailed in this paper remains 
numerically competitive as compared to the gyrokinetics 
approach to address the physics of trapped modes. In- 
deed, the complex expression of the quasi-neutrality does 
not annihilate the gain obtained by reducing the phase 
space from 5 to 4 dimensions. 

Finally, the results of the linear analysis of the model 
are given in Section 4. Analytic dispersion relations are de- 
rived and discussed. The behavior of both TIM and TEM 
is studied for different toroidal mode numbers. 

the ψ direction is assumed, hereafter the ψ dependence of 

Bmin is neglected and r(ψ) can be replaced by the inverse 
aspect ratio: ϵ = a . 

0 

In such a configuration, trapped particles have motions 
with very different time-scales (ωc      ωb       ωd), where ωc 
is the cyclotron frequency, ωb the back and forth frequency 
(or bounce motion) and ωd the slow toroidal precession 
frequency. 

 

2.2 Trapped particle motion 
 

The fastest motion for a charged particle is the well 
known cyclotron motion which is defined by its frequency, 

ωc,s = |qs|B 
, where s stands for the species and the Larmor 

radius of the rotation ρc,s = v⊥ . It can be shown that 
msv

2
 2 Single particle motion in a tokamak the so-called magnetic moment μ = ⊥ 

2|B| is an adiabatic 

This section outlines the orbit of a single particle in a pre- 
scribed magnetic field of a tokamak. In particular we focus 
on the development to obtain the characteristic frequen- 
cies of the system. These frequencies allow the reduction 

invariant. The motion of the guiding center is obtained by 
averaging the equations over the cyclotron motion. The 
coordinates of the guiding-center are xg =  (ψg, θg, ϕg) 
and the equations of motion write: 

dimensionality of the problem and the possibility of in- dψg 
= v

 (x ), (5) 
cluding electrons. Note that a more detailed development 
of the model is given in [6] for ion species. 

dt 
dψ g 

dθg 
= 

vg||(xg) 
+ v

 
 

(x ), (6) 
dt q(ψg)R dθ g 

2.1 Magnetic configuration dϕg 
= 

vg||(xg) 
+ v

 (x ), (7) 
dt R dϕ g 

In order to derive the kinetic model describing the trapped 
electron and ion modes in a Tokamak, we assume an 
axisymetric magnetic toroidal configuration and use the 
Boozer-Clebsch representation of the magnetic field [7]: 

B = ∇ψ ×  ∇(ϕ −  qθ) (1) 

with q the safety factor1 defined by q(ψ) = B.∇ϕ , θ and 
ϕ are respectively the poloidal and the toroidal angular 
coordinates. ψ is the poloidal magnetic flux normalized to 
2π and stands for the radial coordinate since: 

with vg   the guiding center velocity along the magnetic 
field lines, and vd the gradient and curvature drift velocity. 
In a tokamak plasma the kinetic pressure is much smaller 
than the magnetic pressure which is called the low-beta 
approximation. Using this approximation the gradient and 
curvature drift velocities can be written: 

m v2 + μ B 

v   = g|| (B × ∇|B|), (8) 

where B is estimated at the guiding center position xg. 

dψ = − R0Bθdr, (2) 

where Bθ =     ψ       ϕ does not depend on the toroidal 
angle φ coordinates. This relation allows us to use indif- 
ferently the radial and the poloidal flux coordinates, then: 

We can introduce two adiabatic invariants which are 

derived at first order in ρ٨2 = c,i from the guiding-center 
representations of the exact invariants of particles. These 
invariants are the kinetic energy and the toroidal kinetic 
momentum: 

{r, θ, ϕ}↔  {ψ, θ, ϕ}. (3) E = 
1 

m v2  + μB(x 
 
) (9) 

2    
s  g|| g 

In the limit of large aspect ratio tokamak of major and 
minor radius R0 and a, the magnetic field writes: 

M = qsψ(xg)+ msR(xg)vg||. (10) 

r(ψ) 
Since the total energy of a particle must remain constant, 

 
 

where Bmin(ψ) is the minimal value of the magnetic field 
at a given ψ and at θ = 0. Because a small system size in 

 
 

B is large enough, the parallel velocity eventually becomes 
zero, and the particle is reflected back to the weak-field 
region. This occurs for trapped particles which satisfy: 

1 In this paper, we note q  the safety  factor,  q0 the safety     1  
1+2Φ < λ with λ = μBmin . For this class of particles we 

factor at the magnetic surface ψ0 and qs the charge of the s 
species. 

can write: 
M = qsψ0, (11) 

B(ψ, θ) = Bmin(ψ) (1 −  cos(θ) , (4) the parallel velocity must necessarily decrease as a particle 
moves from a weak-field region to a strong-field region. If 
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constraint is derived when the response of passing particles 
is assumed adiabatic, while the kinetic response is retained 
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Fig. 1. Guiding-center orbit in a torus for a trapped particle. 
 
 

where ψ0 = ψ(x0) is the poloidal magnetic flux at the 
turning point x0. In its back and forth motion from 
one turning point to the other, with the frequency ωb, 
a trapped particle trajectory draws a banana-like shape 

 

deal with J1 and E which are usual quantities [12]. In the 
following the sets μ, E, M and J1, J2, J3 are used indiffer- 
ently. Averaging over the cyclotron motion (i.e. over the 
variable α1) gives the coordinates of the guiding center at 
the first order [9–11]: 

ψg  = ψ0 + ψ̂(J , α2), (14) 

θg  = θ̂(J , α2), (15) 

φg  = α3 + q0 θ̂(J , α2) + φ̂(J , α2), (16) 

Neglecting the deviation from regular precession motion 

φ̂(J , α2),  we  note  α = α3 = φg      q0θg.  Starting  from this 
point, we can then calculate the bounce frequency and the 
precession frequency [13]: 

  
2 E

 

  

vertical drift, due to vdθ and vdψ, leads to the width δb of b,s 
q0R0 

b 

this trajectory. 
Finally the drift in the toroidal direction vdϕ gives the 

third and slowest periodic motion defined by ωd, the fre- 
quency of the bounce-averaged toroidal drift. An illustra- 
tion of the toroidal precession is shown Figure 1. 
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(18) 

 
2.3 Action and angular variables 

 

A dynamical system that shows different periodic motions 
is the ideal framework for using action and angular vari- 

 
and 
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2E(κ2) 
 

 

2 2K(κ2) 

  
E(κ2) 2 

 

 
 ables. These coordinates will be useful to decrease the di- 

mensionality of our system. ω̄d = − 1 + 4s0 K(κ2) + 1   , K(κ2) 
Taking the two variables (P, Q) that are the canonical 

momentum-coordinate conjugate pair describing a peri- 
where κ2 = 1−λ is the pitch-angle parameter, s0 is the 
magnetic shear, and K(κ2) and E(κ2) are the complete 

 

 
for quasi-periodic motions where S is then an adiabatic 
invariant [8]. For trapped particles in the absence of per- 
turbation, three periodic coordinates exist, namely the cy- 
clotron phase ϕc, the poloidal and toroidale angles (θ, ϕ) 
due to bounce and precession motions. In the presence 
of an electric potential Φ and a magnetic vector poten- 
tial A, the Hamiltonian of a particle of mass ms and elec- 
tric charge qs reads: 

   1 2 
H = 

2m   
(P −  qsA)  + qsΦ (12) 

mak plasmas, it appears that the precession frequency of 
thermal particles is much smaller than their bounce fre- 
quency: ωd ωb. The ratio is typically of the order of 
q2ρc,s/(ϵ1/2r), with ϵ = r/R0. That is the reason why we 
will average over the bounce motion (α2) to study the dy- 
namics at the precession time scale which corresponds to 
the turbulence time scale. The final model will work in the 
space (ψ, α) which is close to the usual (r, φ) space. The 
second result is that the precession drift does not depend 
on the mass of the particle but on its charge. Thus the ions 
and the electrons precess with the same frequency but in 
opposite directions. 

with P the canonical momentum. In this framework, the 
action-angle variables are defined as [9–11]: ⎛

J1 = −  μ 
⎞

 
ms 

 

  

⎛ 
= ω (J )t + α 

⎞
 3 The kinetic model for TIM + TEM 

qs 
⎜ 

m v 
⎟ 

α1 c 10 

⎜
⎝

J2 
     s  G|| 

2π ⎠ 
α = = ω (J )t + α . 

α3 = ωd(J )t + α30 

In this section, we recall the Vlasov equation for the ba- 

nana particles and for the s species. The quasi neutrality 

Since vg  depends on energy E and J1, J2 is a function of 
these two invariants. Is it more convenient and easier to 

= J = 

spectively [14]. Noticably, given the charateristics of toka- 

κ −  

ω when projected on the poloidal cross-section. Indeed, the (17) 

odic motion, the action defined by S = P dQ is an in- elliptic functions of the first kind and second kind re- 

variant ( dS = 0). Note that this result can be extended 

J3 = M 
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for trapped particles. Finally we write the normalized set 

of equations of the trapped ion-electron model. 
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3.1 The gyro-bounce kinetic Vlasov equation 

In order to derive a kinetic model describing TIM and 
TEM instabilities we use the gyro-average over both the 
cyclotron motion and the bounce motion to write the 
Vlasov equation for each species in the (ψ, α) phase space. 
At the equilibrium averaging the Hamiltonian leads to: 

1 ∂Hs  
= ω → H  = E(1 + eΩ ψ) (19) 

 

with Ωd = ωd,sZs which does not depend on ψ according to 
equation (18), Zs the electric charge of the s species (Ze = 
1) and e is the elementary electric charge. This quantity 
does not depend on the species. We also assume that in 
the radial direction the precession frequency has a low 
ψ dependence. Then adding an electrostatic perturbation 
the Hamiltonian writes: 

Hs = E(1 + eΩdψ) + eZsJ0sΦ(J , α) (20) 

3.2 Quasi-neutrality constraint 
 

Using action-angle variables allows a very simple expres- 
sion of the Hamiltonian and consequently the gyro-kinetic 
Vlasov equation. The price to pay is to transfer the topo- 
logical difficulties to the quasi-neutrality constraint which 
is now more complicated. The spatial scale of the trapped 
particle turbulence is much larger than the Debye length 
(λ2 k2   1), that allows to replace Maxwell-Poisson equa- 
tion by the electro-neutrality constraint ni = ne. 

The first difficulty is to find the connection between 
the density, calculated by the integral of the distribution 
function over the velocity space, and the same density 
calculated with action-angle variables. For this purpose, 
by expressing and equalizing the two elementary volumes, 
we first write [10]: 

d3αd3J  = d3x4π
√

2m−3/2E1/2dE  
dλ 

. (24) 
s 4ω̄b 

with 0s is the average operator, taking into account the 
difference between the non locality of the calculated elec- 

Noting that m3d3xd3v = d3αd3J, we obtain: 

tric potential for “banana” particles and the potential at 
the real position of the particle, a more general formu- 

∫ +∞ 
  d3v 

= 
2fT 

∫
 

1 κK(κ2)dκ +∞ 
E1/2dE 

lation is given by [15]. It is obvious that this operator 
depends on the species. Indeed the average is performed 

−∞ 

 with 
(2π/m)3/2 

√
π 

2
√

2Φ 
 

 
 

0 

(25) 

over the bounce trajectory that shows different scales ac- 
cording to the species. In our case, we apply the more 
simple approach as given in [9]. First, due to the shape 
of the magnetic field the fluctuating electric potential is 
assumed to depend on ψ and φ q(ψ)θ only. Then, in the 
limit of large wavelengths kδb       1 and nρc        1, where 
n (resp. k) the toroidal (resp. radial) mode number, the 
average operator writes: 

fT = π the fraction of trapped particles. In order 
to derive the density we have to integrate the distribution 
function of the particles. 

The second difficulty is that the Vlasov equation of 
the system deals with the bounce averaged gyro-kinetic 
distribution function. The gyro-kinetic theory helps us to 
write the particle density as follows [10,11]: 

      

 
 

 
  

 

 

√ − 3      
  ∫ 1 

 

  

2 ∫ +∞ 

 
 

 
1/2 

with 
Teq,s       4 ψ

 Teq,s 4a2 α
 +  

qsneq fT  
Δ̄  (Φ). (26) 

 

 ρc0,s and δb0,s the thermal Larmor radius and the 
thermal banana width and Teq,s the equilibrium temper- 
ature of the species s. Finally we consider a Pade approx- 
imation which is equivalent to the exact operator at large 
wavelengths and ensures the damping of small scales [10]. 
The average operator then writes: 

Teq,s 

The difference between the particle density and the gyro- 
bounce-center density corresponds to an effective polar- 
ization. The density associated to this polarization can be 
expressed as a Laplacian operator defined by: 

E δ2 

 
  

 −1   
 

 

E  q2ρ2 
 

  

 −1 
 

  

  q ρ 2 

    

 
Finally the Vlasov equation for the species s reads: 

(22) A response of the passing particles is taken into account 
in our model [11]. For the fluctuating potential which have 

∂fs 

∂t  
−  J0sΦ, fs ]+ 

ΩdE ∂fs  
= 0, 

Zs ∂α 
(23) 

a non-zero gradient along the magnetic field (i.e. n = 0), 
the passing particle response is adiabatic. For the so called 
radial modes n = 0, a response that depends on the turbu- 

with the Poisson’s brackets defined by [f, g] = ∂αf ∂ψg 
∂αg∂ψf . Here fs is the bounce averaged gyro-kinetic 
distribution function of the species s, which represents 
the distribution of “banana centers”. Equation (23) is 
the same as the one derived in reference [6]. Each 
species evolves according to similar Vlasov-type equations, 
with species-dependent expressions of the gyro-bounce 
operator. 

lent regime must be considered [5]. In the ion turbulence, 
the electrons have no response for n = 0, due to their 
small Larmor radius. On the contrary, the ion Larmor ra- 
dius is larger than the electronic turbulence correlation 
length, therefore in this case the response of ions remains 
adiabatic for radial modes. 

Nevertheless, because the model can describe all 
regimes of turbulence, the response of passing particles for 

ψ b α a . α 
eq,s T ψ 

eq,s T 
0s 

s 

0 0 (21) 0 E 
1 +  

b0,s 
∂2 E 

1 +  J0s = 

s 

   
ns = 4fT π κK(κ )dκ J0sfsE dE 

c0,s 
∂2 

J = 1 − 1 − Δ̄s  = 
4 4a2 

∫ 

0 
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Teq,i 
i e Teq,ifT 

Teq,e φ (1+τ ) n 

Zs   nΩdE −  ω 

n 
2 

ad c,i c,e b,i b,e 

0 ψ ψ dr 0 

⎪ 
eq 

1 
⎪ 

  

    

0 

2 1 

 

radial mode will have an intermediate behavior between 
no response and an adiabatic response. Therefore, we in- 

let E = 0 at the equilibrium. In zeroth and first orders, 
the distribution functions and the electrostatic potential 

troduce the parameter λs (0 < λs < 1 = adiabatic) which 
describes the impact of the species response to the radial 
modes. Thus the density fluctuation of passing particles 
can be written: 

write: 
fs  = Feq,s  + f̃s, 

Φ  = Φ̃. 

 
(31) 

˜ (1 )q The linearization assumes retaining only terms up to first 
ns,p   

= − 
    − fT      s 

(Φ − λ  ⟨Φ⟩). (27) 

Finally, the quasi-neutrality equation reads: 

˜ ˜ 

will be neglected. The fluctuations are assumed to be of 
the form: 

3 
2 

J0ifiE 
 
1/2 dE−  

  
me     − 

2

 

 f˜s = 
Σ 

f 
 

s,n,ω (ψ)ei(nα−ωt), (32) 
neq 0 

+∞ 

0efeE 
0 

mi 

1/2dE 

n,ω 

Φ̃ = Φn,ω 

n,ω 

 
(ψ)ei(nα−ωt). (33) 

= −
   e     

Δ̄ (Φ)+τ Δ̄  (Φ)
 
+(1−f ) 

(1 + τ )e 
(Φ −  ϵ ⟨Φ⟩) 

 

 

Using the usual Landau prescription on the imaginary 

   

with τ = Teq,i   and ϵ  =  λi +τλe . For the sake of simplic- n 

 

κ  + κ 
  

E 
−  

3 
   

 

  
 

ity, we assume that 
∫ 1 

κK(κ2)dκ ∼ 1. The quasi neutrality 
fs,n,ω (ψ) = −1 

 
 

  Jn,sΦn,ω eq,s 

 
 difference comes from the adiabatic term (φ     φ ) which 

appears in the model in reference [6] to describe passing 
particles and trapped electrons, whereas only passing par- 
ticles are adiabatic in this paper. 

 

 
with 

CnΦn = 
5 2 

eq 

neq 

Σ

s    

∫

0

 

Jn,s fn,s 
E 

Teq 

1 
2   dE 

Teq 

(34) 

 

3.3 Normalization 

   

C   = 
   π  

C + C 
 
n2(ρ2 

 
+ ρ2 

 
) + k2(δ2 

 
+ δ2 )

   

The energy is normalized to a typical thermal energy T0, 
the time to a reference frequency ω0, the lengths are nor- 
malized to the radial size of the box in units of ψ and the 

electric potential to ω L , with L  = a  dψ   = aR B 

 

that contains the coefficients corresponding to the 
passing   particles,   the   polarization   term   and   κ−1 = 

(∂ψ log(neq, Teq))−1 the density  and the thermal  gradient 

Ê =  
E 

, 
T0 

t̂ = ω0t, ψ̂ =   
ψ  

, 
Lψ 

Φ̂ = 
Φ

 
ω0Lψ 

 
. (29) 

ature are assumed to be the identical for both species. 
Thus, the dispersion equation writes: 

The system then writes: ⎧ ∫ +∞ 

 
 

 

 

∫ +∞ 

 
 

∫ ∞ 

 

κn 

 
 

 
+ κT 

 

ξ −  
3 
   

 

 

2 √
πn̂ 

J0ifiÊ
1/2 

dÊ − 
J0efeÊ

1/2 
dÊ 

D = Cn −  
Ωd (ξ −  x) J 2  e−ξξ 2 dξ 

⎪⎪⎨  = T̂eq,i ¯ Cad(Φ̂ − ϵΦ ⟨Φ̂⟩) − Cpol Δ̄i(Φ̂) + τ Δ̄e(Φ̂) )] ∫ ∞  κn + κT 
3 ξ −  

2 1 
∂fe 

⎪    ∂t̂   
−
 

 
 

 

 
J0eΦ̂, fe 

 
  

— ÊΩ̂d ∂fe  
= 0 

 
∂α 

0 Ωd (ξ + x) 

 
  

Jn,e e−ξξ 2 dξ (35) 

∂fi 
−
 
J
 

Φ̂, f 
  

+ ÊΩ̂ 
∂fi 

= 0 
 with ξ =   E , x = ω . The first integral on the 

with Ω̂ = Ωd T0 , C = eω0 Lψ   and C (30) 
= Cpol(1+τ)(1−fT ) . right hand side, driven by the ion dynamics, shows that the resonance between wave and ions occurs when the d ω0 pol T0 ad fT phase velocity has the same sign as the ionic precession 

For the sake of clarity of reading, hereafter the notation 
“ˆ” is no longer used. 

 
4 Linear analysis of the system 

4.1 Getting the dispersion relation 

With the aim of deriving the dispersion relation from 
the set of equation (30) for TIM and TEM modes, we 

drift (i.e. ω > 0). Similarly, the resonance between the 
electrons and wave occurs when the phase velocity has the 
same sign as the electronic precession drift (i.e. ω < 0). 

The stability of the system can be found by deriving 
the stability threshold in the   (κn, κT ) plane,   for which 
γ = Im(ω) = 0. 

Note that in order to determine the instability growth 
rate we will focus on the area where instabilities can oc- 
cur, i.e. for which Im(γ) > 0. Since the real axis is never 

(nTeq Ωd) Teq i 0i 

∂t̂  

 ̄

n,i 
0 0 

(ψ)F 
2 T̄ 

, the system writes: ω part of 
(28) 
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2 

order, so that the term in the Vlasov equation 

T φ 

T 

exhibits the same structure as in reference [6]. The main 
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lengths. Here the gradients and the equilibrium temper- 
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Table 1. Main parameters used for the linear analysis. 200 
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crossed, the function 
√

x can be trivially used. In this case, 
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0 

taking Fs(ξ) = κn + κT 
  

ξ −  3 
  
J 2   (ξ) the equation (35)  −50 

can be written: 
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Fig. 2. Real frequency of the trapped electron (resp. ion) 
modes in red (resp. in blue) plotted against the toroidal mode 
number n. The green line is ω = 3 n and corresponds to the 
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the plasma dispersion func- 
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tion defined by Fried and Conte [16]. Note that for x ∈  
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0 

10 

Z(ix) = iπ 2 e    erfc(x) (37) 

with erfc(x) the complementary error function. Note that, 5 

close to the resonance in (36) the term Fs (ξ)−Fs(∓x) 
does 

not diverge and goes to the ξ derivative of  
(ξ±

. 
x)

 
0 
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n 
 
4.2 Solutions, trapped ion and trapped electron modes 

 
In this section, the dispersion relation is solved by scan- 
ning the (ωr, γ) plane, looking for values of ω = ωr + iγ 
such that the dispersion function vanishes within machine 
precision. For this purpose a method that finds the mini- 
mum of a scalar function of several variables, starting at 
an initial state, and uses the simplex search method [18], 
is used. Among these solutions one finds the couple (ωr, γ) 
for which the instability growth rate is maximum. All 
results presented in this section are obtained with the 
plasma parameters given in Table 1. 

In Figures 2 and 3 the linear growth rate and the real 
frequency for (κn = 0, κT = 0.25) are plotted against n. 
Note that for κn = 0 the marginal solutions are trivial. 
Indeed equation (35) shows that the imaginary part of 

Fig. 3. Linear growth rates of the trapped electron (resp. ion) 
modes in red (resp. in blue) plotted against n. 

 

 
The absolute linear instability threshold is plotted in 

Figure 4 as a function of κn and κT beyond which there is 
at least one unstable mode. For κn > 0, this threshold is 
equivalent to the diagram of instability threshold for the 
mode n = 1. On the other side of the plane (κn < 0), the 
threshold is obtained by scanning the stability diagram 
over mode number n. 

It is interesting to observe which kind of instability 
(TIM or TEM) occurs beyond this threshold. In Figures 5 
and 6 the diagrams of instability threshold for n = 40 and 
n = 100 are shown. For n = 40 the instability diagram 
shows three distinct zones. The stable region where no 
instability can occur, obviously contains the point (κn = 

the dispersion relation vanishes for x ≡ ω     = ±  3 [9]. In 0, κ  = 0). Based in Figures 2 and 3, we can conclude that 
Figure 2, we observe that the negative pulsation (in the 
electronic precession direction) and the positive pulsation 
(in the ionic precession direction) are in good agreement 
with the curve ωr = 3 n. Figure 3 shows that for low 
toroidal mode numbers n both species can be destabilized, 
whereas only TEM modes are unstable for large n. This 
agrees well with the behavior of the gyro average operator 
which depends on ρc and n. 

the top area presents two roots, both species developing an 
instability. Between these two regions, one area where only 
trapped electrons can develop an instability exists. We 
notice that TEM shows a lower instability threshold than 
TIM, which is in agreement with what is expected [5,19]. 
For largest toroidal mode numbers, 0i is close to zero and 
only TEM instability is expected. This is in agreement 
with the result shown in Figure 6, where only stable and 

−∞ 

marginal TIM mode [9]. 
0 

ω
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ω
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Fig. 4. Absolute linear instability threshold as a function of κn 

and κT with the parameters listed in Table 1. 
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Fig. 6. Linear instability threshold as a function of κn and κT 

for n = 100. 
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will be implemented in the nonlinear semi-lagrangian 
TERESA code [21,22]. The study of the nonlinear interac- 
tions between TEM and TIM modes will be investigated. 
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Fig. 5. Linear instability threshold as a function of κn and κT 

for n = 40. 

 
unstable regions driven by trapped electron modes can be 
distinguished. 

Usually, it is expected that the ion instability is dom- 
inant [19]. On this regime, the instability threshold is ex- 
pected to be lower at low values of κn. Indeed an increase 
of κn has an stabilizing effect [20]. The above results show 
a completely different situation where the TEM instabil- 
ity is dominant. This result is due to the fact that the 
model only deals with TEM and TIM modes  and that 
ITG instabilities due to passing particles are not taken 
into account. 

 
5 Conclusion 

The trapped ion and electron driven modes have been 
studied by solving linearly a Vlasov equation averaged 

over the cyclotron and bounce motion of trapped particles. 
This model allows to reduce the dimensionality of the dy- 
namical system. The distribution function depends on the 
radial coordinate and the precession angle of trapped par- 
ticles and is parametrized by the energy and pitch angle. 

The accuracy of the model has been verified with an 
exact solution in the marginal case. In a next work the 
effects of the passing ions will be studied by artificially 
reducing the electron response. The next step is to per- 
form nonlinear investigations. Moreover, in order to study 
the effect of trapped electron, a kinetic electron response 

do not necessarily reflect those of the European Commission. 
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