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In their simplest form, the Caffarelli-Kohn-Nirenberg inequalities are a two parameter

family of inequalities. It has been known that there is a region in parameter space where

the optimizers for the inequalities have broken symmetry. It has been shown recently

that in the complement of this region the optimizers are radially symmetric. The ideas

for the proof will be given.
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1. Introduction

Symmetries of optimizers in variational problems is a central theme in the calculus of

variations. Sophisticated methods like rearrangement inequalities, reflection meth-

ods and moving plane methods belong now to the standard repertoire of any analyst.

There are, however, examples where these methods cannot be applied. Variational

problems that depend on parameters very often cannot be treated by such meth-

ods, simply because, depending on the parameters, the optimizers are symmetric

and sometimes not. Famous examples are the minimizers of the Ginzburg-Landau

functional in superconductivity, where, depending on the strength of the quartic in-

teraction the minimizers form a single, symmetric vortex or a vortex lattice. Clearly

such problems cannot be treated by general methods. For certain parameters they

ought to work while in others they cannot. Thus, rather special techniques, tailored

to the problems at hand, have to be developed to prove symmetry in the desired

regions.

One class of such examples is given by the Caffarelli-Kohn-Nirenberg inequali-
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ties [3]. In these notes, we shall specifically consider the case of the inequality

∫

Rd

|∇w|2
|x|2a dx ≥ Cd

a,b

(
∫

Rd

|w|p
|x|bp dx

)2/p

(CKN)

with a ≤ b ≤ a+ 1 if d ≥ 3 , a < b ≤ a+ 1 if d = 2 , and a < ac where

ac :=
d− 2

2
, p =

2 d

d− 2 + 2 (b− a)
.

The function w is in a suitable function space which contains, for instance, all

smooth functions with compact support. The constant Cd
a,b is, by definition, the

best possible constant. Rotating the function w does not change the value of the

various expressions in (CKN), i.e., the inequality is rotationally invariant. The

special case where a ≥ 0 has been treated by various authors (see the references

in [7]). Rearrangement inequalities can be used to reduce the problem to the set of

radial functions, for which the optimality issue can then be solved explicitly.

For the case where a < 0 the problem is much more subtle. Nevertheless,

Catrina and Wang [6], proved that the optimizers, i.e., the functions that yield

equality in (CKN), exist in the open strip a < b < a+1. This result establishes the

existence of non-negative solutions w ∈ Lp(Rd; |x|−bp dx) of the equation

− div
(

|x|−2a ∇w
)

= |x|−bp wp−1 . (1)

Moreover, in the same paper Catrina and Wang also showed that, in some region

in the (a, b) plane, the rotational symmetry of the optimizers is broken. A more

detailed analysis by Felli and Schneider [8] shows that the region where the optimiz-

ers have a broken symmetry contains the set RFS := {(a, b) : a < 0 , b < bFS(a)}
where

bFS(a) :=
d (ac − a)

2
√

(ac − a)2 + d− 1
+ a− ac .

We call this region RFS the Felli-Schneider region.

In [8] more is shown. The optimizers in the radial class can be determined

explicitly which allows to compute the second variation operator about these solu-

tions. The lowest eigenvalue of this operator is strictly negative for (a, b) ∈ RFS,

equals zero on the curve b = bFS(a) and is strictly positive in the open complement

of the Felli-Schneider region: there, the radial optimizers are stable. Needless to say

that positivity of the second variation does not imply the radial symmetry of the

(global) optimizers for the (CKN) inequality. Thus, it is a natural question whether

or not the optimizers possess rotational symmetry in the complement of RFS. Let

2∗ := 2 d
d−2 if d ≥ 3 and 2∗ := ∞ if d = 2. The following theorem is proved in [7]:

Theorem 1.1. Let d ≥ 2, p ∈ (2, 2∗), a < 0 and b in the complement of the Felli-

Schneider region and such that p = 2 d
d−2+2 (b−a) . Then any non-negative solution
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w ∈ Lp(Rd; |x|−bp dx) of (1) must be of the form

(

A+B |x|2α
)−n−2

2

where A, B are positive constants,

α =
(1 + a− b) (ac − a)

ac − a+ b
(2)

and

n =
2 p

p− 2
. (3)

In particular this holds for the optimizers of (CKN).

There are some interesting consequences. Using the change of variables

w(r, ω) = ra−ac φ
(

log r, ω
)

,

equation (1) can be cast in the form

− ∂2
zφ− ∆ωφ+ Λφ = φp−1 . (4)

Here, x
|x| = ω ∈ S

d−1, r = |x|, z = log r, ∆ω is the Laplace-Beltrami operator on

the sphere S
d−1 and

Λ = (a− ac)
2 .

Thus, φ is a function on the cylinder R× S
d−1. Moreover, as noticed in [6], (CKN)

is transformed into

‖∂zφ‖2L2(R×Sd−1) + ‖∇ωφ‖2L2(R×Sd−1) + Λ ‖φ‖2L2(R×Sd−1) ≥ Cd
a,b ‖φ‖2Lp(R×Sd−1) . (5)

Corollary 1.1. Let d ≥ 2, p ∈ (2, 2∗). Any non-negative solution φ ∈ Lp(R ×
S
d−1; dz dω) of (4) is, up to translations, of the form

φΛ(z) =
(

2
pΛ cosh2

(

p−2
2

√
Λ z
)

)− 1
p−2

,

if and only if

Λ ≤ 4
d− 1

p2 − 4
.

In this range, equality in (5) is achieved if and only if φ(z) = φΛ(z + z0) for some

z0 ∈ R.

To put this result in perspective we compare it with a result in [2].

Theorem 1.2. Let d ≥ 2, p ∈ (2, 2∗). On the sphere S
d consider the equation

∆u+ λu = up−1
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with λ > 0. Here ∆ represents the Laplace-Beltrami operator on S
d. Then the

constant function u ≡ λ1/(p−2) is the only non-negative solution if and only if

λ ≤ d

p− 2
.

Thus, Corollary 1.1 can be viewed as an extension of the above mentioned rigidity

result to the non-compact case of a cylinder. As a special case, this also allows to

identify the equality case in the interpolation inequality (5) on the cylinder.

In the next sections some ideas about the proof are given: we start by the simple

case of the standard Sobolev inequality in Section 2, explain in Section 3 how to

recast (CKN) as a Sobolev type inequality in an artificial dimension n, where n is

not necessarily an integer, and conclude by explaining how the main estimates can

be produced using a fast diffusion flow.

2. Heuristics for the proof of Theorem 1.1

In order to avoid long computations it is best to explain the ideas in a ‘simple’

example. For any d ≥ 3, the Sobolev inequality

∫

Rd

|∇u|2 dx ≥ Cd

(
∫

Rd

|u|p dx
)2/p

, with p = 2∗ =
2 d

d− 2
(6)

is extremely well understood [1, 9, 10]. Once more Cd denotes the sharp constant.

Note that this inequality appears as a special case of (CKN) if one sets a = b = 0,

in which case Cd = Cd
0,0. There is equality in (6) if and only if u is a translate of

the Aubin-Talenti function
(

c⋆ λ+
|x|2
λ

)−(d−2)/2

,

where c⋆ and λ are positive constants. There have been some proofs using flow

methods to understand this inequality [4, 5]. The flow used for the case at hand is

a porous medium / fast diffusion flow. It is given by

∂v

∂t
= ∆v1−

1
d (7)

and has the self-similar solutions

v⋆(x, t) =

(

c⋆ t+
|x|2
t

)−d

.

This function has slow decay in the x variable. The obvious similarity of the ex-

pressions of the Aubin-Talenti and self-similar functions suggests a reformulation of

the Sobolev functional by setting

v = u
2d

d−2 .
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Let us define a pressure variable p by

v = p−d .

A short computation shows

Lemma 2.1. The Sobolev inequality, written in terms of v and p, is given by

a2c

∫

Rd

v |∇p|2 dx ≥ Cd

(
∫

Rd

v dx

)
d−2

d

. (8)

Assume now that v satisfies the fast diffusion equation (7). This implies that p

evolves by the equation

∂p

∂t
=

d− 1

d

(

p∆p− d |∇p|2
)

.

The right side of (8) does not change if v evolves via (7). For the left side we have

Lemma 2.2. Assume that v evolves via (7). Then

d

dt

∫

Rd

v |∇p|2 dx = − 2

∫

Rd

[

1
2 ∆|∇p|2 −∇p · ∇∆p− 1

d (∆p)2
]

p1−d dx

= − 2

∫

Rd

Tr
[

Hp − 1
d (TrHp) Id

]2
p1−d dx

where Hp = (∇⊗∇) p denotes the Hessian matrix of p. Moreover,

Hp − 1
d (TrHp) Id = 0

if and only if p(x) = a+ b · x+ c |x|2 for some (a, b, c) ∈ R× R
d × R.

The proof is a somewhat longish but straightforward computation. Note, that it is

precisely the particular choice of v and p that renders the time derivative in such a

simple form.

To summarize, while the right side of the Sobolev inequality stays fixed the left

side diminishes under the flow. The idea is to use the fast diffusion flow to drive the

functional towards its optimal value. Actually we use the fact that if v is optimal

in (8), or if it is a critical point, the functional has to be stationary under the action

of the flow, which allows to identify p, hence v. To exploit this idea for the (CKN)

inequality we have to rewrite it in the form of a Sobolev type inequality.

3. A modified Sobolev inequality

The first step in the proof is to rewrite the problem in a form that resembles the

Sobolev inequality. If we write

w(r, ω) = u(s, ω) with s = rα ,
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the inequality (CKN) takes the form

∫

R+×Sd−1

[

α2

(

∂u

∂s

)2

+
|∇ωu|2

s2

]

sn−1 ds dω ≥ Cd
a,b α

1− 2
p

(

∫

R+×Sd−1

|u|p sn−1 ds dω

)
2
p

where dω denotes the uniform measure on the sphere Sd−1, ∇ω denotes the gradient

on S
d−1 and where α and n are given by (2) and (3). We shall abbreviate

Du :=
(

α ∂u
∂s ,

1
s ∇ωu

)

, |Du|2 = α2
(

∂u
∂s

)2
+ |∇ωu|2

s2 .

Our inequality is therefore equivalent to a Sobolev type inequality and takes the

form

∫

R+×Sd−1

|Du|2 dµ ≥ Cd
a,b α

1− 2
p

(

∫

R+×Sd−1

|u|p dµ
)

2
p

, with p =
2n

n− 2
. (9)

This inequality generalizes (6). Here the measure dµ is defined on R
+ × S

d−1 by

dµ = sn−1 ds dω .

As in Section 2, we may consider v = up and define a pressure variable p such that

v = p−n, so that u = p−(n−2)/2. With these notations, (9) can be rewritten as

1
4 (n− 2)2

∫

R+×Sd−1

v |Dp|2 dµ ≥ Cd
a,b α

1− 2
p

(

∫

R+×Sd−1

v dµ

)
2
p

. (10)

With straightforward abuses of notations, we shall write
∫

R+×Sd−1 f dµ =
∫

Rd f dµ

and identify Lp(R+ × S
d−1; dµ) with Lp(Rd; |x|n−d dx) or simply Lp(Rd; dµ).

One should note that n is, in general, not an integer and the above inequality

reduces to Sobolev’s inequality only if n = d. Of particular significance is that the

curve

b = bFS(a) ,

when represented in the new variables α and n, is given by the equation α = αFS

with

αFS :=

√

d− 1

n− 1
.

Thus, for α > αFS the minimizers are not radial. The equation (1) transforms into

the equation

− L u = up−1 , (11)

where L is the Laplacian associated with the quadratic form given by the left side

of (9), i.e., L = −D∗ · D. Theorem 1.1 can be reformulated as



7

Theorem 3.1. Let d ≥ 2, p ∈ (2, 2∗), n = 2 p
p−2 > d and α ≤ αFS. Then any

non-negative solution u ∈ Lp(Rd; dµ) of (11) must be of the form

(

A+B |x|2
)−n−2

2 (12)

where A, B are positive constants, and n is given by (3). As a special case, equality

in (10) is achieved if and only if u is given by (12).

The upshot of this work can be summarized in the following fashion: Any opti-

mizer in the radial class that is not unstable under small perturbations is in fact a

global minimizer for the (CKN) inequality.

4. The flow

We consider the fast diffusion flow

∂v

∂t
= L v1−

1
n . (13)

It is easily seen that the flow (13) has the self-similar solutions

v⋆(t; s, ω) = t−n

(

c⋆ +
s2

2 (n− 1)α2 t2

)−n

.

The basic idea is now quite simple. We consider a non-negative solution u ∈
Lp(Rd; dµ) of (11) and set v = up. We also consider the pressure variable p such

that v = p−n. The first thing to note is that the right side of (10) does not change

if we evolve v and hence u under the flow (13). Further, if we differentiate the left

side of (10) along the flow we obtain

d

dt

∫

R+×Sd−1

v |Dp|2 dµ = − 2

∫

R+×Sd−1

[

1
2 L |Dp|2 − Dp · DL p− 1

n (L p)2
]

dµ .

On the other hand simple computations show that

1
4 (n− 2)2

d

dt

(

∫

R+×Sd−1

v |Dp|2 dµ
)

∣

∣

∣

t=0

= − 2

∫

R+×Sd−1

(Lu)u1−p
(

Lup (n−1)/n
)

dµ (14)

when expressed in terms of u. Now we take v = up, where u is the solution to (11),

as initial datum for (1). With this choice, the right side in (14) is actually zero.

Indeed, by multiplying both sides of (11) by u1−p
(

Lup (n−1)/n
)

one obtains
∫

R+×Sd−1

(Lu)u1−p
(

Lup (n−1)/n
)

dµ =

∫

R+×Sd−1

up−1 u1−p
(

Lup (n−1)/n
)

dµ = 0 .

The interesting point, and the heart of the argument, is that

0 =

∫

R+×Sd−1

[

1
2 L |Dp|2 − Dp · DL p− 1

n (L p)2
]

dµ
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can be written as a sum of non-negative terms precisely when α ≤ αFS, and the

vanishing of these terms shows that u must be of the form (A + B s2)−(n−2)/2. In

this way one obtains a classification of the non-negative solutions of (11) provided

they are in Lp(Rd; dµ). To simplify notations, we shall omit the index ω, so that

from now on ∇ and ∆ respectively refer to the gradient and to the Laplace-Beltrami

operator on S
d−1. With the notation ′ = ∂s, our identity can be reworked as follows.

Lemma 4.1. Assume that d ≥ 3, n > d and let p be a positive function in C3(Sd−1).

Then

1
2 L |Dp|2 − Dp · DL p− 1

n (L p)2

= α4 n−1
n

[

p′′ − p′

r
− ∆p

α2 (n− 1) r2

]2

+
2α2

r2

∣

∣

∣
∇p′ − ∇p

r

∣

∣

∣

2

+
1

r4

[

1
2 ∆|∇p|2 −∇p · ∇∆p− 1

n−1 (∆p)2 − (n− 2)α2 |∇p|2
]

.

The only term in Lemma 4.1 that does not have a sign is the last one. When

integrated against p1−n over Sd−1, however, this term can be written as a sum of

squares. The following lemma holds for d ≥ 3. For the case d = 2 we refer the

reader to [7].

Lemma 4.2. Assume that d ≥ 3 and that p is a positive function in C3(Sd−1).

Then
∫

Sd−1

[

1
2 ∆|∇p|2 −∇p · ∇∆p− 1

n−1 (∆p)2 − (n− 2)α2 |∇p|2
]

p1−n dω

= (n−2) (d−1)
(n−1) (d−2)

∫

Sd−1

∥

∥

∥
Lp− 3 (n−1) (n−d)

2 (n−2) (d+1) Mp

∥

∥

∥

2

p1−n dω

+ n−d
2 (d+1)

[

n+3
2 + 3 (n−1) (n+1) (d−2)

2 (n−2) (d+1)

]

∫

Sd−1

|∇p|4
p2

p1−n dω

+(n− 2)
[

α2
FS − α2

]

∫

Sd−1

|∇p|2 p1−n dω

where Lp := (∇⊗∇) p− 1
d−1 (∆p) g and Mp := ∇p⊗∇p

p
− 1

d−1
|∇p|2

p
g. Here g is the

standard metric on S
d−1 and Lp denotes the trace free Hessian of p.

The key device used for the proof of this lemma is the Bochner-Lichnerowicz-

Weitzenböck formula. IfM is a compact Riemannian manifold, then for any smooth

function f : M → R we have

1
2 ∆|∇f |2 = ‖Hf‖2 +Ric(∇f,∇f)

where ‖Hf‖2 is the trace of the square of the Hessian of f and Ric(∇f,∇f) is

the Ricci curvature tensor contracted against ∇f ⊗ ∇f . If M = S
d−1, then

Ric(∇f,∇f) = (d − 2) |∇f |2. The main point in Lemma 4.2 is that, provided

α ≤ αFS, all terms are non-negative.
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It is quite easy to see that the vanishing of these terms entails that p can only

depend on the variable s = |x| and must be of the form (12).

While the formal computations are straightforward there is the perennial issue

of the boundary terms that occur in all the integration by parts. This is due to

the fact that one is dealing with solutions of (11) and it is not at all clear that the

boundary terms vanish. This requires a detailed regularity analysis of the solutions

of (11). The task is non-trivial because the exponent p is critical for the scaling in

the s variable. The reader may consult [7] for details.

The computations outlined above can be carried over to the case where S
d−1 is

replaced by a compact Riemannian manifold M of dimension d−1. The results are

then expressed in terms of the Ricci curvature of the manifold. Again the reader

may consult [7] for details.
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