Mediterranean water-mass variability in T-S coordinates
Loïc Jullion, Sjoerd Groeskamp, Anne Petrenko, A. M. Doglioli

To cite this version:

HAL Id: hal-01286527
https://hal.science/hal-01286527
Submitted on 11 Mar 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Mediterranean water-mass variability in Θ-S coordinates
Mediterranean Institute of Oceanography, France
Lamont-Doherty Earth Observatory, USA
L. Jullion, S. Groeskamp, A. Petrenko, A. Doglioli

Motivations

The Mediterranean Sea is a miniature ocean with an overturning circulation but with reduced time and spatial scales.

Two major transient events have driven drastic changes in the thermohaline properties of Mediterranean Bottom Waters:

- In the eastern basin, the Eastern Mediterranean Transient (EMT) resulted in a switch from the Adriatic Sea to the Aegean Sea as the main bottom water formation site in 1991-1992 [1].
- In the western basin, the Western Mediterranean Transition (WMT) resulted in the formation of a new, warmer, saltier bottom water between 200 and 2006 [2].

These water-mass anomalies spread across the basin in a few years allowing to investigate the impact of such changes on the Mediterranean Overturning Circulation.

Data and Methods

We use 33 years of output from the regional circulation model NEMO-MED12 model. The model has a horizontal resolution of $\frac{1}{6}$ (~7km) and 75 vertical levels.

Boundary conditions:
- Exchanges with the Atlantic: Buffon zone from the 2005 World Ocean Atlas for Θ and S.
- Surface: daily evaporation, precipitation, radiative and turbulent heat fluxes, and momentum fluxes from the ARPEGE data set.
- River runoff and exchanges with the Black Sea included as surface freshwater forcing.

We investigate the contribution from air-sea fluxes and mixing (all mixing processes altogether) to water-mass transformation and variability in the Mediterranean Sea by projecting the model’s output in a water-mass framework.

Θ-S framework: Cross-haline and cross-thermal fluxes (see [4] for example):

\[\begin{align*}
G_\Theta &= \frac{\partial \Theta}{\partial t} + \nabla \cdot \mathbf{u} + \nabla \cdot \mathbf{Q} - \frac{1}{c} \frac{\partial \Theta}{\partial S} + \frac{F_{\text{air}}}{\rho} \\
G_S &= \frac{\partial S}{\partial t} + \nabla \cdot \mathbf{u} + \nabla \cdot \mathbf{Q} - \frac{1}{c} \frac{\partial S}{\partial \Theta} \end{align*} \]

Cross-haline and cross-thermal fluxes from the water-mass transformation vector J:

\[J = \frac{\partial \Theta}{\partial t} + \nabla \cdot \mathbf{u} + \nabla \cdot \mathbf{Q} - \frac{1}{c} \frac{\partial \Theta}{\partial \Theta} + \frac{F_{\text{air}}}{\rho} \]

\[J = \frac{\partial \Theta}{\partial t} + \nabla \cdot \mathbf{u} + \nabla \cdot \mathbf{Q} - \frac{1}{c} \frac{\partial \Theta}{\partial S} + \frac{F_{\text{air}}}{\rho} \]

Take Home message

- Θ-S framework allows to track the water-mass transformation between inflow and outflow at Gibraltar.
- Mixing (isopycnal and diazonal) plays a dominant role.
- Sicily and Messina Straits seem to play a pivotal role where diazonal mixing occurs.
- Bottom waters span a small Θ – S range.

Perspectives

- Investigate changes in water-mass transformation vectors for different time periods (pre/post EMT and WMT).
- Focus on deep water cells.
- What are the dominant mixing processes involved?

Acknowledgement: LJ thanks the European Union for support via a Marie Curie fellowship (FP7-PEOPLE-2012-IF no. 328416). We thank J. Beuvier (Menervat Ocean) for providing the NEMO’s output.

References

Contact: Loïc Jullion (loic.jullion@mio.osupytheas.fr)