
HAL Id: hal-01286789
https://hal.science/hal-01286789

Submitted on 6 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Learning efficient error correcting output codes for large
hierarchical multi-class problems

Moustapha Cissé, Thierry Artières, Patrick Gallinari

To cite this version:
Moustapha Cissé, Thierry Artières, Patrick Gallinari. Learning efficient error correcting output codes
for large hierarchical multi-class problems. Workshop on Large Scale Hierarchical Classification (at
ECML), Sep 2011, Athens, Greece. pp.37-48. �hal-01286789�

https://hal.science/hal-01286789
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Learning efficient error correcting output codes

for large hierarchical multi-class problems

M. Cissé, T. Artières, P. Gallinari
Laboratoire d’Informatique de Paris 6

Université Pierre et Marie Curie
Paris, France

Email: firsname.name@lip6.fr

No Institute Given

Abstract. We describe a new approach for dealing with hierarchical
classification with a large number of classes. We build on Error Cor-
recting Output Codes and propose two algorithms that learn compact,
binary, low dimensional class codes from a similarity information between
classes. This allows building classification algorithms that performs sim-
ilarly or better than the standard and performing one-vs-all approach,
with much lower inference complexity.

Large scale classification; Error Correcting Output Codes; Spectral Embed-
ding

1 Introduction

Classification problems with very large number of classes (VLC) do appear in
many applications in the web, text, image or video domains. Whereas research on
large scale learning algorithms has mainly focused on large sample size or large
data dimensionality problems, research on very large class numbers is more re-
cent and is still a challenging problem. As for other scaling challenges, training
should be feasible, i.e. should be performed in a reasonable time with available
resources. The specificity of VLC lies on the inference complexity problem. Clas-
sical approaches are at best linear in the number of classes which is prohibitive
when dealing with tenth or hundreds of thousands classes. Besides complexity,
VLC problems are often plagued with severe class imbalance.

We propose here an algorithm that scales sub-linearly with the number of
classes. The classification problem is cast into a cost-sensitive framework where
a class distance or class similarity information is supposed available. Cost sensi-
tivity reflects an existing latent structure between the classes and these relations
will be exploited as additional knowledge to improve classification performance
and to reduce the inference and training complexities. This information could be
provided by existing resources, e.g. a class-taxonomy or inferred from the data
itself. Within this framework, the approach we develop relies on learning Er-
ror Correcting Codes (ECOC)[8] using a similarity information between classes.

Each class will be represented as a binary code and a binary classifier will be
learned for each code bit. A test example will then be categorized according to
a simple nearest neighbor rule between the code computed for this example and
learned codes. If the code length is order of magnitudes less than the number
of classes, the complexity of inference will be reduced accordingly and will be
proportional to this code length. The challenge here is to learn compact codes for
fast decoding that provide enough discriminating power to reach performance
equivalent or superior to classical classification methods with a reduced complex-
ity. Efficient codes will have to satisfy two constraints. Class codes corresponding
to similar classes according to the cost-sensitive information and to similar exam-
ples should be close so that the bit classifiers may be learned accurately. On the
other hand, class codes should be sufficiently different so as to ensure low global
error rate, which is the usual requirement for ECOC classification. To reach this
goal, we propose to learn class codes that preserve the similarity between classes
while constraining a minimal separation of the learned codes.

Our main contributions are two alternative algorithms for learning such com-
pact class codes, with inference complexity scaling with the class code length c.
One relies on a spectral embedding of the classes in a latent space, and the other
relies on learning an auto-encoder neural network on class similarity represen-
tations. We show that this allows building a k class classifier with short length
codes (c << k) that performs as well as or outperforms the standard one vs all
(OVA) classifier, whose inference complexity is in O(k). Finally we provide an
experimental investigation of the behavior of our methods on two datasets that
were used for the 2010 Large Scale Hierarchical Text Classification challenge
[11].

The paper is structured as follows. Section 2 reviews related works, section
3 presents our two methods for learning compact ECOC, and finally section 4
reports experimental results.

2 Related works

Classification in a large number of classes has received much attention in the last
few years. Usually the classes are organized into a hierarchy. Among the many
approaches explored for this problem, one may distinguish between two types of
approaches.

On the one hand big bang approaches disregard the eventual hierarchy infor-
mation and use a single classifier on the whole dataset. One popular represen-
tative is the One vs All (OVA) method where one uses a classifier (e.g. a SVM)
for distinguishing between one particular class and all other classes. Nearest
neighbors have also been used in its standard setting (using all training sam-
ples as the model) or using one prototype per class [20]. All these methods may
perform well (e.g. [16]) but they have inference complexities that scale at least
linearly with the number of classes, which makes them impractical for real-life
use as suggested by the 2010 Large Scale Hierarchical Text Classification chal-
lenge (LSHTC) final report [11]. Note however that nearest neighbor method

may be made more competitive by learning binary representation of training
samples (or of class representatives) as proposed in [1].

On the other hand top-down approaches build hierarchical classifiers that
match the given class hierarchy, with a classifier at each node of the hierar-
chy. Such methods may reach inference complexity that scale logarithmically
with the number of classes, at the price of a well known error propagation phe-
nomenon, when errors at the root nodes are propagated in the tree and yield
misclassification. Most works make use of a simplified hierarchy. For instance
a number of studies have proposed to use a simplified hierarchy, keeping only
the first levels [17]. [18] proposed a lazy learning scheme where one first uses
a flattened version of the hierarchy to design a first classifier whose aim is to
select a restricted number of candidate classes. In a second step a classifier is
build from this set of classes to classify the test sample. Some other methods
use hierarchical classifiers such as hierarchical SVM on the full hierarchy or on a
flattened version of the hierarchy [6], [2]. Hierarchical classifiers have come with
various optimization criterion [26] [6] [2].

Another line of work consists in designing hierarchical classifiers without re-
lying on an existing hierarchy. [2] proposes to discover a hierarchy from scratch
by identifying confusable classes by first learning one to one classifiers. Beygelz-
imer et al. proposed the Filter tree [5] and the conditional probability tree [5],
both are tree-based reductions from multi-class to binary classification, where
binary classifiers are learned at each node of the tree.

Finally some authors have exploited simultaneous data and class embedding
in a latent space [26],[2]. The idea consists in projecting the data and the labels
into a joint low dimensional space, enabling more accurate classification and
robustness to sample dimensionality. Such a projection may make use of the
class hierarchy information, enabling similar classes to be projected in the same
area [26]. In this latter work inference is then performed by nearest neighbor
search, in[2] it is done through classification in a tree. Another indirect use of
the hierarchy information, slightly different from the above, consists in defining
class prototypes (in nearest neighbors systems) according to the tf-idf measure
using locally computed statistics inferred from the hierarchy [18].

3 Learning Compact ECOC

We mix here ideas from class embedding and ECOC learning in order to de-
sign compact, binary, and discriminative class codes from a similarity informa-
tion between all classes. This allows us, building efficient and fast classifiers.
Many methods have been proposed to determine ECOC, either data indepen-
dent such as the one-vs-rest reduction [23] or random binary codes as provided
by Hadamard matrices [3], or data dependent [22] [10]. Yet the class codes have
a length at least k and are not good candidates in our case. We present below
two methods for learning low dimensional class codes. One is based on spectral
embedding [15], [21], the other builds on autoencoders [12], [25]. Both algorithms
take as input a similarity matrix S between pairs of classes, we assume from now

on that class i is represented as the ith column of S, si which is a k-dimensional
vector, with si,j the similarity between classes i and j. Our method bares some
similarity with ECOC but it differs in that we want class codes to be as short
as possible.

Our two methods do not output binary codes but real-valued ones. In order
to get binary class codes, we threshold the output of every bit classifier so that it
outputs either -1 or 1. This cutt-off is heuristically designed and it is not learned
to optimize classification acccuracy, this could be a perspective of our work.

3.1 Spectral class-hashing (SCH)

Finding binary codes is very similar to learning a hash function for fast nearest
neighbor search. As stated before, we seek binary c-dimensional class codes, ci,
minimizing the average Hamming distance between similar classes. To maximize
the compactness of the codes bits should be independent and have probability 0.5
of being on. Measuring code proximity by the euclidean distance and replacing
bit independency by bit non correlation, one can formulate the problem as:

minimize:

k∑

i,j=1

si,j ||ci − cj ||
2 (1)

subject to ci ∈ {−1, 1}c and

k∑

i=1

ci =
→

0 and

k∑

i=1

cic
T
i = I

(2)

where si,j is the similarity between class i and class j, and ci is the learned code
for class i. This formalization requires a trade-off between the two objectives dis-
cussed in the introduction. The minimized term ensures that similar classes have
similar class-codes, while the third constraint requires bits to be uncorrelated,
which limits bits redundancy. The second constraint requires each bit to be on
half of the time. This optimization problem is equivalent to a balanced graph-
partition problem and is known to be NP-hard [15] Relaxing the first constraint
and looking for real-valued vector class codes we get the following problem in
matrix-form:

minimize: trace C(∆− S)CT (3)

subject to C1k,k = 0 and CCT = I

(4)

where C is the c×k matrix whose columns are class codes and ∆ is the diagonal
degree matrix of the similarity matrix, with ∆i,i =

∑
j si,j . This latter problem

is equivalent to a spectral embedding problem whose solution are the top c

eigenvectors of the laplacian matrix L = ∆ − S. It has been shown that the

normalized laplacian Lsym = ∆−1/2L∆−1/2 may give better results in terms of
clustering quality [21], we used this variant in our implementation since it leads
to better results. A related approach has been adopted in [27] where data is
projected onto a hamming space for fast document retrieval, this approach is
called spectral hashing. The complete procedure is described in algorithm 1,
where the last step is the binarization step of the class codes.

Algorithm 1: SCH

1: Input: Similarity matrix S, code-size c

2: Output: Error correcting output code matrix C

3: Compute the normalized graph laplacian:
Lsym = ∆−1/2L∆−1/2

4: Compute its first c eigenvectors
u1, u2, . . . , uc

5: for all j such that 1 ≤ j ≤ c do

6: Compute the median mj of uj ’s components
7: Threshold each uj ’s component at mj to obtain binary values
8: end for

9: return Error correcting output code matrix C whose lines are the thresholded
eigenvectors

3.2 Structured auto-hashing (SAH)

Autoencoders have been widely used recently either for building deep neural
networks for classification or feature extraction and for dimensionality reduction
[12], [13]. An autoencoder is trained to reconstruct the input vector at its output.
It is trained to minimize a squared reconstruction error between the input (here a
class representation si) and its reconstruction at the output of the autoencoder.
It may be viewed as an encoder (input → hidden layer) followed by a decoder
(hidden → output layer). Usually it is required that encoding and decoding
weights are tied [25], both for linear and non linear encoders, so that if w is
the coding matrix, wT i the decoding matrix. We also used this constraint here.
The vectors of activation of hidden units is the learned encoding function ci =
f(w× si), it is parameterized by a weight matrix w whose transpose is used for
reconstruction (decoding) and f is the activation function of hidden units. Using
a narrow hidden layer forces to learn non trivial regularities from the inputs,
hence interesting and compact codes on the hidden layer. Using an autoencoder
to learn low dimensional representations of class-codes writes (omitting bias
terms):

minimize:

k∑

i=1

||si − wT × f(w × si)||
2 (5)

f may be a linear function, then the autoencoder is proved to learn a represen-
tation very similar to the one leaned by a principal component analysis but one
can expect to learn more interesting features by using nonlinearities on hidden
units, such as the sigmoid function or the hyperbolic tangent.

Again, we want to satisfy two objectives, similar classes should have close
codes with respect to hamming distance, but their codes should be distinct and
significanty different at the same time. The first objective is naturally reached
with autoencoder since it learns codes that preserve distance in the original
space. To enforce separation between class codes we propose to look for a solution
of the following problem:

minimize
1

k

k∑

i=1

||si − wT × f(w × si)||
2 (6)

subject to: ∀(i, j), i �= j : ||f(w × si)− f(w × sj)|| ≥ b

The constraints are inspired from margin based learning and yield to maxi-
mize the distance between any pair of class codes up to a given threshold b. We
propose to solve this optimization problem by stochastic gradient descent using
the unconstrained form:

minimize
1

k

∑

i

||si − wT × f(w × si)||
2 + λ||W ||2

+
α

k × (k − 1)

∑

i,j

max(0, b− ||f(w × si)− f(w × sj)||) (7)

where α and λ weight the respective importance of the regularization and the
margin terms (they are tuned by cross-validation). The autoencoder is learned
using stochastic gradient descent by iteratively picking two training samples i

and j at random and making a gradient step. At the end, the learned distributed
representations ci are, just as in previous section, thresholded to get binary codes.
We describe the whole procedure in algorithm 2.

3.3 Training and inference complexity

We focus here on compleixty issues with respect to the number of classes k.
Training consists in learning the classcodes of length c, then in learning c classi-
fiers. SCH requires O(k2) to compute classcodes while SAH is a gradient-based
learning whose complexity is more difficult to estimate (it depends on the number

Algorithm 2: SAH

1: Input: Similarity matrix S, code-size c

2: Output: Error correcting output code matrix C

3: Learn the autoencoder to minimize cost in Eq. (7)
4: Compute the new representation of classes with the learned codes

∀i, ci = f(w × si)
5: for all j such that 1 ≤ j ≤ c do

6: Compute the median mj of ci’s j
th component

7: Threshold each ci’s j
th component at mj to obtain binary values

8: end for

9: return Output the error correcting output code matrix C whose columns are
thersholded ci’s

of iterations). Learning the classifiers is in O(c). At the end training complexity
is at most O(k2 + c), but in practice it is closer to O(k + c) for SAH.

Inferring the class of a test sample consists in finding the class code which is
most similar (wrt Hamming distance) to the output code computed for this input
sample, it is a series of -1 and 1 output by the c binary classifiers. Using fast
nearest neighbor search methods such as ball trees or kd-trees this may be done
(in practice) in O(log k) [19]. Overall, the inference complexity is in O(c+log k).

4 Experiments

We apply the methods described above to a large scale hierarchical text classifi-
cation (lshtc) problem where the classes are leaves of a tree-structured hierarchy
and the similarity matrix is computed from the distances between the classes in

the hierarchy according to si,j = exp(−
d2

i,j

2σ2) where di,j is computed as the num-
ber of edges required to go from class i to class j in the tree. This is related to
the tree loss which is considered for evaluating the correctness of a classification
rule in a tree. Note that we chose σ = 1 in all our experiments.

4.1 Datasets

We experimented our approach on single-label hierarchical classification tasks.
We used two nested datasets (We distinguish between the small dataset and the
large one hereafter) that have been delivered and exploited for the first track
of the pascal LSHTC (Large Scale Hierarchical Text Classification) challenge in
2010 [11]. Both datasets are subsets of the DMOZ repository [9], their features
are detailed in Table 1.

The classes of the two datasets we use in the experiments are organized in a
tree hierarchy. This means that every node in the hierarchy has only one parent.
The classes are the leaves of the hierarchy and internal nodes are not instantiated
classes. Both hierarchies are of depth 5 [11].

We used same settings as in the challenge for the small dataset. For the large
dataset, we kept the original training set and considered the validation set as
the test set since the ground truth for the original test set is not available.

For both datasets, samples are content vectors obtained by directly indexing
the web pages. We preprocessed samples to get normalized tf-idf feature vectors.
Despite the large dimensionality of samples for both datasets, we did not perform
feature selection in this study although it is a perspective of the work.

Large dataset Small dataset

training samples 93805 6323

test samples 34905 1858

nb of classes 12294 1139

Table 1. Datasets used in the experiments

4.2 Comparison with state of the art methods

Before reporting results we provide some implementation details. All the bi-
nary classifiers used in the experiments are binary linear svms, whatever the
method used, ours or the OVA reference method. Note that any other classifi-
cation method could have been used here. We used default values for the bias
and the C term (C = 1) for learning all these binary classifiers as it is widely
admitted that it gives good performances when using normalized tf-idf features.
During training and testing, we parallelized all the binary classifiers.

We first investigate the behavior of our methods, SCH and SAH, on the small

dataset to explore how the performance behave with respect to the class code
length. Table 2 reports results of both methods, SCH and SAH, for code length
ranging from 64 bits to 1024 bits. We report both accuracy and tree induced
loss, which is the average distance in the hierarchy between the correct and the
recognized class. These results show that, as it has been noticed before, accuracy
and tree induced loss are closely related. There is a systematic superiority of the
SAH method over the SCH method. Finally it shows that performance increases
significantly with the code length.

Let us compare our methods on the small and on the large datasets, with a
moderate code length of 512 bits, to the standard OVA method (Table 3). SAH
systematically outperform OVA on the two datasets whatever the criterion is,
while SCH performs slightly less than OVA on the large dataset only. Let us
recall that the OVA classifier consists in more than 1 100 classifiers on the small

training set and more than 12 000 classifiers for the large dataset.
SAH performs equivalently to OVA when using a code length of about 200

on the small dataset and with a code length of about 250 on the large dataset.
This means that our method may perform as well as OVA with a complexity
reduced by factors of 5 and 50 on the small and large datasets respectively. This

Model Accuracy (%) Tree induced loss

64 bits

SAH 41.03 4.47

SCH 40.42 4.36

128 bits

SAH 43.82 4.17

SCH 42.97 4.32

256 bits

SAH 45.32 3.99

SCH 44.98 4.13

512 bits

SAH 46.70 3.89

SCH 46.14 4.09

1024 bits

SAH 46.79 3.83

SCH 46.21 3.97

Table 2. performance comparison of SCH and SAH for different code lengths

shows that the code length required to peform equivalently to the OVA scales
sublinearly with the number of categories.

Model Accuracy (%) Tree induced loss

Small dataset

One-vs-rest 44.72 4.13

SAH 46.70 3.89

SCH 46.14 3.97

Large dataset

One-vs-rest 35.68 4.56

SAH 36.59 4.05

SCH 35.12 4.17

Table 3. Performance comparison on the small and large datasets. SAH and SCH
models use 512 bits length codes.

Finally, Table 4 reports some comparative results with representative meth-
ods proposed by participants of the PASCAL LSHTC 2010 challenge. We in-
cluded representative methods belonging to the two families discussed in section
2, big bang approaches and top-down approaches [11]. We report results from
[17] that use a flattened version of the hierarchy combined with lazy learning,
from a prototype based approach (nearest neighbor rule) which exploits the hi-
erarchy to build centroids, using term frequencies and category-dependent IDF
at each level of the hierarchy [18]. Finally we report results of [16] whose method
belongs to the big bang family. One sees that some methods may outperform our

approaches on these datasets but, again, their complexity forbids us using them
on larger classification problems.

Model Accuracy (%) T.I. Loss inference complexity

big-bang [16] 46.32 3.28 O(k̇)

flatenning [17] 44.3 3.36 Lazy

prototype [18] 40.42 4.36 O(k)

SAH (512) 37.84 3.98 O(c+ log k)

Table 4. Performance and complexity comparison of few competitor methods of the
2010 LSHTC challenge on the large dataset: k is the number of classes, Lazy means
that the method trains a new classifier for every test sample. Note that the SAH result
is different from the one reported in Table 3 since the result here has been gained on
the test set to be fully comparable with other results in this table.

4.3 Robustness to imbalanced data

Today designing classifiers with imbalanced training sets is a major issue in the
machine learning field [14]. This is a usual problem in large scale classification
tasks. For instance 20% of the classes represent about 50% of the samples in the
small dataset, while it represents 80% of the samples in the large dataset. Table
5 gives the percentage of classes whose number of training samples ranges from
1 to 3, from 4 to 6 and is greater than 6 (which is the average number of samples
per-class in the small dataset).

Standard strategies for dealing with imbalanced problems rely on modify-
ing the distribution of the data by either under-sampling the most represented
classes or oversampling the less represented ones [7]. Yet there is no clear and
established solution today.

Besides, we expect our method to be naturally more robust to imbalanced
problems than one-versus-rest classifier since every dichotomizer is learned with
all samples from all classes. To investigate the robustness of our approach to
imbalanced data we computed detailed statistics to understand the behavior of
the methods with respect to the class representativity. We provide in Table 6
experimental results gained with the SAH method (with 512 bits code length)
and with OVA on the small dataset. It reports performance measures (accuracy
and tree induced loss) for the three categories of classes distinguished in Table
5. As may be seen the behavior of our classifier is different from that of the OVA
classifier. Our classifier performs significantly better for all under-represented
classes while it performs slightly less on well-represented classes. In addition we
studied the classification statistics of our classifier and of one-versus-rest on the
whole test set and found that our classifier classifies test samples in 511 classes
out of the 1139 classes while the OVA classifier classifies the test samples in 459
classes. This confirms the results in Table 6 showing a better robustness of our
method with respect to the imbalance problem.

sample representativity (%) class-representativity (%)

[1, 3] 28.0 60.50

[4, 6] 18.88 21.94

> 6 53.12 17.56

Table 5. Percentage of classes (and corresponding percentage of training samples)
with very few, few, and more than average number of training samples, on the small
dataset.

Accuracy SAH (%) Accuracy OVA (%)

[1, 3] 27.99 25.84

[4, 6] 40.43 35.76

> 6 65.33 65.85

Table 6. Comparative accuracy of SAH and OVA on the categories of classes in Table
5, on the small dataset.

5 Conclusion

We have proposed to deal with hierarchical classification in a large number of
classes by building compact binary error correcting output codes that preserve
class similarity as given by their distance in a hierarchy. We provided two al-
gorithms that show good performance on two datasets from the Pascal 2010
LSHTC challenge, and whose inference complexity scales sublinearly with the
number of classes, up to 50 times faster than one vs all classifier on a 12000
class problem to reach similar performance. One perspective is a more extensive
analysis of how inference complexity (propotional to the length of class-codes)
increases with respect to the number of classes.

References

1. A. Andoni and P. Indyk Near-Optimal Hashing Algorithms for Approximate Nearest

Neighbor in High Dimensions Communications of the ACM, vol. 51, no. 1, 2008,
pp. 117-122.

2. S. Bengio, J. Weston, D. Grangier Label Embedding Trees for Large Multi-Class

Tasks, In Advances in Neural Information processing Systems, 2010.
3. A. Beygelzimer, J. Langford and B. Zadrozny Machine Learning TechniquesReduc-

tionsBetween Prediction Quality Metrics

4. A. Beygelzimer, J. Langford, Y. Lifshits, G. Lorkin, A. Strehl Conditional Probability
Tree Estimation Analysis and Algorithms, UAI, 2009.

5. A. Beygelzimer, J. Langford and P. Ravikumar Multiclass Classification with Filter

Trees, In International Conference on Algorithmic Learning Theory (ALT), 2009.
6. L. Cai and T. Hofmann Hierarchical Document Categorization with Support Vector

Machines, in proceedings of International Conference on Information and Knowledge
Management, 2004.

7. Nitesh Chawla, Nathalie Japkowicz, and Aleksander Kolcz. Special issue on learning

from imbalanced dataset. SIGKDD explorations, 2004.
8. T. G. Dietterich and G. Bakiri, Solving multi-class learning problems via error

correcting output codes, International conference on artificial neural network 1999.
9. www.dmoz.org

10. S. Escalera, Oriol Pujol, and Petia Radeva. Boosted landmarks of contextual de-

scriptors and Forest-ECOC: A novel framework to detect and classify objects in

clutter scenes., Pattern RecognitionLetters, 28(13) pages 17591768, 2007.
11. A. Kosmopoulos, E. Gaussier, G. Paliouras, S. Aseervatham The ECIR 2010 Large

Scale HierarchicalClassfication Workshop, ECIR, 2010.
12. Gallinari, P., LeCun, Y., Thiria, S. and F. Fogelman-Soulie Memoires associatives

distribuees. Proceedings of COGNITIVA 1987.
13. G. E. Hinton and R. R. Salakhutdinov Reducing the Dimensionality of Data with

Neural Networks in Science 28 : Vol. 313 no. 5786 pp. 504-507.July 2006.
14. N. Japkowicz. Class imbalances: are we focusing on the right issue? In International

Conference on Machine Learning Workshop on Learning from Imbalanced Data Sets
II, 2003.

15. U. Von Luxburg A tutorial on spectral clustering in Statistics and Computing, 17
(4), 2007.

16. O. Madani and J. Huang Large-scale many-class prediction via flat techniques.

InLarge-Scale Hierarchical Classication Workshop of ECIR, 2010.
17. H. Malik. Improving hierarchical svms by hierarchy flattening and lazy classifica-

tion.In Large-Scale Hierarchical Classication Workshop of ECIR, 2010.
18. Y. Miao and X. Qiu. Hierarchical centroid-based classifier for large scale text

classica-tion. LSHTC Website, 2010
19. A. W. Moore, Efficient Memory-based Learning for Robot Control, Ph. D. Thesis,

Technical Report, No. 209, Computer Laboratory, University of Cambridge.
20. C. C. Coterillo An Adaptation of Soucy and Mineau weighting for Large Scale Text

Classification. InLarge-Scale Hierarchical Classication Workshop of ECIR, 2010
21. A.Y. Ng, M.I. Jordan, and Y.Weiss. On spectral clustering, analysis and an algo-

rithm. In Advances in Neural Information Processing 14, 2001.
22. O. Pujol, S. Escalera, and P. Radeva. An incremental node embedding technique

for error-correctingoutput codes, Pattern Recognition, 4 pages 713725, 2008.
23. R. Rifkin and A Klautau , In defense of one-vs-all classification, Journal of

machine learning research, pages 101-141, 2004.
24. R. Salakhutdinov, G. Hinton Semantic hashing. ACM SIGIR, 2007.
25. Vincent, H. Larochelle Y. Bengio and P.A. Manzagol Extracting and Composing

Robust Features with Denoising Autoencoders ICML, pp 1096 - 1103 2008.
26. K. Weinberger and O. Chapelle. Large margin taxonomy embedding for document

categorization. InNIPS, pages 17371744, 2009.
27. Y. Weiss, A. Torralba and R. Fergus Spectral hashing. in Advances in Neural In-

formation Processing Systems, 2008.

