N
N

N

HAL

open science

An Observe-and-Detect methodology for the security
and functional testing of smart card applications

Germain Jolly, Sylvain Vernois, Christophe Rosenberger

» To cite this version:

Germain Jolly, Sylvain Vernois, Christophe Rosenberger. An Observe-and-Detect methodology for the
security and functional testing of smart card applications. International Conference on Information

Systems Security and Privacy (ICISSP), Feb 2016, Rome, Italy. hal-01286831

HAL Id: hal-01286831
https://hal.science/hal-01286831
Submitted on 20 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01286831
https://hal.archives-ouvertes.fr

An Observe-and-Detect methodology
for the security and functional testing of smart card applications

Germain Jolly!, Sylvain Vernois' and Christophe Rosenberger!

YWniversite de Caen Basse Normandie; ENSICAEN; UMR 6072 GREYC, Caen, France
{germain_jolly, sylvain.vernois, christophe.rosenberger} @ensicaen.fr

Keywords:

Abstract:

Security, Analysis, Smart Card application, Observation, Detection, Evaluation, WSCT Framework

Smart cards are tamper resistant devices but vulnerabilities are sometimes discovered. We address in this pa-

per the security and the functional testing of embedded applications in smart cards. We propose an original
methodology for the evaluation of applications and we show its benefit by comparing it to a classical certifi-
cation process. The proposed method is based on the observation of the APDU (Application Protocol Data
unit) communication with the smart card. Some specific properties are verified as a complementary method
in the evaluation process and allows the on-the-fly detection of an anomaly and the reasons that triggered this
anomaly during the test. Here are presented two uses of this method: a simple use to illustrate the use of prop-
erties to verify an implementation of an application and a more complex illustration by applying the fuzzing
method to show what we can obtain with the proposed approach, i.e. an analysis of an anomaly.

1 INTRODUCTION

While smart cards have invaded our daily lives,
the question of the quality of the card application
arises. EMVCo reports that 1.62 billion payment
cards and 23.8 million terminals in circulation glob-
ally are based on EMV technology (EMVCo, 2013).
The development of an application on a smart card
is not an easy task (Rankl, 2007). Not clear enough
specifications or having a too large number of im-
portant variables make the development of smart card
implementation difficult. Testing aims at discovering
anomalies in actual behavior of a system compared to
what is expected. Moreover, it is not possible to test
an application in a smart card over the full range of
input variables. The full testing would cost too much
in time and significant resources.

For functional and security testing, it is necessary
to validate each step and each element of a smart card.
It is unrealistic to use a secure and certified compo-
nent with a poorly implemented program. The pro-
gram must also be validated and certified. The def-
inition of the criteria for evaluating security allowed
product certification (Wallace et al., 1996). Recog-
nition of these criteria allows mutual recognition be-
tween different structures and different countries. A
certified product is tested not only by certification lab-
oratories but also by the manufacturer during its de-
velopment. The certification allows recognizing the

level of security of a product by an external labo-
ratory. EMVCo is providing the EMVCo Security
Evaluation Process to its members (Alliance, 2011).
It ensures a robust security foundation for smart card
and related products. The Card Type Approval pro-
cess allows testing compliance with the EMV spec-
ifications. Another document called Card Type Ap-
proval process provides an increased level of confi-
dence. To summarize, EMVCo provides documents
to test, evaluate and approve a smart card but also
a list of Approved Security Evaluation Laboratories
(EMVCo, 2012). For validation purposes, meaning-
ful I/O sequences are generated.

While in the industrial field, evaluation is espe-
cially enabled by testing tools, academic research has
proposed many different methods. There are several
kinds of verification and validation (V&V) methods:
control (technical notice, reviews), analysis (mathe-
matical verification) or test (focus on input/output).
Most of the academic research works consider white-
box systems (known source code and secrets).

e Static analysis is an analysis method ((Distefano
and Parkinson J, 2008), (Philippaerts et al., 2014)
or (Ahrendt et al., 2005)) allowing to ensure that
defined coding practices are being followed.

o The model checking is a method consisting of ver-
ifying if a model of an abstraction or a system
follows the specifications ((Sabatier and Lartigue,

1999)). The model checking is used to check all
possible paths of the state machine defining an ap-
plication on smart cards.

e The test method allows to discover errors at all
levels of systems ((Philipps et al., 2003), (van
Weelden et al., 2005)). We can also discern
the structural test from the functional test. This
method is the most used method in the industrial
field. The main problem of the test is to build data
input that will provide the higher test coverage.

e Fuzzing is a automatic generation of a large num-
ber of test cases ((Lancia, 2011), (Bekrar et al.,
2012) or (Alimi et al., 2014).). The test is used to
verify one specific path in the state machine of the
application. This approach allows an automatic
generation of test cases. The problem is that this
method costs smart cards (as they are not sched-
uled to accept so many transactions). The main
drawback of this approach is also the difficulty to
fully understand the scenario that permits to gen-
erate an attack.

The presented method here allows both verifica-
tion of the complete application on a smart card, or
at least provides an accurate documentation of a de-
tected anomaly. The method detects an anomaly rel-
ative to the expected behavior and provides accurate
documentation of the reasons that triggered this error.
The proposed method detects vulnerabilities through
the observation of the APDU communications. It im-
proves the documentation comparing to the results of
known evaluation methods as the test method used to
verify, validate and evaluate a smart card. We would
like to mix the efficiency of the whitebox methods
with the simplicity of the blackbox ones.

In the second section, we provide some necessary
background on smart cards and their certifications.
The methodology is defined in the third section. Sec-
tion 4 deals with the results obtained by creating a
proof of concept using the WSCT framework for the
payment application and the second use of the method
mixed with a fuzzing method.

2 BACKGROUND

We focus on the smart card application. For
the payment, EMVCo provides EMV (Europay Mas-
terCard Visa) specifications and the CPA (Common
Payment Application) specification (Watanabe et al.,
2006). Moreover, proprietary specification is added
to develop a smart card application.

In this work, the MasterCard M/CHIP specifi-
cation, an EMV-compliant specification for Master-

Command ApDU : | CIA |—{ s |—{ P2 || P2 |—{ 1c |uoc|| i |
Response APDU : E} ﬂ} M

Figure 1: Communication between the terminal and the
smart card

card smart cards, is studied. The application con-
tained on the chip can take several states (selected
performed, GPO performed, ...). The evolution of the
state of the application is allowed by sending com-
mands APDU (select, get data, GPO, ...) and receiv-
ing responses APDU (9000, 6283, ...). A machine
state is given by Mastercard to illustrate the M/CHIP
application in its proprietary specification.

The payment application can pass from a state to
another only by receiving and responding to a series
of command/response pairs, this is the concept of ap-
plication state. We cannot only consider the accep-
tance of a command and its response without consid-
ering its current state.

A terminal communicates with the smart card by
sending commands and receiving responses. In the
figure 1, we can see the structure of APDU com-
mands and APDU responses according to ISO/IEC
7816. CLA indicates the type of a command, INS
a specific command, P1 and P2 are parameters for a
command, LC indicates the length of the UDC which
is optional data and LE indicates the length of the ex-
pected data. Expected data, only contained in the re-
sponse if LE is in the command, are the UDR. Finally,
SW1 and SW2 are mandatory in the response and are
the command processing status.

During the life of a product, we have to ask some
questions (Radatz et al., 1990) :

e Verification : Are we building the product right ?
e Validation : Are we building the right product ?

e Evaluation : How can we interpret the verifica-
tion and validation ?

o Certification : Are the evaluation results ap-
proved by a specific firm?

To evaluate and validate the product, several tests
are made during the different steps of the life of the
smart card (Rankl and Effing, 2010). All aspects of
the card (application, chip and personalization data)
must be validated to ensure a secure product. Once
designed and validated, the card is certified. The cer-
tification allows recognizing the level of security of a
product by an external laboratory.

According to ISO 8402 (for Standardization,
1994), quality is defined as the totality of features
and characteristics of a product or service that bear on

its ability to satisfy the stated or implied needs. The
two most important attributes of quality are robust-
ness and freedom from defects and errors. Concern-
ing this field, the test is mostly used for the evaluation
of a smart card and the evaluation of a software is
called software evaluation. The purpose of testing is
always to find defects and errors, and the entire testing
process must be oriented towards this purpose. Tests
can never be complete, since it is never possible to
fully work through all possible permutations. We ob-
tain a desired level of quality. As tests can never fully
cover everything, it is difficult to define a completion
criterion for test development. The rule of thumb is
that the same amount of effort should be spent on
test development as on product development (i.e. try
to achieve full requirements coverage with the tests).
The minimum level of instruction coverage should be
in the 95% range, and the branch coverage should be
in the 80% range (Rankl and Effing, 2010).

3 PROPOSED EVALUATION
METHODOLOGY

3.1 Objectives

From a certified card, we get a collection of proper-
ties, local and required behaviors (first, this collection
is created manually but we are working on this topic
to automatize the generation). These properties are
used by the Observer to determine if a card applica-
tion is correct. In order to reach this goal, a modified
smart card, containing a modified smart card applica-
tion of the certified one, is used with a terminal. In
our case, it is a terminal doing a nominal EMV trans-
action. The Observer therefore takes as input the com-
munication between the tested card and terminal and
the collection of properties to check. Note that the
verification of the state machine is possible. During
the communication, the Observer recovers transmit-
ted data and detects an anomaly on the fly. Finally, a
report is created.

3.2 Property Language

To detect abnormal behaviors and give some docu-
mentation about the reasons that triggered those be-
haviors, we define the properties that correspond to
required and local behaviors of an application. The
section defines the property language.

3.2.1 Basis

Unlike formal methods such as model checking or
proof of theorem approaches, we are checking prop-
erties while observing the transmitted communica-
tion during the transaction. In fact, in studies like
(Posegga and Vogt, 1998) (Sabatier and Lartigue,
1999) (Lanet and Requet, 2000) (Jacobs et al., 2004)
or (Haneberg et al., 2007), the verification needs a for-
mal model or the access to the source code. With our
language, we can define the required behavior (local
and global) using only the transmitted data.

3.2.2 Definitions

The language allows us to define both a state machine,
allowing to follow the actual behavior of the appli-
cation and also to define the properties as defined in
(Jolly et al., 2014).We can follow the global behavior
of the smart card but also detect local changes in the
application behavior.

To define this behavior, we have two types of el-
ements. First, we have the element representing the
APDU communication. The APDU data is defined
by :

o Instruction : represents the CLA and INS bytes
of a command APDU

e Parameters : represents the Pland P2 bytes of a
command APDU

e Status : represents the SW1 and SW2 bytes of a
response APDU

The second type is the logical relation between
two or more elements. The logical relation between
APDU are defined by :

e And : elements are all true
e Or : one element is true
e Nor : elements are all false

In addition to the previous elements, defining a
machine state, i.e. a global behavior of a smart card
application, requires these tags :

e cardstate : the name of the state of the applica-
tion used to follow the actual behavior of the ap-
plication.

— name : name of the cardstate
— default : the initial state of the machine state

e transition : allows modifying the actual state of
the smart card application
— name : name of the transition
— from : previous cardstate
— to : next cardstate

e from / to : to construct the transitions between
cardstates

— nom : name of the begining cardstate

For the definition of property, we need the follow-
ing elements to define properties :

e property : required and local behavior of the
smart card

— name : name of the property
— explanation : description of the property

e step : indicates the order of elements

For each of these elements, we can work on trans-
mitted data (i.e. UDC or UDR data). We added tags
to recover the plain transmitted data. If we recover
TLV data, we should be able to work with only one or
several specific values.

o cdata : allows to recover the plain udc data
e rdata : allows to recover the plain udr data

e Tag : allows to verify the value of a particular
TLV data, contained in a response APDU

— name : name of the tag (example : 0x9F27)
— value : value of the TLV data (example : 0x40)

e mask : allows to apply a mask on the values

e call : allows to call a function to manage the
data for a particular property (example : check-
ing of the validity of a specific data). This last
element permits to improve the verification by
adding some functionnality to the properties and
particularly on the studied data that can be en-
crypted and can be added to every step of a prop-
erty.

3.3 Development tools

Many tools exist to help verifying and validating
smart cards. Here are several independant or aca-
demic tools able to work with smart cards:

e SmartCard Framework, an independant tool to
easily develop a smart card application (Rouit,
2011)

e Open SCDP, a collection of tools for the develop-
ment, test and deployment of smart card (Card-
Contact, 2012)

e Javaemvreader, a tool to communicate with, and
read data from an EMV smart card (Sasc, 2014)

e PCSC_sharp, an independant tool in order to work
with smart cards (Mueller, 2012)

e CardPeek, an independant tool to read the con-
tents of smart cards (Pannetrat, 2010)

e OPAL, a library for developing tools for Smart
Card research and education (Bkakria et al., 2011)

o WSCT, a framework able to easily explore and
work with smart cards (Vernois and Alimi, 2010)

Funct.* | Doc. | Maint.
SmartCard Framework * *x *
OpenSCDP *x * Kk Kk Jok
Javaemvreader * * * * *
PCSC_Sharp * * *
OPAL * % * % * %
CardPeek * * * * % *
WSCT * % K * ok k

* Functionalities contain observation, extension and
replay mechanisms. The more there are stars like
*, the more the tool is interesting for this feature
for the Functionnalities, Documentation and Mainte-
nance criteria.

3.4 Discussion

WSCT (Vernois and Alimi, 2010) is a framework de-
veloped by Sylvain Vernois et al. at Greyc for several
years. It is written in C# and allows to work with
smart cards, e.g. for exploration and finding fault on
smart cards. The two main purposes of this tool are to
provide :

e an object-oriented API to access a smart card
reader.

e an evolutive GUI (with creation of plugins) to
manipulate different types of smart cards.

Using this framework, we have easily created
two plugins. Indeed, WSCT framework has an easy
extension mechanism. We choose to create seperate
plugins to emphasize that the Observer platform
is not linked to the terminal. The Observer can
be used on every kind of terminal (nominal or test
transaction).

We used this tool to develop the proposed prop-
erty language in order to observe communication,
thanks to the possibilities of the framework, and de-
tect anomalies, thank our language.

4 JLLUSTRATION

Here, we are showing two studies done with this
observation tool. The first deals with EMV transac-
tion, i.e. we are verifying an existing implementation
of the EMYV transaction. The second is about the use
of the properties to analyze Fuzzing’results on a PME

implementation, an e-wallet application. We are fo-
cusing on the smart card application using a correct
and non-malicious smart card reader. For each study,
the reference to see the divergence with the correct
behavior is the collection of properties (a set of asser-
tions based on the transmitted data between the cer-
tified smart card and the terminal) that can be partial
or complete. In our study, we use specific, local and
required behaviors in order to check a specific part of
the application.

4.1 Observation of the EMYV transaction
4.1.1 View of the platform

Two plugins are needed for our method: one to com-
municate with the smart card and one to observe the
communication and do the properties verification. We
add an automat to follow the behavior of this smart
card. We decided to add the machine state of the EMV
application based on (Aarts et al., 2013). The inputs
of the Observer are communication APDU and the se-
lected properties to verify.

4.1.2 The used protocol

The protocol we used is based on three main points:

o the smart card application and its documentation.
Using the documentation, we manually model the
local behaviour. Also, it should be mentioned
sooner that the properties are encoded with XML.
We used our own EMV smart card application cer-
tified by a laboratory.

o the application to do the transaction because this
method uses APDU communication between a
terminal application and the smart card applica-
tion. We used the WSCT framework to create
an EMV explorer able to do the EMV transaction
with the smart card application. (It can be simpli-
fied by the use of an extern terminal observed by
the WSCT functionalities).

e the Observer, an application able to recover
APDU communication and detect a bad behav-
ior of the smart card application. It simply com-
pares the transmitted APDU communication with
the theorical behaviors defined in the xml file.

4.1.3 Observation of smart card application

To define the machine state, we need two elements:
“cardstate” and “transition”. The listing 1 shows a
partial machine state of the payment application. We
call “selected” the state when the application is se-
lect (and so select performed) and “initiated” when

the GPO command (initiation part of the transaction)
is performed.

Listing 1: Partial machine state of the payment application

<machine>
<cardstate name="Selected” />
<cardstate name="Initiated”/>
<transition text="GPO">
<from name="selected” dir="Down” />
<to name="1initiated” dir="Up” />
<and>
<instruction="0x80A8" />
<status="0x9000"/>
</and>
</transition>
<transition text="else”>
<from name="initiated” dir="Right” />
<to name="selected” dir="Right” />
</transition>
</machine>

Figure 2 presents an illustration of the machine state
observation of the payment application, which is im-
plemented in the Observer plugin.

State

script command

Figure 2: Observation of the machine state evolution

4.1.4 Example of property detection

To illustrate our study, we take the example from
(Jolly et al., 2014). The property P3 represents the
behavior between the “’selected” and initiated” states
using only one command. The property P3 is defined
on three clock cycles, i.e. three pairs APDU com-
mand/response. If one wants to check the value of
a TLV data, one could have added a TAG verifica-
tion as previously defined. Here, we checked only
the success or the failure of the GPO (Get Processing
Options) command between two particular states of

the application. The xml file in the listing 2 is the P3
property usable by the Observer.
Good behavior with three GPO commands:

purse. It’s a much more simple application than the
EMV one.

4.2.1 Basis of the study

P3: ((SW1(1)=90) and (SW2(1) =00) and (SW1(3) #90) and

0)) or

(SW2(3) # 00) and (SW1(5) =90) and (SW2(5) = 00)
(INS(0) = A8) and (INS(2) = A8) and (INS(4) = AB)

Listing 2: P3 property

<property name="Third GPO”>
<step>
<instruction="0x80A8” />
<status="0x9000” />
</step>
<step>
<instruction="0x80A8" />
<nor>
<status="9000"/>
</nor>
</step>
<step>
<instruction="0x80A8" />
<status="0x9000" />
</step>
</property>

To understand the scope of the detection proper-
ties method,here is a comparison of three possible be-
haviors of the application:

e a) The first case is the result of a successful and
ordered test from the selection of the application
to the use of Generate AC command. The tester
knows the expected behavior of the application
comparing to his test. The application responds
appropriately to the known configuration of the
test. The property is not violated.

e b) The second case presents an unusual refusal
Generate AC command but also detection of the
violation of the property P3, which explains the
reason for the anomaly detected by the test. The
property violation detection gives an improved
documentation about the result of the test.

e ¢) The third case is correct behavior relative to the
test result. But the property has been violated. In
fact, the application contains an error but it’s not
critical comparing to the behavior of the applica-
tion with the computed test.

4.2 Fuzzing analysis of a PME
implementation

The same observation method can be used during a
fuzzing session to complete the analysis of an im-
plementation. The PME application is an electronic

A reference implementation, an own implementation
and a set of scripts (one script is a possible transac-
tion) are inputs of the evaluation system. (Items such
an XML file representing the application and an XML
file containing properties are generated from the ref-
erence implementation or associated documentation).
The system sends the scripts to both applications and
detects a difference between the implementation, i.e.
an anomaly is detected. To analyze the reasons for
this error, the system uses the violated properties ob-
served by the tool.

The terminal sends the N transaction scripts to the
two smart cards. if it detects a difference between our
implementation and the reference one, an anomaly
is detected. The Analysis tool is composed of three
main modules:

e A) The Observation Module recovers APDU
communication (we used a representation of the
evolution of the application state as in figure 3 but
it’s informative information).

e B) The Detection Module detects a difference be-
tween two implementations of an application (the
reference implementation and the tested one).

e () The Analysis Module can give more informa-
tion about a detected anomaly.

4.2.2 Experimental results

To study the addition of the method on an evaluation
method such as fuzzing, we have used electronic wal-
let application called PME application. In order to
compute our tests, we used :

e 4 implementations: one is the reference imple-
mentation and the others contains errors (defec-
tive verification of balance during a debit opera-
tion, defective check of pin code and unmanaged
blocking of the card when using false pin code)

e 2 scripts of transaction: these scripts allow to
compute several different transactions in order to
detect the presence of an anomaly (by checking
the difference between the responses of the ref-
erence implementation and the responses of the
tested implementation)

e 5 properties: we use a limited number of proper-
ties because we are showing the feasibility of the
method on our own smart cards. Each property is
a local and required behavior of the smart card ap-
plication (given by the reference implementation
which must be validated).

We may also use the documentation of an appli-
cation to create these elements. Having a reference
application is simpler for our study.

4.3 Explanation of an example

This example explains an anomaly detection: the de-
fective blocking of the card if the user is testing too
many pin code. Without blocking the application,
the so-called brute force attack would be possible.
The script therefore sends over n times a wrong pin
code (n is the maximum number of false pin code de-
fined by the application documentation). When the
pin code is accepted by the tested smart card but not
by the reference smart card, an anomaly is detected.
We just need to look the observer to see the violated
property to understand the reason of the anomaly. We
have, in this example, three properties in the listing 3.

e The first checks that the blocking displayed by the
error code is effective, i.e. it is not just a superfi-
cial blockage.

e The second ensures that the application sends an
error message, equal to 9170, once the counter is
zero, i.e. the smart card has processed the infor-
mation correctly.

e The latest involves a control method. We observe
two failed uses of the verify command. In this
case, the difference between the two error codes
is 1, i.e. the counter is decremented correctly.

Listing 3: Example of explanation by properties

<properties>
<property name="blocageOK™>
<step>
<instruction instruction="0x9020"
/>
<status status="0x9170" />
</step>
<step>
<instruction instruction="0x9020"
/>
<require>
<status status="0x9170" />
</require>
</step>
</property>

<property name="blockOneLeft”>

<step>
<instruction instruction="0x9020"
/>
<status status="0x9111” />
</step>
<step>
<instruction instruction="0x9020"
/>

<status status="0x9170” />
<nor>
<cdata cdata=701020304"/>
</nor>
</step>
</property>

<property name="block”>
<step>
<instruction="0x9020" />
<nor>
<status="0x9000” />
<nor>
</step>
<step>
<instruction="0x9020" />
<nor>
<status="0x9000” />
<status="0x9170” />

<nor>
<require>
<call method="control” />
</require>
</step>
</property>
</properties>

4.4 Advantages and Improvements

The use of properties allows verifying an implementa-
tion as an efficiant and stand alone evaluation method.
The efficiency of this method is due to the efficiency
of the description of the application, i.e. a full collec-
tion of properties must be defined. We need also have
a full documentation of the application or a certified
implementation of the application. The method can
be used with another evaluation method as fuzzing in
order to give more documentation about an error de-
tecter by the fuzzing report.

S CONCLUSIONS

This paper has defined a language property related
to the verification approach exposed in this paper.
The two main principles of this method are: the com-
munication observation and the property violation
detection. Using this language, we have defined the
machine state corresponding to our studied smart
card application to observe the global behavior.
And more interesting, we have defined properties to
detect anomalies and the reasons that triggered those
anomalies. We have created the observe-to-detect
tool using the WSCT framework. Finally, the viola-
tion detection allows us to give more documentations
about a detected error or an undetected anomaly by a

test plan. We have been able to validate our method
with the creation of our own smart card application
and our own intern terminal. Moreover, the use of
this method mixed with a known evaluation method
as the fuzzing shows complementary information
about an anomaly. It is easier to explain fuzzing
results, i.e. find the reasons of a detected error on a
smart card application as the PME application.

The perspectives of this work is to automatize the
creation of properties for a specific application as an
EMV payment application. Indeed, creating proper-
ties manually allows us to validate our method with
suitable properties. With an automatic generation, we
will be able to have a complete and user configurable
collection.

REFERENCES

Aarts, F., De Ruiter, J., and Poll, E. (2013). Formal models
of bank cards for free. In Software Testing, Verification
and Validation Workshops (ICSTW), 2013 IEEE Sixth
International Conference on, pages 461-468. IEEE.

Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M.,
Hihnle, R., Menzel, W., Mostowski, W., Roth, A.,
Schlager, S., et al. (2005). The key tool. Software
& Systems Modeling, 4(1):32-54.

Alimi, V., Vernois, S., and Rosenberger, C. (2014). Analysis
of embedded applications by evolutionary fuzzing. In
High Performance Computing & Simulation (HPCS),
2014 International Conference on, pages 551-557.
IEEE.

Alliance, S. C. (2011). Card payment roadmap in the united
states: How will emv impact the future payments in-
frastructure? White Paper. February.

Bekrar, S., Bekrar, C., Groz, R., and Mounier, L. (2012).
A taint based approach for smart fuzzing. In Soft-
ware Testing, Verification and Validation (ICST), 2012
IEEE Fifth International Conference on, pages 818—
825. IEEE.

Bkakria, A., Bouffard, G., Iguchi-Cartigny, J., and Lanet, J.-
L. (2011). Opal: an open-source global platform java
library which includes the remote application manage-
ment over http. In e-Smart 2011.

CardContact (2012). http://www.openscdp.org/.

Distefano, D. and Parkinson J, M. J. (2008). jstar: Towards
practical verification for java. In ACM Sigplan No-
tices, volume 43, pages 213-226. ACM.

EMVCo (2012). https://www.emvco.com/approvals.aspx.

EMVCo (2013).

for Standardization, I. O. (1994). ISO 8402: 1994: Quality
Management and Quality Assurance-Vocabulary. In-
ternational Organization for Standardization.

Haneberg, D., Grandy, H., Reif, W., and Schellhorn, G.
(2007). Veritying smart card applications: an asm ap-
proach. In Integrated Formal Methods, pages 313—
332. Springer.

Jacobs, B., Marché, C., and Rauch, N. (2004). Formal ver-
ification of a commercial smart card applet with mul-
tiple tools. In Algebraic Methodology And Software
Technology, pages 241-257. Springer.

Jolly, G., Vernois, S., and Lambert, J.-L. (2014). Im-
proving test conformance of smart cards versus emv-
specification by using on the fly temporal property
verification. In Recent Trends in Computer Networks
and Distributed Systems Security, pages 192-201.
Springer.

Lancia, J. (2011). Un framework de fuzzing pour cartes a
puce: application aux protocoles emv. In Symposium
sur la Sécurité des Technologies de lInformation et des
Communications (SSTIC), page 82.

Lanet, J.-L. and Requet, A. (2000). Formal proof of smart
card applets correctness. In Smart Card Research and
Applications, pages 85-97. Springer.

Mueller, D. (2012). https://code.google.com/p/pcsc-sharp/.

Pannetrat, A. (2010). https://code.google.com/p/cardpeek/.

Philippaerts, P., Miihlberg, J. T., Penninckx, W., Smans, J.,
Jacobs, B., and Piessens, F. (2014). Software verifica-
tion with verifast: Industrial case studies. Science of
Computer Programming, 82:77-97.

Philipps, J., Pretschner, A., Slotosch, O., Aiglstorfer, E.,
Kriebel, S., and Scholl, K. (2003). Model-based test
case generation for smart cards. Electronic Notes in
Theoretical Computer Science, 80:170-184.

Posegga, J. and Vogt, H. (1998). Byte code verification for
java smart cards based on model checking. In Com-
puter SecurityESORICS 98, pages 175-190. Springer.

Radatz, J., Geraci, A., and Katki, F. (1990). Ieee standard
glossary of software engineering terminology. /EEE
Std, 610121990:121990.

Rankl, W. (2007). Smart Card Applications: Design Mod-
els for Using and Programming Smart Cards. Wiley
Online Library.

Rankl, W. and Effing, W. (2010). Smart card handbook.
John Wiley & Sons.

Rouit, O. (2011). http://www.codeproject.com/articles/17013/smart-

card-framework-for-net.

Sabatier, D. and Lartigue, P. (1999). The use of the b for-
mal method for the design and the validation of the
transaction mechanism for smart card applications. In
FM99Formal Methods, pages 348-368. Springer.

Sasc (2014). https://github.com/sasc999/javaemvreader.

van Weelden, A., Oostdijk, M., Frantzen, L., Koopman, P.,
and Tretmans, J. (2005). On-the-fly formal testing of
a smart card applet. In Security and Privacy in the Age
of Ubiquitous Computing, pages 565-576. Springer.

Vernois, S. and Alimi, V. (2010). Winscard tools: a software
for the development and security analysis of transac-
tions with smartcards. Norsk informasjonssikkerhet-
skonferanse (NISK).

Wallace, D. R., Ippolito, L. M., and Cuthill, B. B. (1996).
Reference information for the software verification
and validation process, volume 500. DIANE Publish-
ing.

Watanabe, T., Howell, P., and Pugh, S. (2006). Easing emv:
Emvco’s new common payment application. Card
Technology Today, 18(2):12—13.

