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Abstract

We are interested in a kinetic equation intended to describe the interaction of
particles with their environment. The environment is modeled by a collection of local
vibrational degrees of freedom. We establish the existence of weak solutions for a wide
class of initial data and external forces. We also identify a relevant regime which allows
us to derive, quite surprisingly, the attractive Vlasov–Poisson system from the coupled
Vlasov-Wave equations.
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1 Introduction

In [8], L. Bruneau and S. De Bièvre introduced a mathematical model intended to
describe the interaction of a classical particle with its environment. The environment
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is modeled by a vibrating scalar field, and the dynamics is governed by energy exchanges
between the particle and the field, embodied into a Hamiltonian structure. To be more
specific on the model in [8], let us denote by q(t) ∈ R

d the position occupied by the
particle at time t. The environment is represented by a field (t, x, y) ∈ R×R

d ×R
n 7→

Ψ(t, x, y) ∈ R: it can be thought of as an infinite set of n-dimensional membranes, one
for each x ∈ R

d. The displacement of the membrane positioned at x ∈ R
d is given by

y ∈ R
n 7→ ψ(t, x, y) ∈ R. The coupling is realized by means of form factor functions

x 7→ σ1(x) and y 7→ σ2(y), which are supposed to be non-negative, infinitely smooth,
radially symmetric and compactly supported. Therefore, the dynamic is described by
the following set of differential equations





q̈(t) = −∇V (q(t)) −
∫

Rd×Rn
σ1(q(t) − z) σ2(y) ∇xΨ(t, z, y) dy dz,

∂2
ttΨ(t, x, y) − c2∆yΨ(t, x, y) = −σ2(y)σ1(x− q(t)), x ∈ R

d, y ∈ R
n.

(1)

In (1), c > 0 stands for the wave speed in the transverse direction, while q ∈ R
d 7→

V (q) ∈ R is a time-independent external potential the particle is subjected to. In [8],
the well-posedness theory for (1) is investigated, but the main issue addressed there is
the large time behavior of the system. It is shown that the system exhibits dissipative
features: under certain circumstances (roughly speaking, n = 3 and c large enough)
and for a large class of finite energy initial conditions the particle energy is evacuated
in the membranes, and the environment acts with a friction force on the particle. Ac-
cordingly, the asymptotic behavior of the particle for large times can be characterized
depending on the external force: if V = 0, the particle stops exponentially fast, when
V is a confining potential with a minimiser q0, then the particle stops at the location
q0, and for V (q) = −F · q, a limiting velocity VF can be identified.

Since then, a series of works has been devoted to further investigation of the asymp-
totic properties of a family of related models. We refer the reader to [1, 10, 11, 12, 25, 30]
for thorough numerical experiments and analytical studies, that use random walks ar-
guments in particular. The model can be seen as a variation on the Lorentz gas model
where one is interested in the free motion of a single point particle in a system of
obstacles distributed on a certain lattice. We refer the reader to [4, 9, 17, 19, 27]
for results and recent overviews on the Lorentz gas problem. Instead of dealing with
periodically or randomly distributed hard scatterers as in the Lorentz gas model, here
the particle interacts with a vibrational environment, that create the “soft” potential
Φ. The asymptotic analysis of the behavior of a particle subjected to an oscillating
potential is a further related problem that is also worth mentioning [16, 22, 24, 28].

We wish to revisit the model of [8] in the framework of kinetic equations. Instead
of considering a single particle described by its position t 7→ q(t), we work with the
particle distribution function in phase space f(t, x, v) ≥ 0, with x ∈ R

d, v ∈ R
d, the

position and velocity variables respectively. This quantity obeys the following Vlasov
equation

∂tf + v · ∇xf − ∇x(V + Φ) · ∇vf = 0, t ≥ 0, x ∈ R
d, v ∈ R

d. (2)
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In (2), V stands for the external potential, while Φ is the self-consistent potential de-
scribing the interaction with the environment. It is defined by the convolution formula

Φ(t, x) =

∫

Rd×Rn
Ψ(t, z, y)σ1(x− z)σ2(y) dy dz, t ≥ 0, x ∈ R

d (3)

where the vibrating field Ψ is driven by the following wave equation





(
∂2

ttΨ − c2∆yΨ
)
(t, x, y) = −σ2(y)

∫

Rd
σ1(x− z)ρ(t, z) dz, t ≥ 0, x ∈ R

d, y ∈ R
n,

ρ(t, x) =

∫

Rd
f(t, x, v) dv.

(4)
The system is completed by initial data

f(0, x, v) = f0(x, v), Ψ(0, x, y) = Ψ0(x, y), ∂tΨ(0, x, y) = Ψ1(x, y). (5)

A possible interpretation of the kinetic equation (2) consists in considering the model
(1) for a set of N ≫ 1 particles. The definition of the self–consistent potential has to
be adapted since all the particles interact with the environment, namely we have, for
j ∈ {1, ..., N}





q̈j(t) = −∇V (qj(t)) −
∫

Rd×Rn
σ1(qj(t) − z) σ2(y) ∇xΨ(t, z, y) dy dz,

∂2
ttΨ(t, x, y) − c2∆yΨ(t, x, y) = −σ2(y)

N∑

k=1

σ1(x− qk(t)).

Note that such a many-particle system is not considered in [8]. It is very likely that
its asymptotic behavior is much more complicated than with a single particle because,
even if the particles do not interact directly, they do so indirectly via their interaction
with the membranes. If we now adopt the mean–field rescaling in which Φ → 1

N Φ,
then (2) can be obtained as the limit as N goes to ∞ for the empirical measure
fN (t, x, v) = 1

N

∑N
k=1 δ(x = qk(t), v = q̇k(t)) of the N−particle system, assuming the

convergence of the initial state fN(0, x, v) → f0(x, v) in some suitable sense. Such a
statement can be rephrased in terms of the convergence of the joint distribution of the
N–particle system. This issue will be discussed elsewhere [31] and we refer the reader
to the lecture notes [18] and to [20] for further information on the mean–field regimes
in statistical physics.

In this paper we wish to analyse several aspects of the Vlasov-Wave system (2)–(5).
We warn the reader that, despite the similarities in terminology, the model considered
here is very different, both mathematically and physically, from the one dealt with in
[6], which is a simplified version of the Vlasov–Maxwell system. It is indeed crucial
to understand that the wave equation in this paper is set with variables transverse to
the physical space: the waves do not propagate at all in the space where the parti-
cles move. This leads to very different physical effects; we refer to [8] and references
therein for more details on this matter. We add that this paper is less ambitious than
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[8], since we do not discuss here the large time behavior of the solutions, only their
global existence. As mentioned above, since we are dealing with many particles, it is
very likely that the question cannot be handled in the same terms as in [8], and that the
kinetic model inherits the same technical and conceptual difficulties already mentioned
for N > 1 particles. We only mention that a particular stationary solution (with f in-
tegrable) has been exhibited in [2], and that this solution is shown to be linearly stable.

The paper is organized as follows. Section 2 contains a preliminary and largely in-
formal discussion to set up notation and to establish some estimates on the interaction
potential needed in the bulk of the paper. Section 3 establishes the well–posedness of
the problem (2)–(5) (Theorem 3.3). We consider a large class of initial data and exter-
nal potentials with functional arguments which are reminiscient of Dobrushin’s analysis
of the Vlasov equation [15]. Section 4 is devoted to asymptotic issues which allow us
to connect (2)–(5) to Vlasov equations with an attractive self–consistent potential. In
particular, up to a suitable rescaling of the form function σ1, we can derive this way
the attractive Vlasov–Poisson system. This is quite surprising and unexpected in view
of the very different physical motivation of the models.

2 Preliminary discussion

Throughout the paper, we make the following assumptions on the model parameters
and on the initial conditions. First, on the coupling functions σ1, σ2, we impose:





σ1 ∈ C∞
c (Rd,R), σ2 ∈ C∞

c (Rn,R),
σ1(x) ≥ 0, σ2(y) ≥ 0 for any x ∈ R

d, y ∈ R
n,

σ1, σ2 are radially symmetric.
(H1)

We require that the external potential fulfills

{
V ∈ W 2,∞

loc (Rd),
and there exists C ≥ 0 such that V (x) ≥ −C(1 + |x|2) for any x ∈ R

d.
(H2)

This is a rather standard and natural assumption. Note that it ensures global existence
when σ1 = 0 = σ2: it then implies that the external potential cannot drive the particle
to infinity in finite time. For the initial condition of the vibrating environment, we
shall assume

Ψ0,Ψ1 ∈ L2(Rd × R
n). (H3)

For the initial particle distribution function, we naturally assume

f0 ≥ 0, f0 ∈ L1(Rd × R
d). (H4)

For energy considerations, it is also relevant to suppose

∇yΨ0 ∈ L2(Rd × R
n) and

(
(x, v) 7→ (V (x) + |v|2)f0(x, v)

)
∈ L1(Rd × R

d). (H5)

This means that the initial state has finite mass, potential and kinetic energy.
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Our goal in this section is to rewrite the equations of the coupled system (2)-(5) in
an equivalent manner, more suitable for our subsequent analysis. The discussion will
be informal, with all computations done for sufficiently smooth solutions. The proper
functional framework will be provided in the next section. First, we note that it is
clear that (2) preserves the total mass of the particles

d

dt

∫

Rd×Rd
f(t, x, v) dv dx = 0.

In fact, since the field (v,∇xV + ∇xΦ) is divergence–free (with respect to the phase
variables (x, v)), any Lp norm of the density f is conserved, 1 ≤ p ≤ ∞. Furthermore,
the PDEs system (2)–(4) inherits from the Hamiltonian nature of the original equations
of motion (1) the following easily checked energy conservation property:

d

dt

{
1

2

∫

Rd×Rn
|∂tΨ(t, x, y)|2 dxdy +

c2

2

∫

Rd×Rn
|∇yΨ(t, x, y)|2 dxdy

+

∫

Rd×Rd
f(t, x, v)

(
|v|2
2

+ V (x) + Φ(t, x)

)
dv dx

}
= 0.

As a matter of fact the energy remains finite when the full set of assumptions (H1)–
(H5) holds.

For the Vlasov–Poisson equation it is well known that the potential can be expressed
by means of a convolution formula. Similarly here, the self-consistent potential Φ
can be computed explicitly as the image of a certain linear operator acting on the
macroscopic density ρ(t, x) =

∫
Rd f(t, x, v) dv; this follows from the fact that the linear

wave equation (4) can be solved explicitly as the sum of the solution of the homogeneous
wave equation with the correct initial conditions plus the retarded solution of the
inhomogeneous wave equation. To see how this works, we introduce

t 7→ p(t) =
1

(2π)n

∫

Rn

sin(c|ξ|t)
c|ξ| |σ̂2(ξ)|2 dξ

and

Φ0(t, x) =
1

(2π)n

∫

Rn

∫

Rd
σ1(x−z)

(
Ψ̂0(z, ξ) cos(c|ξ|t) + Ψ̂1(z, ξ)

sin(c|ξ|t)
c|ξ|

)
σ̂2(ξ) dz dξ

(6)
where the symbol ·̂ stands for the Fourier transform with respect to the variable
y ∈ R

n. Note that Φ0 is the solution of the homogeneous wave equation with the
given initial conditions for Ψ. Finally, we define the operator L which associates to a
distribution function f : (0,∞) × R

d × R
d → R the quantity

L(f)(t, x) =

∫ t

0
p(t− s)

(∫

Rd
Σ(x− z)ρ(s, z) dz

)
ds, (7)

where

ρ(t, x) =

∫

Rd
f(t, x, v) dv, Σ = σ1 ∗

x
σ1.
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We can then check that the pair (f,Ψ) is a solution of (2)–(4) iff f satisfies

{
∂tf + v · ∇xf = ∇vf · ∇x (V + Φ0 − L(f))
f(0, x, v) = f0(x, v)

(8)

and Ψ is the unique solution of (4).
We sketch the computation, which is instructive. Let (f,Ψ) be a solution of (2)–(4).

Applying the Fourier transform with respect to the variable y we find





(∂2
t + c2|ξ|2)Ψ̂(t, x, ξ) = −(ρ(t, ·) ∗

x
σ1)(x) σ̂2(ξ),

Ψ̂(0, x, ξ) = Ψ̂0(x, ξ) ∂tΨ̂(0, x, ξ) = Ψ̂1(x, ξ).

The solution reads

Ψ̂(t, x, ξ) = −
∫ t

0
(ρ(t − s, ·) ∗ σ1)(x) σ̂2(ξ)

sin(cs|ξ|)
c|ξ| ds

+Ψ̂0(x, ξ) cos(c|ξ|t) + Ψ̂1(x, ξ)
sin(c|ξ|t)
c|ξ| .

(9)

To compute Φ in (3), we use Plancherel’s equality:

Φ(t, x) =

∫

Rd×Rn
Ψ(t, z, y)σ1(x− z)σ2(y) dy dz

=
1

(2π)n

∫

Rd×Rn
Ψ̂(t, z, ξ)σ1(x− z)σ̂2(ξ) dξ dz

= −
(

(σ1 ∗ σ1) ∗
∫ t

0

(
ρ(t− s, ·)

∫

Rn

sin(cs|ξ|)
c|ξ|

|σ̂2(ξ)|2
(2π)n

dξ
)

ds

)
(x)

+
1

(2π)n

(
σ1 ∗

∫

Rn

(
Ψ̂0(·, ξ) cos(c|ξ|t) + Ψ̂1(·, ξ)sin(c|ξ|t)

c|ξ|

)
σ̂2(ξ) dξ

)
(x)

= −L(f)(t, x) + Φ0(t, x).

Inserting this relation into (2), we arrive at (8). Conversely, let f be a solution of (8)
and let Ψ be the unique solution of (4). The same computation then shows that Φ
in (3) is given by Φ = Φ0 − L(f). Therefore f satisfies (2).

The operator L in (7) plays a crucial role in our further analysis. Its precise defi-
nition on an appropriate functional space and its basic continuity properties are given
in the following Lemma.

Lemma 2.1 (Estimates on the interaction potential) For any 0 < T < ∞, the
following properties hold:

i) L belongs to the space AT of continuous operators on C
(
[0, T ];

(
W 1,∞(Rd ×R

d)
)′)

with values in C
(
[0, T ];W 2,∞(Rd)

)
. Its norm is evaluated as follows:

|||L|||AT
≤ ‖σ1‖2

W 3,2(Rd)‖σ2‖2
L2(Rn)

T 2

2
;
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ii) L belongs to the space BT of continuous operators on C
(
[0, T ];

(
W 1,∞(Rd ×R

d)
)′)

with values in C1
(
[0, T ];L∞(Rd)

)
. Its norm is evaluated as follows:

|||L|||BT
≤ ‖σ1‖2

W 1,2(Rd)‖σ2‖2
L2(Rn)

(
T +

T 2

2

)
;

iii) Φ0 satisfies

‖Φ0(t, ·)‖W 2,∞(Rd) ≤ ‖σ1‖W 2,2(Rd)‖σ2‖L2(Rn)

(
‖Ψ0‖L2(Rn) + t‖Ψ1‖L2(Rn)

)
,

for any 0 ≤ t ≤ T , and, moreover

‖Φ0‖C1([0,T ];L∞(Rd)) ≤ ‖σ1‖L2(Rd)‖σ2‖W 1,2(Rn)

(
2‖Ψ0‖L2(Rn) + (1 + T )‖Ψ1‖L2(Rn)

)
.

Proof. The last statement is a direct consequence of Hölder and Young inequalities;
let us detail the proof of items i) and ii). We associate to f ∈

(
W 1,∞(Rd × R

d)
)′

, the

macroscopic density ρ ∈
(
W 1,∞(Rd)

)′
by the formula:

〈ρf , χ〉(W 1,∞)′,W 1,∞(Rd) = 〈f, χ⊗ 1v〉(W 1,∞)′,W 1,∞(Rd×Rd) , ∀χ ∈ W 1,∞(Rd).

Clearly, we have ‖ρf ‖(
W 1,∞(Rd)

)′ ≤ ‖f‖(
W 1,∞(Rd×Rd)

)′ .

For any χ ∈ C∞
c (Rd), and i ∈ {0, 1, 2} , we can check the following estimates

∣∣〈ρ ∗ Σ,∇iχ
〉∣∣ =

∣∣〈ρ,
(
∇iΣ

)
∗ χ
〉∣∣ ≤ ‖ρ‖(

W 1,∞(Rd)
)′‖
(
∇iΣ

)
∗ χ‖W 1,∞(Rd)

≤ ‖f‖(
W 1,∞(Rd×Rd)

)′

(
‖∇iΣ‖L∞(Rd) + ‖∇i+1Σ‖L∞(Rd)

)
‖χ‖L1(Rd).

Since the dual space of L1 is L∞, for i = 0, we deduce that

‖ρ ∗ Σ‖L∞(Rd) ≤ ‖f‖(
W 1,∞(Rd×Rd)

)′

(
‖Σ‖L∞(Rd) + ‖∇Σ‖L∞

)

≤ ‖σ1‖2
W 1,2(Rd)

‖f‖(
W 1,∞(Rd×Rd)

)′ .

Reasoning similarly for i = 1 and i = 2, we obtain

‖ρ ∗ Σ‖W 2,∞(Rd) ≤ ‖σ1‖2
W 3,2(Rd)‖f‖(

W 1,∞(Rd×Rd)
)′ .

We now estimate p. Plancherel’s inequality yields

|p′(t)| =

∣∣∣∣
1

(2π)n

∫

Rn
cos(c|ξ|t)|σ̂2(ξ)|2 dξ

∣∣∣∣ ≤ ‖σ2‖2
L2(Rn).

Since p(0) = 0, it follows that |p(t)| ≤ ‖σ2‖2
L2(Rn)t. Hence, for all 0 ≤ t ≤ T < ∞, we

have

‖L(f)(t)‖W 2,∞(Rd×Rd) ≤ ‖Σ ∗ ρ‖L∞(0,T ;W 2,∞(Rd))

∫ t

0
|p(t − s)| ds

≤ ‖f‖
C
(

[0,T ];
(
W 1,∞(Rd×Rd)

)′)‖σ1‖2
W 3,2(Rd)

‖σ2‖2
L2(Rn)

T 2

2
.

This proves the estimate in i). That L(f)(t) is continuous as a function of t follows
easily from the previous argument. As a further by-product note that

‖L(f)(t)‖L∞ ≤ ‖f‖
C
(

[0,T ];
(
W 1,∞(Rd×Rd)

)′)‖σ1‖2
W 1,2(Rd)‖σ2‖2

L2(Rn)

T 2

2
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holds. Since p(0) = 0, we have

∂tL(f)(t) =

∫ t

0
p′(t− s)Σ ∗ ρ(s) ds

which gives:

‖∂tL(f)(t)‖L∞(Rd×Rd) ≤ ‖f‖
C
(

[0,T ];
(
W 1,∞(Rd×Rd)

)′)‖σ1‖2
W 1,2(Rd)‖σ2‖2

L2(Rn) T.

This ends the proof of ii).

3 Existence of solutions

The proof of existence of solutions to (8) relies on estimates satisfied by the character-
istics curves defined by the following ODE system:

{
Ẋ(t) = ξ(t),

ξ̇(t) = −∇V (X(t)) − ∇Φ(t,X(t)).
(10)

From now on, we adopt the following notation. The potential Φ being given, we
denote by ϕΦ,t

α (x0, v0) ∈ R
d ×R

d the solution of (10) which starts from (x0, v0) at time
t = α: the initial data is ϕΦ,α

α (x0, v0) = (x0, v0). We use the shorthand notation t 7→
(X(t), ξ(t)) for t 7→ ϕΦ,t

0 (x0, v0), the solution of (10) with X(0) = x0 and V (0) = v0.
Owing to the regularity of V, L and Φ0, see Lemma 2.1, the solution of the differential
system (10) is indeed well defined for prescribed initial data; this also allows us to
establish the following estimates, where characteristics are evaluated both forward and
backward.

Lemma 3.1 (Estimates on the characteristic curves) Let V satisfy (H2) and
let Φ ∈ C0([0,∞);W 2,∞(Rd)) ∩ C1([0,∞);L∞(Rd)).

a) There exists a function (N , t, x, v) ∈ [0,∞)× [0,∞)×R
d ×R

d 7→ R(N , t, x, v) ∈
[0,∞), non decreasing with respect to the first two variables, such that the solution
t 7→ (X(t), ξ(t)) of (10) with initial data X(0) = x0, ξ(0) = v0 satisfies the
following estimate, for any t ∈ R,

(X(t), ξ(t)) ∈ B
(
0, R

(
‖Φ‖C1([0,t];L∞(Rd)), |t|, x0, v0

))
⊂ R

d × R
d.

b) Taking two different potentials Φ1 and Φ2, the following two estimates hold for
any t > 0:

|(ϕΦ1,t
0 − ϕΦ2,t

0 )(x0, v0)|

≤
∫ t

0
‖(Φ1 − Φ2)(s)‖W 1,∞(Rd) exp

(∫ t

s
‖∇2(Φ1(τ) + V )‖L∞(Bτ (x0,v0)) dτ

)
ds,

|(ϕΦ1,0
t − ϕΦ2,0

t )(x, v)|

≤
∫ t

0
‖(Φ1 − Φ2)(s)‖W 1,∞(Rd) exp

(∫ s

0
‖∇2(Φ1(τ) + V )‖L∞(B̃t,τ (x,v)) dτ

)
ds,
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where we set Bτ (x, v) = B
(
0, R

(
maxi=1,2 ‖Φi‖C1([0,τ ];L∞(Rd)), τ, x, v

))
and B̃t,τ =

B
(
0, R

(
maxi=1,2 ‖Φi‖C1([τ,t];L∞(Rd)), t− τ, x, v

))
.

The proof of the lemma is postponed the end of this section. Given 0 < R0 < ∞,
and Ψ0,Ψ1 satisfying (H3) (they enter into the definition of Φ0 in (6)), we set

r(t, x, v) = R(‖Φ0‖C1([0,t];L∞(Rd)) + |||L|||BtR0, t, x, v). (11)

Proving uniqueness statements for the wide class of external potentials considered
in(H2) requires to strengthen the hypothesis on the initial data.

Definition 3.2 Let 0 < T,R0 < ∞. We say that an integrable function f0 belongs to
the set ER0,T if f0 ≥ 0 satisfies ‖f0‖L1(Rd×Rd) ≤ R0 and, furthermore,

KR0,T (f0) :=

∫

Rd×Rd
f0(x, v) exp

(∫ T

0
‖∇2V ‖L∞(B(0,r(t,x,v))) dt

)
dv dx < ∞.

Theorem 3.3 Assume (H1)–(H3). Let 0 < R0, T < ∞. Let f0 ∈ ER0,T . Then,
there exists a unique f ∈ C([0, T ];L1(Rd × R

d)) weak solution of (8). The solution
is continuous with respect to the parameters L, Φ0 and f0, respectively in AT ∩ BT ,
C1([0,∞);W 2,∞(Rd)) and ER0,T . If f0 ∈ L1(Rd ×R

d) only, see (H4), then there exists
f ∈ C([0,∞);L1(Rd × R

d)), weak solution of (8).

The statement can be rephrased for the original problem (2)–(5). We also establish
the conservation of energy.

Corollary 3.4 Assume (H1)–(H3). Let 0 < R0, T < ∞. Let f0 ∈ ER0,T . Then, there
exists a unique weak solution (f,Ψ) to the system (2)–(5) with f ∈ C([0, T ];L1(Rd ×
R

d)) and Ψ ∈ C([0, T ];L2(Rd × R
n)). The solution is continuous with respect to the

parameters σ1, σ2, Ψ0, Ψ1 and f0 in the sets W 3,2(Rd), L2(Rn), L2(Rd ×R
n), L2(Rd ×

R
n) and ER0,T , respectively. If f0 satisfies (H4) only, then there exists a weak solution

with f ∈ C([0,∞);L1(Rd × R
d)) and Ψ ∈ C([0, T ];L2(Rd × R

n)). Furthermore, when
the initial data satisfies (H5) the total energy

1

2

∫

Rd×Rn
|∂tΨ(t, x, y)|2 dxdy +

c2

2

∫

Rd×Rn
|∇yΨ(t, x, y)|2 dxdy

+

∫

Rd×Rd
f(t, x, v)

(
|v|2
2

+ V (x) + Φ(t, x)

)
dv dx

is conserved.

Remark 3.5 Definition 3.2 restricts the set of initial data depending on the growth
of the Hessian of the external potential. Of course, any integrable data f0 with com-
pact support fulfils the criterion in Definition 3.2, and when the potential has at most
quadratic growth, any data satisfying (H4) is admissible. As will be clear in the proof,
the continuity with respect to the initial data does not involve the L1 norm only, but
the more intricate quantity KR0,T also arises in the analysis.
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Remark 3.6 The present approach does not need a restriction on the transverse di-
mension (n ≥ 3 in [8]). The proof can be slightly modified to treat the case of
measure–valued initial data f0, thus including the results in [8] for a single parti-
cle (f0(x, v) = δ(x=x0,v=v0)), and we can consider a set of N > 1 particles as well.
The measure–valued solution is then continuous with respect to the initial data in
C([0, T ]; (W 1,∞(Rd × R

d))′). This viewpoint will be further detailed with the discus-
sion of mean–field asymptotics [31].

The proof of Theorem 3.3 relies on a fixed point strategy, the difficulty being to
set up the appropriate functional framework. It turns out that it will be convenient to
work with the C

(
[0, T ]; (W 1,∞(Rd × R

d))′) norm. We remind the reader that the dual
norm on (W 1,∞(Rd × R

d))′ is equivalent to the Kantorowich–Rubinstein distance

W1(f, g) = sup
π

{ ∫

R2d×R2d
|ζ − ζ ′| dπ(ζ, ζ ′)

}

where the supremum is taken over measures π having f and g as marginals, see e. g. [32,
Remark 6.5]. This distance appears naturally in the analysis of Vlasov–like systems,
as pointed out in [15]. In order to define the fixed point procedure, we introduce the
following mapping. For a non negative integrable function f0, we denote by Λf0 the
application which associates to Φ in C([0,∞);W 2,∞(Rd)) ∩ C1([0,∞);L∞(Rd)) the
unique solution f of the Liouville equation

∂tf + v · ∇xf − ∇vf · ∇x (V + Φ) = 0,

with initial data f0. We shall make use of the following statement, which provides
useful estimates.

Lemma 3.7 For any f0 ∈ L1(Rd × R
d), the application Λf0 is continuous on the

set C([0,∞);W 2,∞(Rd)) ∩ C1([0,∞);L∞(Rd)) with values in C([0,∞);L1(Rd × R
d)).

Furthermore, we have

‖Λf0(Φ) − Λg0(Φ)‖L∞(0,∞;L1(Rd×Rd)) = ‖f0 − g0‖L1(Rd×Rd),

for any Φ ∈ C([0,∞);W 2,∞(Rd)) ∩C1([0,∞);L∞(Rd)).

Proof. Let 0 < T < ∞ be fixed once for all. We begin by assuming that f0 is C1

and compactly supported. For any 0 ≤ t ≤ T , we have

Λf0(Φ)(t) = f0 ◦ ϕΦ,0
t ,

where we remind the reader that ϕΦ,0
t (x, v) stands for the evaluation at time 0 of

the solution of (10) which starts at time t from the state (x, v). Accordingly any Lp

norm is preserved: ‖Λf0(Φ)(t)‖Lp(Rd×Rd) = ‖f0‖Lp(Rd×Rd) holds for any t ≥ 0 and any
1 ≤ p ≤ ∞. By linearity, this immediately proves the continuity estimate with respect
to the initial data.

To establish the continuity properties with respect to Φ, we first observe, denot-
ing Λf0(Φ) = f , that (x, v) ∈ supp(f(t, ·)) iff ϕΦ,0

t (x, v) ∈ supp(f0), that is (x, v) ∈
ϕΦ,t

0 (supp(f0)). Therefore, by Lemma 3.1, we can find a compact set KT ⊂ R
d × R

d

10



such that supp(f(t, ·)) ⊂ KT for any 0 ≤ t ≤ T . We are dealing with potentials Φ1

and Φ2 in C([0,∞);W 2,∞(Rd)) ∩ C1([0,∞);L∞(Rd)). We can again find a compact
set, still denoted by KT ⊂ R

d × R
d, such that the support of the associated solutions

Λf0(Φ1) and Λf0(Φ2) for any 0 ≤ t ≤ T is contained in KT . We infer that

‖Λf0(Φ1)(t) − Λf0(Φ2)(t)‖L1(Rd×Rd) =

∫

KT

|f0 ◦ ϕΦ1,0
t − f0 ◦ ϕΦ2,0

t | dv dx

≤ ‖f0‖W 1,∞(Rd×Rd) meas(KT ) sup
(x,v)∈KT

|ϕΦ1,0
t (x, v) − ϕΦ2,0

t (x, v)|

holds. As τ ranges over [0, t] ⊂ [0, T ] and (x, v) lies in KT , the backward characteristics
ϕΦi,τ

t (x, v) still belong to a compact set. We introduce the following quantities

R = sup
(x,v)∈KT

R

(
max
i=1,2

‖Φi‖C1([0,T ];L∞(Rd)), T, x, v

)

and

mT = exp

(∫ T

0
‖∇2Φ1(u)‖L∞(Rd) du

)
.

For 0 ≤ t ≤ T and any (x, v) ∈ KT , Lemma 3.1-b) yields:

|ϕΦ1,0
t (x, v) − ϕΦ2,0

t (x, v)|

≤ mT

∫ t

0
‖(Φ1 − Φ2)(s)‖W 1,∞(Rd) exp

(∫ s

0
‖∇2V ‖L∞(B(0,R)) dτ

)
ds.

We conclude with

sup
(x,v)∈KT

|ϕΦ1,0
t (x, v) − ϕΦ2,0

t (x, v)| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
‖Φ1−Φ2‖

L∞(0,T ;W 2,∞(Rd))
→0

‖Φ1‖
C1([0,T ];L∞(Rd))

,‖Φ2‖
C1([0,T ];L∞(Rd))

≤M

0.

(It is important to keep both the C1([0, T ];L∞(Rd)) and L∞(0, T ;W 2,∞(Rd)) norms
of the potentials bounded since these quantities appear in the definition of R and mT .)
This proves the asserted continuity of the solution with respect to the potential. By
uniform continuity of the flow on the compact set [0, T ] × KT , we obtain the time
continuity. Hence the result is proved when the initial data f0 lies in C1

c .
We finally extend the result for initial data f0 in L1. Those can be approximated

by a sequence
(
fk

0

)
k∈N

of functions in C1
c (Rd × R

d). We have

‖Λf0(Φ)(t) − Λfk
0
(Φ)(t)‖L1(Rd×Rd) = ‖Λ(f0−fk

0 )(Φ)(t)‖L1(Rd×Rd) = ‖f0 − fk
0 ‖L1(Rd×Rd).

Therefore, Λf0 is the uniform limit of maps which are continuous with respect to Φ
and the time variable. This remark ends the proof.

Proof of Theorem 3.3.
Existence–uniqueness for initial data in ER0.T .

We turn to the fixed point reasoning. For f given in C
(
[0, T ]; (W 1,∞(Rd × R

d))′),
we set

Tf0(f) = Λf0(Φ0 − L(f)).

11



It is clear that a fixed point of Tf0 is a solution to (8). Note also that, as a conse-
quence of Lemma 2.1 and Lemma 3.7, Tf0(f)(t) ∈ L1(Rd × R

d). More precisely, we
know that f 7→ T (f) is continuous with values in the space C([0, T ];L1(Rd × R

d)) ⊂
C
(
[0, T ]; (W 1,∞(Rd × R

d))′). We shall prove that T admits an iteration which is a
contraction on the ball with centre 0 and radius R0.

Let f1 and f2 be two elements of this ball. We denote ϕΦi,t
α the flow of (10) with

Φi = Φ0 − L(fi): ϕ
Φi,t
α (x0, v0) satisfies (10) with (x0, v0) as data at time t = α. Let χ

be a trial function in W 1,∞(Rd × R
d). We have

∣∣∣∣
∫

Rd×Rd
(T (f1)(t, x, v) − T (f2)(t, x, v))χ(x, v) dv dx

∣∣∣∣

=

∣∣∣∣
∫

Rd×Rd

(
f0 ◦ ϕΦ1,0

t − f0 ◦ ϕΦ2,0
t

)
(x, v)χ(x, v) dv dx

∣∣∣∣

=

∣∣∣∣
∫

Rd×Rd
f0(x, v)

(
χ ◦ ϕΦ1,t

0 − χ ◦ ϕΦ2,t
0

)
(x, v) dv dx

∣∣∣∣

≤
∫

Rd×Rd
f0(x, v)‖∇χ‖∞

∣∣∣ϕΦ1,t
0 − ϕΦ2,t

0

∣∣∣ (x, v) dv dx.

It follows that

‖T (f1)(t)−T (f2)(t)‖(W 1,∞(Rd×Rd))
′ ≤

∫

Rd×Rd
f0(x, v)

∣∣∣ϕΦ1,t
0 − ϕΦ2,t

0

∣∣∣ (x, v) dv dx. (12)

By using Lemma 3.1-b), we obtain
∣∣∣ϕΦ1,t

0 − ϕΦ2,t
0

∣∣∣ (x, v)

≤ m̄T

∫ t

0
‖L(f1 − f2)‖L∞(0,s;W 2,∞(Rd))

× exp

(∫ t

s
‖∇2V ‖L∞B(0,R(‖Φ0+L(fi)‖C1([0,u];L∞(Rd))

,u,x0,v0)) du

)
ds,

where we have used

exp

(∫ T

0
‖∇2(Φ0(u) − L(f1)(u)‖L∞(Rd) du

)

≤ exp

(∫ T

0

(
‖∇2Φ0(u)‖L∞(Rd) + |||L|||Au‖f0‖L1(Rd×Rd)

)
du

)
= m̄T .

Plugging this estimate into (12) yields

‖T (f1)(t) − T (f2)(t)‖(W 1,∞(Rd×Rd))
′

≤ m̄T

∫

Rd×Rd
f0(x, v)

∫ t

0
‖L(f1 − f2)‖L∞(0,s;W 2,∞(Rd))

× exp

(∫ t

s
‖∇2V ‖L∞(B(0,r(u,x,v))) du

)
ds dv dx.

It recasts as

‖T (f1)(t) − T (f2)(t)‖(W 1,∞)′ ≤ m̄′
T KR0,T

∫ t

0
‖f1 − f2‖

L∞

(
0,s;(W 1,∞(Rd×Rd))

′
) ds

with
m̄′

T = m̄T × sup
0≤s≤T

|||L|||As .
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By induction, we deduce that

‖T ℓ(f1)(t) − T ℓ(f2)(t)‖(W 1,∞(Rd×Rd))
′ ≤ (tm̄′

T KR0,T )ℓ

ℓ!
‖f1 − f2‖

L∞

(
0,T ;(W 1,∞(Rd×Rd))

′
)

holds for any ℓ ∈ N and 0 ≤ t ≤ T . Finally, we are led to

‖T ℓ(f1)−T ℓ(f2)‖
L∞

(
0,T ;(W 1,∞(Rd×Rd))

′
) ≤ (Tm̄′

T KR0,T )ℓ

ℓ!
‖f1−f2‖

L∞

(
0,T ;(W 1,∞(Rd×Rd))

′
).

This shows that an iteration of T is a contraction. Therefore, there exists a unique fixed
point f in C

(
[0, T ]; (W 1,∞(Rd × R

d))′). Furthermore, f = T (f) ∈ C([0, T ];L1(Rd ×
R

d)), and the solution is continuous with respect to the parameters of the system. Note
that the continuity estimate involves the quantity in Definition 3.2 which restricts the
growth assumption of the initial data.

Step 2: Existence for an integrable data
We proceed by approximation. Let f0 be in L1(Rd ×R

d), with ‖f0‖L1 ≤ R0. Then,

(x, v) 7→ fk
0 (x, v) = f0(x, v)1√

x2+v2≤k

lies in ER0,T (with a constant KR0,T which can blow up as k → ∞). The previous
step defines fk, solution of (8) with this initial data. Of course we wish to conclude by
passing to the limit k → ∞. However, the necessary compactness arguments are not
direct and the proof splits into several steps.

We start by showing that the sequence
(
fk
)

k∈N
is compact in C([0, T ]; M1(Rd ×

R
d)−weak−⋆). Pick χ ∈ C∞

c (Rd ×R
d). For any 0 ≤ t ≤ T , we have, on the one hand,

∣∣∣∣
∫

Rd×Rd
fk(t, x, v)χ(x, v) dv dx

∣∣∣∣ ≤ ‖fk(t, ·)‖L1(Rd×Rd)‖χ‖L∞(Rd×Rd)

≤ ‖fk
0 ‖L1(Rd×Rd)‖χ‖L∞(Rd×Rd)

≤ ‖f0‖L1(Rd×Rd)‖χ‖L∞(Rd×Rd),

(13)

and, on the other hand,
∣∣∣∣

d

dt

∫

Rd×Rd
fk(t, x, v)χ(x, v) dv dx

∣∣∣∣

=

∣∣∣∣
∫

Rd×Rd
fk(t, x, v)

(
v · ∇xχ− ∇x(V + Φ0 − L(f)(t)) · ∇vχ

)
(x, v) dv dx

∣∣∣∣
≤ ‖f0‖L1

(
‖v · ∇xχ− ∇V · ∇vχ‖L∞(Rd×Rd))

+
(
|||L|||AT

‖f0‖L1 + ‖Φ0‖L∞([0,T ];W 1,∞(Rd))

)
‖∇vχ‖L∞

)
.

Lemma 2.1 then ensures that the set
{
t 7→

∫

Rd×Rd
fk(t, x, v)χ(x, v) dv dx, k ∈ N

}

is equibounded and equicontinuous; hence, by virtue of Arzela–Ascoli’s theorem it is
relatively compact in C([0, T ]). Going back to (13), a simple approximation argument
allows us to extend the conclusion to any trial function χ in C0(Rd ×R

d), the space of
continuous functions that vanish at infinity.

This space is separable; consequently, by a diagonal argument, we can extract a
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subsequence and find a measure valued function t 7→ df(t) ∈ M1(Rd × R
d) such that

lim
k→∞

∫

Rd×Rd
fk(t, x, v)χ(x, v) dv dx =

∫

Rd×Rd
χ(x, v) df(t)

holds uniformly on [0, T ], for any χ ∈ C0(Rd × R
d). As a matter of fact, we note that

df is non negative and for any 0 ≤ t ≤ T it satisfies
∫

Rd×Rd
df(t) ≤ ‖f0‖L1(Rd×Rd).

Next, we establish the tightness of the sequence of approximate solutions. Let ǫ > 0
be fixed once for all. We can find Mǫ > 0 such that

∫

x2+v2≥M2
ǫ

f0(x, v) dv dx ≤ ǫ.

Let us set
Aǫ = sup{r(T, x, v), (x, v) ∈ B(0,Mǫ)}

where we remind the reader that r(T, x, v) has been defined in (11): 0 < Aǫ < ∞ is
well defined by Lemma 2.1. Let ϕk,t

α stand for the flow associated to the characteristics
of the equation satisfied by fk. For any 0 ≤ t ≤ T , we have ϕk,t

0 (B(0,Mǫ)) ⊂ B(0, Aǫ)

so that ∁
(
ϕk,0

t (B(0, Aǫ))
)

= ϕk,0
t

(
∁B(0, Aǫ)

)
⊂ ∁B(0,Mǫ). It follows that

∫

∁B(0,Aǫ)
fk(t, x, v) dv dx =

∫

∁B(0,Aǫ)
fk

0 (ϕk,0
t (x, v)) dv dx

=

∫

∁ϕk,0
t (B(0,Aǫ))

fk
0 (x, v) dv dx

≤
∫

∁B(0,Mǫ)
f0(x, v) dv dx ≤ ǫ.

By a standard approximation, we check that the same estimate is satisfied by the
limit f : ∫

∁B(0,Aǫ)
df(t) ≤ ǫ.

Finally, we justify that fk converges to f in C([0, T ]; (W 1,∞(Rd × R
d))′). Pick χ

in W 1,∞(Rd × R
d), with ‖χ‖W 1,∞(Rd×Rd) ≤ 1. We introduce a cut-off function θR as

follows:
θR(x, v) = θ(x/R, v/R), θ ∈ C∞

c (Rd × R
d),

θ(x, v) = 1 for
√
x2 + v2 ≤ 1, θ(x) = 0 for x2 + v2 ≥ 4,

0 ≤ θ(x) ≤ 1 for any x ∈ R
d.

(14)

Then, we split
∫

Rd×Rd
fk(t, x, v)χ(x, v) dv dx−

∫

Rd×Rd
χ(x, v) df(t)

=

∫

Rd×Rd
fk(t, x, v)χθR(x, v) dv dx−

∫

Rd×Rd
χθR(x, v) df(t)

+

∫

Rd×Rd
fk(t, x, v)χ(1 − θR)(x, v) dv dx−

∫

Rd×Rd
χ(1 − θR)(x, v) df(t).
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Choosing R ≥ Aǫ yields
∣∣∣∣
∫

Rd×Rd
fk(t, x, v)χ(1 − θR)(x, v) dv dx−

∫

Rd×Rd
χ(1 − θR)(x, v) df(t)

∣∣∣∣

≤ 2ǫ‖χ‖L∞(Rd×Rd).

(15)
By virtue of the Arzela-Ascoli theorem, W 1,∞(B(0, 2R)) embeds compactly in C(B(0, 2R)).
Thus, we can find a family {χ1, ..., χmǫ } of functions in W 1,∞(Rd × R

d) such that, for
any χ ∈ W 1,∞(Rd × R

d), ‖χ‖W 1,∞(Rd×Rd) ≤ 1, there exists an index i ∈ {1, ...,mǫ}
with ‖θRχ− χi‖L∞(B(0,2R)) ≤ ǫ (since χθR lies in a bounded ball of W 1,∞(B(0, 2R))).
Therefore, let us write
∫

Rd×Rd
fk(t, x, v)χθR(x, v) dv dx−

∫

Rd×Rd
χθR(x, v) df(t)

=

∫

Rd×Rd
fk(t, x, v)χi(x, v) dv dx−

∫

Rd×Rd
χi(x, v) df(t)x

+

∫

Rd×Rd
fk(t, x, v)(χθR − χi)(x, v) dv dx−

∫

Rd×Rd
(χθR − χi)(x, v) df(t),

where the last two terms can both be dominated by ‖f0‖L1(Rd×Rd)ǫ. We thus arrive at
∣∣∣∣
∫

Rd×Rd
fk(t, x, v)χ(x, v) dv dx−

∫

Rd×Rd
χ(x, v) df(t)

∣∣∣∣
≤ 2ǫ(‖χ‖L∞(Rd×Rd) + ‖f0‖L1(Rd×Rd))

+

∣∣∣∣
∫

Rd×Rd
fk(t, x, v) χi(x, v) dv dx−

∫

Rd×Rd
χi(x, v) df(t)

∣∣∣∣
≤ 2ǫ(‖χ‖L∞(Rd×Rd) + ‖f0‖L1(Rd×Rd))

+ sup
j∈{1,...,mǫ}

∣∣∣∣
∫

Rd×Rd
fk(t, x, v) χi(x, v) dv dx−

∫

Rd×Rd
χi(x, v) df(t)

∣∣∣∣ ,

for any χ ∈ W 1,∞(Rd × R
d), with ‖χ‖W 1,∞(Rd×Rd) ≤ 1. The last term can be made

smaller than ǫ by choosing k ≥ Nǫ large enough. In other words, we can find Nǫ ∈ N

such that

sup
‖χ‖W 1,∞ ≤1

∣∣∣∣
∫

Rd×Rd
fk(t, x, v)χ(x, v) dv dx−

∫

Rd×Rd
χ(x, v) df(t)

∣∣∣∣

≤ 2ǫ(2 + ‖f0‖L1(Rd×Rd))

holds for any 0 ≤ t ≤ T , and k ≥ Nǫ: f
k converges to f in C

(
[0, T ]; (W 1,∞(Rd ×R

d))′).
According to Lemma 3.7, together with Lemma 2.1, it implies that Tf0(fk) converges
to Tf0(f) in C([0, T ];L1(Rd × R

d)).
By definition Tfk

0
(fk) = fk so that

‖fk − Tf0(f)‖C([0,T ];L1(Rd×Rd))

≤ ‖Tfk
0
(fk) − Tf0(fk)‖C([0,T ];L1(Rd×Rd))) + ‖Tf0(fk) − Tf0(f)‖C([0,T ];L1(Rd×Rd)))

≤ ‖fk
0 − f0‖L1(Rd×Rd) + ‖Tf0(fk) − Tf0(f)‖C([0,T ];L1(Rd×Rd)))

holds, where we have used Lemma 3.7 again. Letting k go to ∞, we realize that fk

also converges to Tf0(f) in C([0, T ];L1(Rd × R
d)). It implies both f = Tf0(f) and
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f ∈ C([0, T ];L1(Rd × R
d)). By definition of Tf0, f satisfies (8), and it also justifies

that f is absolutely continuous with respect to the Lebesgue measure, which ends the
proof.

Proof of Lemma 3.1. Let (X, ξ) be the solution of (10) with (X(0), ξ(0)) = (x0, v0).
We have

d

dt

[
V (X(t)) + Φ(t,X(t)) +

|ξ(t)|2
2

]
= (∂tΦ)(t,X(t)).

The right hand side is dominated by ‖∂tΦ‖C([0,t];L∞(Rd)). With t ≥ 0, integrating this
relation yields

|ξ(t)|2
2

≤
(
V (x0) + Φ(0, x0) +

|v0|2
2

)
− (V (X(t)) + Φ(t,X(t))) + t‖∂tΦ‖C([0,t];L∞(Rd)).

Owing to (H2) we deduce that

|ξ(t)|2 ≤ a(t) + 2C|X(t)|2

holds with

a(t) = 2
∣∣∣V (x0) + Φ(0, x0) +

|v0|2
2

∣∣∣+ 2t‖∂tΦ‖C([0,t];L∞(Rd)) + 2‖Φ(t, ·)‖L∞(Rd) + 2C.

Next, we simply write

d|X(t)|2
dt

(t) = 2X(t) · ξ(t) ≤ X(t)2 + ξ(t)2

so that the estimate just obtained on ξ yields

|X(t)|2 ≤ |x0| + (1 + 2C)

∫ t

0
|X(s)|2 ds+

∫ t

0
a(s) ds.

By using the Grönwall lemma we conclude that

|X(t)|2 ≤ |x0|2e(1+2C)t +

∫ t

0
e(1+2C)(t−s)a(s) ds

holds. Going back to the velocity, we obtain

|ξ(t)|2 ≤ 2C

(
|x0|e(1+2C)t +

∫ t

0
e(1+2C)(t−s)a(s) ds

)
+ a(t).

It concludes the proof of Lemma 3.1-a).

Next, let (X1, ξ1) and (X2, ξ2) be two solutions of (10) with the same initial data
(x0, v0), but different potentials Φ1,Φ2. We already know that the two characteristic
curves (Xi(s), ξi(s)), for i ∈ {1, 2}, belong to Bs(x, v). We have





d

ds
|X1(s) −X2(s)| ≤ |ξ1(s) − ξ2(s)|,

d

ds
|ξ1(s) − ξ2(s)| ≤ ‖∇ (Φ1(s, ·) − Φ2(s, ·)) ‖L∞(Rd)

+|X1(s) −X2(s)|‖∇2(V + Φ1(s, ·))‖L∞(Bs(x,v))
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The Grönwall lemma yields the estimate

|(X1(t), ξ1(t)) − (X2(t), ξ2(t))|
≤
∫ t

0
‖(Φ1 − Φ2)(τ, ·)‖W 1,∞(Rd) exp

(∫ t

s

(
‖∇2(V + Φ1(u))‖L∞(Bu(x,v))

)
du

)
ds.

Finally, we wish to evaluate the backward characteristics, looking at the state at time
0, given the position/velocity pair at time t. Namely we consider ϕΦ,s

t (x, v) for s ≤ t,
bearing in mind ϕΦ,t

t (x, v) = (x, v). We set
(
Y
ζ

)
(s) =

(
1 0
0 −1

)
ϕΦ,t−s

t (x, v).

We check that (Y, ζ) satisfies




d

ds
Y (s) = ζ(s),

d

ds
ζ(s) = −∇V (Y (s)) − ∇Φ(t− s, Y (s)),

Y (0) = x, ζ(0) = v.

Changing Φ for Φ(t − ·), this allows us to obtain the same estimates on (Y, ζ) for all
s ≥ 0. We conclude by taking s = t.

Proof of Corollary 3.4. Theorem 3.3 constructs solutions to (8) in C0([0,∞);L1(Rd×
R

d)). We have now the functional framework necessary to justify the manipula-
tions made in Section 2. For Ψ0,Ψ1 verifying (H3), formula (9) defines a solution
Ψ ∈ C([0,∞);L2(Rn × R

d)) of the wave equation, and finally (f,Ψ) satisfies (2)–(5).
Conversely, if f ∈ C0([0,∞);L1(Rd × R

d)) and Ψ ∈ C([0,∞);L2(Rn × R
d)) is a solu-

tion of the system (2)–(5), then we can rewrite Φ = Φ0 − L(f) and f verifies (8). This
equivalence justifies the first part of the statement in Corollary 3.4.

It only remains to justify the energy conservation. We consider an initial data with
finite energy:

E0 =
c2

2

∫

Rd×Rn
|∇yΨ0(x, y)|2 dy dx+

1

2

∫

Rd×Rn
|Ψ1(x, y)|2 dy dx

︸ ︷︷ ︸
Evib

0

+

∫

Rd×Rd
f0(x, v)

(
|v|2
2

+ V (x) + Φ(0, x)

)
dv dx

︸ ︷︷ ︸
Epart

0

∈ (−∞,+∞).

For the solutions constructed in Theorem 3.3, we have seen that the self–consistent
potential remains smooth enough so that the characteristic curves t 7→ (X(t), ξ(t)) are
well–defined. Therefore, we can write

∫

Rd×Rd
f(t, x, v)

(
|v|2
2

+ V (x) + Φ(t, x)

)
dv dx

=

∫

Rd×Rd
f0(x, v)

(
|ξ(t)|2

2
+ V (X(t)) + Φ(t,X(t))

)
dv dx.
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For any (t, x, v) we have the following equality

d

dt

[
V (X(t)) + Φ(t,X(t)) +

|ξ(t)|2
2

]
= (∂tΦ)(t,X(t)).

Therefore, we get
∫

Rd×Rd
f(t, x, v)

(
|v|2
2

+ V (x) + Φ(t, x)

)
dv dx

= Epart
0 +

∫

Rd×Rd
f0(x, v)

∫ t

0
(∂tΦ)(s,X(s)) ds dv dx

= Epart
0 +

∫ t

0

∫

Rd×Rd
f(s, x, v)(∂tΦ)(s, x) dv dxds

= Epart
0 +

∫ t

0

∫

Rd
ρ(s, x)(∂tΦ)(s, x) dxds.

Next, let Ψ be the unique solution of (4) associated to f . We first assume that the
initial data Ψ0 et Ψ1 are smooth, say in L2(Rd,H2(Rn)). Therefore, going back to (9),
we can check that Ψ lies in C([0,∞);L2(Rd,H2(Rn))). Integrations by parts lead to

d

dt

[
1

2

∫

Rd×Rn
|∂tΨ(t, x, y)|2 dy dx+

c2

2

∫

Rd×Rn
|∇yΨ(t, x, y)|2 dxdy

]

=

∫

Rd×Rn
∂tΨ

(
∂2

t Ψ − c2∆yΨ
)
t, x, y) dy dx

= −
∫

Rd×Rn
∂tΨ(t, x, y) ρ(t, ·) ∗

x
σ1(x) σ2(y) dy dx

= −
∫

Rd
ρ∂tΦ(t, x) dx.

Hence, we obtain

1

2

∫

Rd×Rn
|∂tΨ(t, x, y)|2 dxdy +

c2

2

∫

Rd×Rn
|∇yΨ(t, x, y)|2 dxdy

= Evib
0 −

∫ t

0

∫

Rd
ρ(s, x)(∂tΦ)(s, x) dxds.

It proves the energy conservation for such smooth data.
We go back to general data with finite energy: Ψ0 ∈ L2(Rd,H1(Rn)) and Ψ1 ∈

L2(Rd ×R
n). We approximate the data by Ψk

0 and Ψk
1 lying in L2(Rd,H2(Rn)). Using

(9), one sees the associated sequence (Ψk)k∈N of solutions to (4) converges to Ψ in
C([0,∞);L2(Rd,H1(Rn))) and C1([0,∞);L2(Rd × R

n)). This implies one can pass to
the limit in the energy conservation.

Remark 3.8 We point out that, whereas energy conservation is an important physical
property, it was not used here in the existence proof. In particular, one should notice
that it does not provide directly useful a priori estimates on the kinetic energy, since the
potential energy associated to the external potential V can be negative and unbounded
under our assumptions. In order to deduce a useful estimate the assumptions on the
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initial data need to be strengthened: in addition to (H5) we suppose

M2 :=

∫

Rd×Rd
f0(x, v)|x|2 dv dx < ∞.

We set V−(x) = max(−V (x), 0) ≥ 0. Then (H2) implies
∫

Rd×Rd
f(t, x, v)V−(x) dv dx ≤

∫

Rd×Rd
f(t, x, v)C(1 + |x|2) dv dx

≤ C‖f0‖L1(Rd×Rd) + C

∫

Rd×Rd
f0(x, v)|X(t)|2 dv dx,

where X(t) stand for the first (space) component of ϕt
0(x, v). Reproducing the estimates

of the proof of Lemma 3.1, we get

|X(t)| ≤ |x|e
√

2Ct +
1√
C

(
V (x) +

|v|2
2

+ Φ(0, x)

)1/2

(e
√

2Ct − 1) + b(t)

where

b(t) =
√

2

∫ t

0

(
C + ‖Φ(s, ·)|L∞(Rd) + s‖∂tΦ‖C([0,s];L∞(Rd))

)1/2
e

√
2C(t−s) ds.

It follows that

|X(t)| ≤ 9|x|2e2
√

2Ct +
9

C

(
V (x) +

|v|2
2

+ Φ(0, x)

)
(e

√
2Ct − 1)2 + 9b(t)2.

Eventually, we find
∫

Rd×Rd
f(t, x, v)V−(x) dv dx ≤ Ce2

√
2CtM2+9(e

√
2Ct−1)2E0+C(9b(t)2+1)‖f0‖L1(Rd×Rd).

Therefore the potential energy associated to the external potential cannot be too negative
and all terms in the energy balance remain bounded on any finite time interval.

4 Large wave speed asymptotics

This section is devoted to the asymptotics of large wave speeds. Namely, we consider
the following rescaled version of the system:





∂tfǫ + v · ∇xfǫ − ∇x(V + Φǫ) · ∇vfǫ = 0,

Φǫ(t, x, y) =

∫

Rn×Rd
Ψǫ(t, z, y)σ2(y)σ1(x− z) dz dy,

(
∂2

tt − 1

ǫ
∆y

)
Ψǫ(t, x, y) = −1

ǫ
σ2(y)

∫

Rd×Rd
σ1(x− z)f(t, z, v) dv dz,

(16)

completed with suitable initial conditions. We are interested in the behavior of the
solutions as ǫ → 0. We shall discuss below the physical meaning of this regime. But,
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let us first explain on formal grounds what can be expected. As ǫ → 0 the wave
equation degenerates to

−∆yΨ(t, x, y) = −σ2(y) σ1 ∗
x
ρ(t, x), ρ(t, x) =

∫

Rd
f(t, x, v) dv.

We obtain readily the solution by uncoupling the variables:

Ψ(t, x, y) = γ(y) σ1 ∗
x
ρ(t, x)

where γ satisfies the mere Poisson equation ∆yγ = σ2. At leading order the potential
then becomes

Φ(t, x) = −κ Σ ∗
x
ρ(t, x), Σ = σ1 ∗ σ1, κ = −

∫

Rn
σ2γ dy.

Therefore, we guess that the limiting behavior is described by the following Vlasov
equation

∂tf + v · ∇xf − ∇x(V + Φ) · ∇vf = 0.

As long as the integration by parts makes sense (we shall see that difficulties in the
analysis precisely arise when n ≤ 2), we observe that

κ =

∫

Rn
|∇yγ|2 dy > 0.

It is then tempting to make the form function σ1 depend on ǫ too, so that Σ resembles
the kernel of (−∆x). We would arrive at the Vlasov–Poisson system, in the case of
attractive forces. We which to justify such asymptotic behavior.

4.1 Dimensional analysis

In (2), f is the density of particles in phase space: it gives a number of particles per unit
volume of phase space. Let T,L,V be units for time, space and velocity respectively,
and set

t′ = t/T, x′ = x/L, v′ = v/V
which define dimensionless quantities. Then, we set

f ′(t′, x′, v′) L−d V−d = f(t, x, v)

(or maybe more conveniently f ′(t′, x′, v′) dv′ dx′ = f(t, x, v) dv dx). The external and
interaction potential, V and Φ, have both the dimension of a velocity squared. We set

V (x) = V2
ext V

′(x′), Φ(t, x) = W2 Φ′(t′, x′),

where Vext and W thus have the dimension of a velocity. We switch to the dimensionless
equation

∂t′f ′ +
VT
L
v′ · ∇x′f ′ − T

LV V2∇x′

(
V ′ +

(W
V
)2

Φ′
)

· ∇v′f ′ = 0.
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The definition of the interaction potential Φ is driven by the product σ2(z)σ1(x) dx.
We scale it as follows

σ2(z)σ1(x) dx = Σ⋆L
dσ′

2(z′)σ′
1(x′) dx′.

It might help the intuition to think z as a length variable, and thus c has a velocity, but
there is not reason to assume such privileged units. Thus, we keep a general approach.
For the vibrating field, we set

ψ(t, x, z) = Ψ⋆ ψ
′(t′, x′, z′), z′ = z/ℓ,

still with the convention that primed quantities are dimensionless. Accordingly, we
obtain

W2 = Σ⋆L
dΨ⋆ℓ

n

and the consistent expression of the dimensionless potential

Φ′(t′, x′) =

∫
σ′

1(x′ − y′)σ′
2(z′)ψ(t′, y′, z′) dz′ dy′.

The wave equation becomes

∂2
t′t′ψ′ − T 2c2

ℓ2
∆z′ψ′ = − T 2Σ⋆L

d

Ψ⋆
L−d

︸ ︷︷ ︸
T 2Σ⋆

Ψ⋆

σ′
2(z′)

∫
σ′

1(x′ − y′)f ′(t′, y′, v′) dv′ dy′. (17)

Note that
T 2Σ⋆

Ψ⋆
= Σ⋆L

dℓnΨ⋆
T 2

Ψ2
⋆L

dℓn
= W2 T 2

Ψ2
⋆L

dℓn
.

Let us consider the energy balance where the following quantities, all having the
homogeneity of a velocity squared, appear:

• the kinetic energy of the particles
∫
v2f dv dx; it scales like V2,

• the external potential energy
∫
V f dv dx; it scales like V2

ext,

• the coupling energy
∫

Φf dv dx; it scales like W2,

• the wave energy which splits into:

a)
∫

|∂tψ|2 dz dx, which scales like Ψ2
⋆

Ldℓn

T 2 ,

b) c2
∫

|∇z∂tψ|2 dz dx, which scales like c2Ψ2
⋆

Ldℓn

ℓ2 .

Note that the kinetic energy in a) is ℓ2

c2T 2 times the elastic energy in b).

To recap, we have at hand 6 parameters imposed by the model (L, ℓ, c,Vext,W,Σ⋆)
and two parameters governed by the initial conditions V and Ψ⋆. They allow to define
the five energies described above.
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We turn to the scaling assumptions. It is convenient to think of them by comparing
the different time scales involved in the equations. We set

ǫ =

(
ℓ

cT

)2

≪ 1.

If ℓ is the size of the support of the source σ2, then this regime means that the time a
typical particle needs to cross L (the support of σ1) is much longer than the time the
wave needs to cross ℓ (the support of σ2). Next we suppose that the kinetic energy of
the particle, the energy of the particle associated to the external potential, the elastic
energy of the wave as well as the interaction energy, all have the same strength, which
can expressed by setting

L

T
= V = Vext = W =

√
c2Ψ2

⋆L
dℓn−2.

As a consequence, it imposes the following scaling of the coupling constant

Ψ⋆

T 2Σ⋆
= ǫ.

It also means that the kinetic energy of the wave is small with respect to its elastic
energy. Inserting this in (17) yields (16).

4.2 Statements of the results

Throughout this Section, we assume (H1), and we shall strengthen the assumptions
(H2)–(H5) as follows (note that since we are dealing with sequences of initial data, it
is important to make the estimates uniform with respect to the scaling parameter):

the external potential V ∈ W 2,∞
loc (Rd) is non negative, (H7)

f0,ǫ ∈ L1(Rd × R
d), with a uniformly bounded norm,

and Ψ0,ǫ,Ψ1,ǫ ∈ L2(Rd × R
n) are such that the rescaled initial energy

E0,ǫ =

∫

Rd×Rd

(v2

2
+ V + |Φǫ|

)
f0,ǫ dv dx

+
ǫ

2

∫

Rn×Rd
|Ψ1,ǫ|2 dy dx+

1

2

∫

Rn×Rd
|∇yΨ0,ǫ|2 dy dx

is uniformly bounded: 0 ≤ supǫ>0 E0,ǫ = Ē0 < ∞.





(H8)

f0,ǫ is bounded in L∞(Rd × R
d), uniformly with respect to ǫ. (H9)

Theorem 4.1 Suppose n ≥ 3. Let (H1) and (H7)–(H9) be satisfied. Let (fǫ,Ψǫ) be
the associated solution to (16). Then, there exists a subsequence such that fǫ converges
in C([0, T ];Lp((Rd × R

d) − weak)) for any 1 ≤ p < ∞ to f solution of the following
Vlasov equation {

∂tf + v · ∇xf − ∇x(V + Φ̄) · ∇vf = 0,
f(0, x, v) = f0(x, v),

(18)
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where

Φ̄ = −κΣ ∗ ρ, Σ = σ1 ∗
x
σ1, κ =

∫

Rn

|σ̂2(ξ)|2
(2π)n|ξ|2 dξ,

and f0 is the weak limit in Lp(Rd × R
d) of f0,ǫ.

In order to derive the Vlasov–Poisson system from (16), the form function σ1 need
to be appropriately defined and scaled with respect to ǫ. Let θ and δ be two radially
symmetric functions in C∞

c (Rd) verifying:

0 ≤ θ, δ ≤ 1 θ(x) = 1 for |x| ≤ 1, θ(x) = 0 for |x| ≥ 2,

∫

Rd
δ(x) dx = 1.

We set θǫ(x) = θ(
√
ǫx) et δǫ(x) =

1

ǫd/2
δ(x/

√
ǫ) and

σ1,ǫ = Cdδǫ ∗ θǫ

| · |d−1
, with Cd =

(
|Sd−1|

∫

Rd

dx

|x|d−1|e1 − x|d−1

)−1/2

.

Theorem 4.2 Let d = 3 and n ≥ 3. Assume (H1) and (H7)–(H9). Let (fǫ,Ψǫ) be
the associated solution to (16). Then, there exists a subsequence such that fǫ converges
in C([0, T ];Lp(R3 × R

3) − weak) for any 1 < p < ∞ to f solution of the attractive
Vlasov–Poisson equation





∂tf + v · ∇xf − ∇x(V + Φ̄) · ∇vf = 0,

∆Φ̄ = κρ,
f(0, x, v) = f0(x, v)

(19)

where f0 is the weak limit in Lp(R3 × R
3) of f0,ǫ.

Remark 4.3 In Theorem 4.1, if, furthermore, we assume that
(
f0,ǫ

)
ǫ>0

converge (in
the appropriate weak sense) to f0, by uniqueness of the solution of the limit equation,
the entire sequence

(
fǫ
)

ǫ>0
converges to f . For Theorem 4.1 and Theorem 4.2, if the

initial data converges strongly to f0 in Lp(Rd × R
d), 1 ≤ p < ∞, then fǫ converges to

f in C([0, T ];Lp(Rd × R
d)).

4.3 Convergence to the Vlasov equation with a smooth

convolution kernel

Taking into account the rescaling, the analog of (8) for (16) reads

∂tfǫ + v · ∇xfǫ − ∇x

(
V + Φ0,ǫ − 1

ǫ
Lǫ(fǫ)

)
· ∇vfǫ = 0, (20)

with

Φ0,ǫ(t, x) =

∫

Rd×Rn
Ψ̃ǫ(t, z, y)σ1(x− z)σ2(y) dy dz.
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where Ψ̃ǫ stands for the unique solution of the free linear wave equation (in R
n) with

wave speed 1/ǫ and initial data Ψ0,ǫ and Ψ1,ǫ, and

1

ǫ
Lǫ(fǫ)(t, x) =

1

ǫ

∫

Rd
Σ(x− z)

(∫ t

0
ρǫ(t− s, z)

×
(∫

Rn

sin(|ξ|s/√ǫ)
|ξ|/√ǫ |σ̂2(ξ)|2 dξ

(2π)n

)
ds

)
dz

=

(
Σ ∗

x

∫ t/
√

ǫ

0
ρǫ(t− s

√
ǫ, ·) q(s) ds

)
(x)

(21)

where we have set

q(t) =
1

(2π)n

∫

Rn

sin(t|ξ|)
|ξ| |σ̂2(ξ)|2 dξ.

(it is nothing but p(t) as introduced in Section 2 evaluated with c = 1; of course when
c = 1 and ǫ = 1, the operators 1

ǫ Lǫ in (21) and L in (7) coincide.)

Lemma 4.4 Let n ≥ 3. Then q is integrable over [0,+∞[ with

∫ ∞

0
q(t) dt =

1

(2π)n

∫

Rn

|σ̂2(ξ)|2
|ξ|2 dξ := κ > 0.

Proof. By virtue of the dominated convergence theorem, t 7→ q(t) is continuous on
[0,∞). Bearing in mind that σ2 is radially symmetric, integrations by parts yield

q(t) =
|Sn−1|
(2π)n

∫ ∞

0
sin(tr)rn−2|σ̂2(re1)|2 dr

=
|Sn−1|
(2π)n

∫ ∞

0

cos(tr)

t

d

dr

[
rn−2|σ̂2(re1)|2

]
dr

= −|Sn−1|
(2π)n

∫ ∞

0

sin(tr)

t2
d2

dr2

[
rn−2|σ̂2(re1)|2

]
dr.

Hence, we can estimate as follows

|q(t)| ≤ K

t2
with K =

|Sn−1|
(2π)n

∫ ∞

0

∣∣∣∣∣
d2

du2

[
rn−2|σ̂2(re1)|2

]∣∣∣∣∣ dr < ∞

which proves q ∈ L1([0,∞)).
Next, we compute the integral of q. For M > 0 we get:

∫ M

0
q(t) dt =

1

(2π)n

∫

Rn

(∫ M

0

sin(t|ξ|)
|ξ| dt

)
|σ̂2(ξ)|2 dξ

=
1

(2π)n

∫

Rn

1 − cos(M |ξ|)
|ξ|2 |σ̂2(ξ)|2 dξ

= κ− |Sn−1|
(2π)n

∫ ∞

0
cos(Mr)rn−3|σ̂2(re1)|2 dr

= κ− |Sn−1|
M(2π)n

∫ ∞

0
sin(Mr)

d

dr

[
rn−3|σ̂2(re1)|2

]
dr.
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We conclude by letting M tend to ∞.

Note that κ is infinite for n = 2 since |σ2(ξ)|2
|ξ|2 ∼ξ→0 ‖σ2‖2

L1(R2)
1

|ξ|2 does not belong

to L1(B(0, a)) for any a > 0.

We turn to the proof of Theorem 4.1. Of course we have

sup
ǫ>0

‖fǫ(t, ·)‖L1(Rd×Rd) = sup
ǫ>0

‖f0,ǫ‖L1(Rd×Rd) := M0 < ∞,

and the Lp norms
‖fǫ(t, ·)‖Lp(Rd×Rd) = ‖f0,ǫ‖Lp(Rd×Rd)

are also bounded, for any 1 ≤ p ≤ ∞ by virtue of (H9). Furthermore, the energy
conservation yields

Eǫ(t) =

∫

Rd×Rd

(v2

2
+ V + Φǫ

)
fǫ dv dx

+
ǫ

2

∫

Rn×Rd
|∂tΨǫ|2 dy dx+

1

2

∫

Rn×Rd
|∇yΨǫ|2 dy dx ≤ Ē0.

Let us set

Evib
0,ǫ =

ǫ

2

∫

Rn×Rd
|Ψ1,ǫ|2 dy dx+

1

2

∫

Rn×Rd
|∇yΨ0,ǫ|2 dy dx.

As a consequence of (H1) and (H8), Evib
0,ǫ is bounded uniformly with respect to ǫ.

Owing to the standard energy conservation for the free linear wave equation, we ob-
serve that ‖∇yΨ̃ǫ‖L∞(0,∞;L2(Rd×Rn)) ≤ (2Evib

0,ǫ )1/2. Then Sobolev’s embedding (mind

the condition n ≥ 3) allows us to deduce the following key estimate on Ψ̃ǫ:

‖Ψ̃ǫ‖L∞(R+;L2(Rd;L2n/(n−2)(Rn))) ≤ C
(
Evib

0,ǫ

)1/2 ≤ C
(
Ē0

)1/2
(22)

Applying Hölder inequalities, we are thus led to:

|Φ0,ǫ(t, x)| ≤ C‖σ2‖L2n/(n+2)(Rn)‖σ1‖L2(Rd)

(
Ē0
)1/2

, (23)

and similarly

|∇xΦ0,ǫ(t, x)| ≤ C‖σ2‖L2n/(n+2)(Rn)‖∇xσ1‖L2(Rd)

(
Ē0
)1/2

. (24)

Concerning the asymptotic behavior, we shall use the following claim. It is not a direct
consequence of these estimates and it will be justified later on.

Lemma 4.5 Let χ ∈ C∞
c ([0,∞) × R

d × R
d). Then, we have

lim
ǫ→0

∫ ∞

0

∫

Rd×Rd
fǫ∇xΦ0,ǫχ(t, x, v) dv dxdt = 0.

The cornerstone of the proof of Theorem 4.1 is the estimate of the self–consistent
potential. By virtue of (21), for any 1 ≤ p ≤ ∞ we get

∥∥∥∥
1

ǫ
Lǫ(fǫ)(t, ·)

∥∥∥∥
Lp(Rd)

≤ ‖Σ‖Lp(Rd)‖ρǫ‖L∞([0,∞),L1(Rd))

∫ ∞

0
|q(s)| ds

≤ ‖Σ‖Lp(Rd)M0‖q‖L1([0,+∞)),
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as well as ∥∥∥∥
1

ǫ
∇xLǫ(fǫ)(t, ·)

∥∥∥∥
Lp(Rd)

≤ ‖∇xΣ‖Lp(Rd)M0‖q‖L1([0,+∞)).

Let χ ∈ C∞
c (Rd × R

d). We have

∣∣∣∣
∫

Rd×Rd
fǫ(t, x, v)χ(x, v) dv dx

∣∣∣∣ ≤ M0‖χ‖L∞(Rd×Rd)

and
∣∣∣∣

d

dt

∫

Rd×Rd
fǫ(t, x, v)χ(x, v) dv dx

∣∣∣∣ ≤ M0‖v · ∇χ− ∇V · ∇vχ‖L∞(Rd×Rd)

+
(
‖q‖L1([0,+∞))‖∇xΣ‖L∞(Rd)M

2
0 + CM0‖σ2‖L2n/(n+2)(Rn)‖∇xσ1‖L2(Rd)

(
Ē0

)1/2
)

×‖∇vχ‖L∞(Rd×Rd).

Reproducing arguments detailed in the previous Section, we deduce that we can as-
sume, possibly at the price of extracting a subsequence, that

lim
ǫ→0

∫

Rd×Rd
fǫ(t, x, v)χ(x, v) dv dx =

∫

Rd×Rd
f(t, x, v)χ(x, v) dv dx

holds for any χ ∈ Lp′

(Rd×R
d) uniformly on [0, T ], 0 < T < ∞, with f ∈ C([0, T ];Lp(Rd×

R
d) − weak), 1 < p < ∞, 1/p + 1/p′ = 1.

Next, we establish the tightness of
(
fǫ
)

ǫ>0
with respect to the velocity variable,

which will be necessary to show that the macroscopic density ρǫ passes to the limit.
Since Φ0,ǫ and 1

ǫ Lǫ(fǫ) are uniformly bounded and V ≥ 0, we infer from the energy
conservation the estimate

∫

Rd×Rd

|v|2
2
fǫ(t, x, v) dv dx

≤ Ē0 + ‖q‖L1([0,+∞))‖Σ‖L∞(Rd)M
2
0 + CM0‖σ2‖L2n/(n+2)(Rn)‖σ1‖L2(Rd)

(
Ē0
)1/2

.

Hence, we can check that ρǫ(t, x) =
∫
Rd fǫ(t, x, v) dv dx satisfies

lim
ǫ→0

∫

Rd
ρǫ(t, x)χ(x) dx =

∫

Rd
ρ(t, x)χ(x) dx (25)

for any χ ∈ C0(Rd), with ρ(t, x) =
∫
Rd f(t, x, v) dv. As a matter of fact, we note that

(H1) and (25) imply

lim
ǫ→0

∇xΣ ∗ ρǫ(t, x) = ∇xΣ ∗ ρ(t, x) for any (t, x) ∈ [0, T ] × R
d. (26)

Furthermore, we have

|D2
x(Σ ∗ ρǫ)(t, x)| ≤ M0 ‖Σ‖W 2,∞(Rd),
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and, by using mass conservation and the Cauchy-Schwarz inquality,

|∂t(∇xΣ ∗ ρǫ)(t, x)| =

∣∣∣∣
∫

Rd
D2

xΣ(x− y)

(∫

Rd
vfǫ(t, y, v) dv

)
dy

∣∣∣∣

≤ ‖Σ‖W 2,∞(Rd)

(∫

Rd×Rd
fǫ dv dx

)1/2 (∫

Rd×Rd
v2fǫ dv dx

)1/2

≤ ‖Σ‖W 2,∞(Rd)

√
2M0

(
Ē0 + ‖q‖L1([0,+∞))‖Σ‖L∞(Rd)M

2
0

+CM0‖σ2‖L2n/(n+2)(Rn)‖σ1‖L2(Rd)

(
Ē0

)1/2
)1/2

.

Therefore convergence (26) holds uniformly on any compact set of [0,∞) × R
d.

We turn to examine the convergence of 1
ǫ ∇xLǫ(fǫ) to κ∇xΣ ∗ ρ. We have

∣∣∣1
ǫ

∇xLǫ(fǫ)(t, x) − κ∇xΣ ∗ ρ(t, x)
∣∣∣

=

∣∣∣∣∣

∫ t/
√

ǫ

0
∇xΣ ∗ ρǫ(t− s

√
ǫ, x)q(s) ds− κ∇xΣ ∗ ρ(t, x)

∣∣∣∣∣

≤
∣∣∣∣∣

∫ t/
√

ǫ

0

(
∇xΣ ∗ ρǫ(t− s

√
ǫ, x) − ∇xΣ ∗ ρ(t, x)

)
q(s) ds

∣∣∣∣∣

+

∣∣∣∣∣

∫ ∞

t/
√

ǫ
q(s) ds

∣∣∣∣∣ ‖∇xΣ ∗ ρ‖L∞((0,∞)×Rd)

≤
∫ t/

√
ǫ

0
|(∇xΣ ∗ ρǫ − ∇xΣ ∗ ρ)(t − s

√
ǫ, x)| |q(s)| ds

+

∫ t/
√

ǫ

0
|∇xΣ ∗ ρ(t − s

√
ǫ, x) − ∇xΣ ∗ ρ(t, x)| |q(s)| ds

+

∫ ∞

t/
√

ǫ
|q(s)| ds ‖∇xΣ ∗ ρ‖L∞((0,∞)×Rd).

Let us denote by Iǫ(t, x), IIǫ(t, x), IIIǫ(t), the three terms of the right hand side. Firstly,
for any t > 0, IIIǫ(t) tends to 0 as ǫ → 0, and it is dominated by κ‖Σ‖W 1,∞(Rd)M0.

Secondly, for any 0 < T < ∞ and any compact set K ⊂ R
d, when (t, x) lies in [0, T ]×K,

we can estimate

|Iǫ(t, x)| ≤ ‖∇xΣ ∗ ρǫ − ∇xΣ ∗ ρ‖L∞([0,T ]×K)‖q‖L1([0,∞)

which also goes to 0 as ǫ → 0. Eventually, still considering (t, x) ∈ [0, T ] ×K, we write

|IIǫ(t, x)| ≤
∫ t/

√
ǫ

0
sup
z∈K

|∇xΣ ∗ ρ(t− s
√
ǫ, z) − ∇xΣ ∗ ρ(t, z)| |q(s)| ds.

By using the Lebesgue theorem, we justify that it tends to 0 as ǫ → 0 since (t, x) 7→
∇xΣ∗ρ(t, x) is uniformly continuous over any compact set, the integrand is dominated
by 2‖Σ‖W 1,∞(Rd)M0|q(s)|, and q ∈ L1([0,∞)). Therefore, for any 0 < t < T < ∞ and

any compact set K ⊂ R
d,

sup
x∈K

∣∣∣1
ǫ

∇xLǫ(fǫ) − κ∇xΣ ∗ ρ
∣∣∣(t, x) −−→

ǫ→0
0,
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and this quantity is bounded uniformly with respect to 0 ≤ t ≤ T < ∞ and ǫ > 0.
We go back to the weak formulation of (16). Let χ ∈ C∞

c ([0,∞) × R
d × R

d). We
suppose that supp(χ) ⊂ [0, T ] × B̄(0,M) × B̄(0,M). We have

−
∫

Rd×Rd
f0,ǫχ(0, x, v) dv dx−

∫ ∞

0

∫

Rd×Rd
fǫ∂tχdv dxdt

−
∫ ∞

0

∫

Rd×Rd
fǫv · ∇xχdv dxdt+

∫ ∞

0

∫

Rd×Rd

∫
fǫ∇vχ · ∇x(V + Φ0,ǫ) dv dxdt

=

∫ ∞

0

∫

Rd×Rd
fǫ ∇x

1

ǫ
Lǫ(fǫ) · ∇vχdv dxdt.

Obviously, there is no difficulty with the linear terms of the left hand side. For the non
linear term we proceed as follows:
∫ ∞

0

∫

Rd×Rd
fǫ ∇x

1

ǫ
Lǫ(fǫ) · ∇vχdv dxdt−

∫ ∞

0

∫

Rd×Rd
f κ∇xΣ ∗ ρ · ∇vχdv dxdt

=

∫ ∞

0

∫

Rd×Rd
fǫ

(
∇x

1

ǫ
Lǫ(fǫ) − κ∇xΣ ∗ ρ

)
· ∇vχdv dxdt

+

∫ ∞

0

∫

Rd×Rd
(fǫ − f) κ∇xΣ ∗ ρ · ∇vχdv dxdt.

The last term directly passes to the limit. The first integral in the right hand side is
dominated by

M0‖∇vχ‖L∞([0,∞)×Rd×Rd)

∫ T

0
sup

y∈B̄(0,M)

∣∣∣∇x
1

ǫ
Lǫ(fǫ) − κ∇xΣ ∗ ρ

∣∣∣(t, y) dt.

We conclude by a mere application of the Lebesgue Theorem.
If the initial data f0,ǫ converge strongly to f0 in Lp(Rd ×R

d), the nature of the con-
vergence of fǫ to f can be improved by applying general stability results for transport
equations, see [13, Th. II.4 & Th. II.5], or [7, Th. VI.1.9].

Proof of Lemma 4.5 As a matter of fact, the variable x ∈ R
d just appears as a

parameter for the wave equation, and Υǫ(t, x, y) = (σ1 ∗ Ψ̃ǫ(t, ·, y))(x) solves the linear
wave equation

ǫ∂2
ttΥǫ − ∆yΥǫ = 0,

with the data

Υǫ(0, x, y) = σ1 ∗ Ψ0,ǫ(x, y), ∂tΥǫ(0, x, y) = σ1 ∗ Ψ1,ǫ(x, y).

The parameter x being fixed, we appeal to the Strichartz estimate, see [23, Corollary
1.3] or [29, Theorem 4.2, for the case n = 3],

1

ǫ1/(2p)

(∫ ∞

0

(∫

Rn
|Υǫ(t, x, y)|q dy

)p/q

dt

)1/p

≤ C
√

E vib
1,ǫ (x)

where we set

E
vib
1,ǫ (x) = ǫ

∫

Rn
|σ1 ∗ Ψ1,ǫ(x, y)|2 dy +

∫

Rn
|σ1 ∗ ∇yΨ0,ǫ(x, y)|2 dy.
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(That 1
ǫ1/(2p) appears in the inequality can be checked by changing variables and ob-

serving that Υǫ(t
√
ǫ, x, y) satisfies the wave equation with speed equals to 1 and data

(σ1 ∗ Ψ0ǫ,
√
ǫσ1 ∗ Ψ1,ǫ).) This inequality holds for admissible exponents:

2 ≤ p ≤ q ≤ ∞,
1

p
+
n

q
=
n

2
− 1,

2

p
+
n− 1

q
≤ n− 1

2
, (p, q, n) 6= (2,∞, 3).

Observe that ∫

Rd
E

vib
1,ǫ (x) dx ≤ ‖σ1‖L1(Rd) E

vib
0,ǫ ≤ ‖σ1‖L1(Rd) Ē0.

It follows that

∫

Rd

(∫ ∞

0

(∫

Rn
|Υǫ(t, x, y)|q dy

)p/q

dt

)2/p

dx ≤ C2‖σ1‖L1(Rd) Ē0ǫ
1/p −−→

ǫ→0
0.

A similar reasoning applies to ∇xΥǫ with ∇xσ1 replacing σ1. Let χ ∈ C∞
c ([0,∞) ×

R
d × R

d). We suppose that supp(χ) ⊂ {0 ≤ t ≤ M, |x| ≤ M, |v| ≤ M} for some
0 < M < ∞. We are left with the task of estimating

∫ ∞

0

∫

Rd×Rd
fǫ∇xΦ0,ǫχ(t, x, v) dv dxdt =

∫ ∞

0

∫

Rd
Rǫ(t, x)∇xΦ0,ǫ(t, x) dxdt

where we have set

Rǫ(t, x) =

∫

Rd
fǫχ(t, x, v) dv.

With the standard notation 1/p + 1/p′ = 1, using Hölder’s inequality twice, we get

∣∣∣∣
∫ ∞

0

∫

Rd×Rd
fǫ∇xΦ0,ǫχ(t, x, v) dv dxdt

∣∣∣∣

≤
(∫

Rd

(∫ ∞

0
|Rǫ(t, x)|p′

dt

)2/p′

dx

)1/2 (∫

Rd

(∫ ∞

0
|∇xΦ0,ǫ(t, x)|p dt

)2/p

dx

)1/2

.

We readily obtain

(∫

Rd

(∫ ∞

0
|Rǫ(t, x)|p′

dt

)2/p′

dx

)1/2

≤ Md+d/2+1/p′‖fǫχ‖L∞((0,∞)×Rd×Rd)

≤ Md+d/2+1/p′‖f0,ǫ‖L∞(Rd×Rd)‖χ‖L∞((0,∞)×Rd×Rd)

which is thus bounded uniformly with respect to ǫ > 0. Furthermore, with 1/q+1/q′ =
1, we have

∫

Rd

(∫ ∞

0
|∇xΦ0,ǫ(t, x)|p dt

)2/p

dx =

∫

Rd

(∫ ∞

0

∣∣∣
∫

Rn
σ2(y)∇xΥǫ(t, x, y) dy

∣∣∣
p

dt

)2/p

dx

≤ ‖σ2‖Lq′ (Rd)

∫

Rd

(∫ ∞

0

∣∣∣
∫

Rn
|∇xΥǫ(t, x, y)|q dy

∣∣∣
p/q

dt

)2/p

dx

which tends to 0 like ǫ1/p.
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4.4 Convergence to the Vlasov–Poisson system

The existence theory for the Vlasov–Poisson system dates back to [3]; an overview of
the features of both the repulsive or attractive cases can be found in the lecture notes
[5]. The following statements are classical tools of this analysis, that will be useful for
our purposes as well.

Lemma 4.6 (Interpolation estimates) Let f ∈ L1 ∩ L∞(Rd × R
d) be such that

|v|mf ∈ L1(Rd × R
d). Then ρ =

∫
Rd f dv lies in L(m+d)/d(Rd) with

‖ρ‖L(d+m)/d(Rd) ≤ C(m,d)‖f‖m/(d+m)(Rd)
L∞

(∫
|v|mf dv dx

)d/(d+m)

.

where C(m,d) = 2|B(0, 1)|m/(m+d).

Lemma 4.7 (Hardy-Littlewood-Sobolev inequality) Let 1 < p, r < ∞ and 0 <
λ < d. Assume 1/p + 1/r = 2 − λ/d. There exists a constant C > 0 such that for any
f ∈ Lp(Rd) and g ∈ Lr(Rd) we have

∣∣∣
∫

Rd×Rd

f(x)g(y)

|x− y|λ dy dx
∣∣∣ ≤ C‖f‖Lp(Rd)‖g‖Lr(Rd).

We refer the reader to [5, Lemma 3.4] and [26, Th. 4.3], respectively, for further
details. Next, we check the convergence of the approximate kernel defined by σ1,ǫ.

Lemma 4.8 Let d ≥ 3. For any d/(d − 1) < q < ∞, we have:
∥∥∥∥∇

(
Cdθǫ

| · |d−1
∗ Cdθǫ

| · |d−1

)
(x) + (d− 2)

x

|Sd−1||x|d
∥∥∥∥

Lq(Rd)

−−→
ǫ→0

0.

Proof. We remind the reader that the convolution by |x|1−d is associated to the
Fourier transform of the operator with symbol 1/|ξ|, see [26, Th. 5.9]. The convolution
of radially symmetric functions is radially symmetric too. For d ≥ 3, we compute as
follows(

1

| · |d−1
∗ 1

| · |d−1

)
(x) =

∫

Rd

dy

|y|d−1|x− y|d−1

=

∫

Rd

|x|d dy

|x|d−1|e1 − y|d−1|x|d−1|y|d−1
=

1

|Sd−1| C2
d |x|d−2

.

Differentiating yields

∇
(

Cd

| · |d−1
∗ Cd

| · |d−1

)
(x) = − d− 2

|S|d−1

x

|x|d .

Hence, we can write

Oǫ(x) := ∇
(
Cdθǫ

| · |d−1
∗ Cdθǫ

| · |d−1

)
(x) +

(d− 2)x

|Sd−1||x|d

= C2
d∇

(
θǫ + 1

| · |d−1
∗ θǫ − 1

| · |d−1

)
(x)

= C2
d

θǫ + 1

| · |d−1
∗
( ∇θǫ

| · |d−1
+ (1 − d)

(θǫ − 1)·
| · |d+1

)
(x).
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Let p > 1. On the one hand, we have
∥∥∥∥

∇θǫ

| · |d−1

∥∥∥∥
p

Lp(Rd)

=

∫

Rd

|∇θǫ(x)|p
|x|p(d−1)

dx

≤ (
√
ǫ)p ‖∇θ‖p

L∞(Rd)

∫

1≤√
ǫ|x|≤2

dx

|x|p(d−1)

≤ (
√
ǫ)d(p−1)‖∇θ‖p

L∞(Rd)

∫

1≤|x|≤2

dx

|x|p(d−1)
.

On the other hand, we get
∫

Rd

∣∣∣(θǫ(x) − 1)x

|x|d+1

∣∣∣
p

dx ≤
∫

√
ǫ|x|≥1

dx

|x|pd
= (

√
ǫ)d(p−1)

(∫

|x|≥1

dx

|x|pd

)
.

Accordingly, the following estimate holds:
∥∥∥∥

∇θǫ

| · |d−1
+ (1 − d)

(θǫ − 1)·
| · |d+1

∥∥∥∥
Lp

≤ Cǫd(p−1)/(2p), (27)

where C > 0 depends on p and d only. Finally we remark that 0 ≤ θǫ(x)+1
|x|d−1 ≤ 2

|x|d−1 .

By coming back to Lemma 4.7, we deduce that there exists a constant C̃ > 0 such that
∣∣∣
∫

Rd
Oǫ(x)g(x) dx

∣∣∣ ≤ C̃‖g‖Lr(Rd) (
√
ǫ)d(p−1)/p

holds for any g ∈ Lr(Rd), with 1/r = (d + 1)/d − 1/p > 1/d, r > 1. Therefore, by
duality, it means that Oǫ converges to 0 in Lq(Rd) for any d/(d − 1) < q < ∞.

Proof of Theorem 4.2. From now on, we restrict to the case of space dimension d =
3. Compared to the previous Section, additional difficulties come from the dependence
of the form function σ1 with respect to ǫ so that deducing uniform estimates from the
energy conservation is not direct.
Step 1. Establishing uniform estimates.

We start by observing that fǫ is bounded in L∞(0,∞;Lp(R3 × R
3)) for any 1 ≤

p ≤ ∞, since
‖fǫ(t, ·)‖Lp(R3×R3) = ‖f0,ǫ‖Lp(R3×R3).

Next, the energy conservation becomes

Eǫ(t) =
ǫ

2

∫

R3×Rn
|∂tΨǫ(t, x, y)|2 dy dx+

1

2

∫

R3×Rn
|∇yΨǫ(t, x, y)|2 dy dx

+

∫

R3×R3
fǫ(t, x, v)

(
|v|2
2

+ V (x) + Φǫ(t, x)

)
dv dx

= Eǫ(0) ≤ Ē0.

Let us study the coupling term:
∫

R3×R3
fǫ(t, x, v)Φǫ(t, x) dv dx =

∫

R3
ρǫ(t, x)Φǫ(t, x) dx = Sǫ(t) + Tǫ(t)
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where we have set

Sǫ(t) = −1

ǫ

∫

R3
ρǫLǫ(fǫ)(t, x) dx

= −
∫

R3

(
σ1,ǫ ∗ σ1,ǫ ∗

∫ t/
√

ǫ

0
q(s)ρǫ(t− s

√
ǫ, ·) ds

)
(x)ρǫ(t, x) dx

= −
∫

R3

(
σ1,ǫ ∗

∫ t/
√

ǫ

0
q(s)ρǫ(t − s

√
ǫ, ·) ds

)
(x) σ1,ǫ ∗ ρǫ(t, x) dx

and

Tǫ(t) =

∫

R3
ρǫΦ0,ǫ(t, x) dx, Φ0,ǫ(t, x) =

(
σ1,ǫ ∗

∫

Rn
Ψ̃ǫ(t, ·, y)σ2(y) dy

)
(x).

Like in the previous Section, Ψ̃ǫ stands for the solution of the free linear wave equation
with wave speed 1/ǫ and initial data Ψ0,ǫ and Ψ1,ǫ. Firstly, we establish a bound for

|Sǫ(t)| ≤ ‖q‖L1([0,∞))‖σ1,ǫ ∗ ρǫ‖2
L∞(0,t;L2(R3)).

However, Lemma 4.7 yields

‖σ1,ǫ ∗ ρǫ‖L2(R3) = C2
d

∥∥∥∥
θǫ

| · |2 ∗ δǫ ∗ ρǫ

∥∥∥∥
L2(R3)

≤ C‖ρǫ‖L6/5(R3).

Let us set

Ekin
ǫ (t) =

∫

R3×R3
|v|2fǫ(t, x, v) dv dx

for the particle kinetic energy. Lemma 4.6 leads to

‖ρǫ‖L5/3(R3) ≤ C(2, 3)‖fǫ‖2/5
L∞(R3×R3)

(
Ekin

ǫ

)3/5
(28)

The Hölder inequality allows us to estimate ‖ρǫ‖L6/5(R3) ≤ ‖ρǫ‖7/12
L1(R3)‖ρǫ‖5/12

L5/3(R3)
. Com-

bining these inequalities, we arrive at

‖σ1,ǫ ∗ ρǫ‖L2(R3) ≤ C
(
Ekin

ǫ

)1/4
, (29)

for a certain constant C > 0, which does not depend on ǫ. Therefore, we obtain

|Sǫ(t)| ≤ C2‖q‖L1([0,∞))‖Ekin
ǫ ‖1/2

L∞([0,t]).

Secondly, we estimate the term involving Φ0,ǫ:

Tǫ(t) =

∫

Rd×RN
(ρǫ ∗ σ1,ǫ)(t, x)Ψ̃ǫ(t, x, y)σ2(y) dy

is dominated by

‖σ1,ǫ ∗ ρǫ‖L∞(0,t;L2(R3))‖Ψ̃ǫ‖L∞(R+;L2(Rd;L2n/(n−2)(Rn)))‖σ2‖L2n/(n+2)(Rn).

Using (22) and (29), we get

|Tǫ(t)| ≤ C ′(Ekin
ǫ (t)

)1/4(Evib
0,ǫ

)1/2

where the constant C ′ > 0 does not depend on ǫ. It remains to discuss how (H7)–(H8)
implies a uniform estimate on the initial state. Note that Sǫ(0) = 0. Hence, by using
(H8), we are led to

Evib
0,ǫ +

1

2
Ekin

ǫ (0) ≤ Eǫ(0) + |Tǫ(0)| ≤ Ē0 + C ′(Ekin
ǫ (0)

)1/4(Evib
0,ǫ

)1/2
.
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It allows us to infer

sup
0<ǫ<1

Ekin
ǫ (0) = Ēkin

0 < ∞, sup
0<ǫ<1

Evib
0,ǫ = Ēvib

0 < ∞.

Coming back to the energy conservation, with(H7)–(H8) together with the estimates
on Tǫ and Sǫ, we deduce that

1

2
Ekin

ǫ (t) ≤ Ē0 + C2‖q‖L1([0,∞))‖Ekin
ǫ ‖1/2

L∞([0,t]) + C ′(Ekin
ǫ (t)

)1/4(Ēvib
0,ǫ

)1/2
,

holds, which, in turn, establishes the bound

sup
0<ǫ<1, t≥0

Ekin
ǫ (t) = Ēkin < ∞.

Going back to the interpolation inequalities, it follows that ρǫ is bounded in L∞(0,∞;L1∩
L5/3(R3)).

Step 2. Passing to the limit.
The kinetic equation can be rewritten

∂tfǫ + v · ∇xfǫ − ∇x

(
V + Φ0,ǫ − 1

ǫ
Lǫ(fǫ)

)
· ∇vfǫ = 0.

We start by establishing that ∇vfǫ · ∇xΦ0,ǫ = ∇v · (fǫ∇xΦ0,ǫ) converges to 0 at least
in the sense of distributions.

Lemma 4.9 Let χ ∈ C∞
c ([0,∞) × R

d × R
d). Then, we have

lim
ǫ→0

∫ ∞

0

∫

Rd×Rd
fǫ∇xΦ0,ǫχ(t, x, v) dv dxdt = 0.

Proof. It is convenient to split

Φ0,ǫ(t, x) =

∫

Rn
σ2(y)C3

θǫ

| · |2 ∗ δǫ ∗ Ψ̃ǫ(t, x, y) dy

= Φmain
0,ǫ (t, x) + Φrem

0,ǫ (t, x)

with

Φmain
0,ǫ (t, x) =

∫

Rn
σ2(y)C3

1

| · |2 ∗ δǫ ∗ Ψ̃ǫ(t, x, y) dy,

Φrem
0,ǫ (t, x) =

∫

Rn
σ2(y)C3

θǫ − 1

| · |2 ∗ δǫ ∗ Ψ̃ǫ(t, x, y) dy,

and we remind the reader that Ψ̃ǫ(t, x, y) is the solution of the free wave equation
(ǫ∂2

tt − ∆y)Ψ̃ǫ = 0 with initial data (Ψ0,ǫ,Ψ1,ǫ). Accordingly, we are going to study the
integral ∫ ∞

0

∫

Rd×Rd
fǫ∇xΦ0,ǫχ(t, x, v) dv dxdt

=

∫ ∞

0

∫

Rd
Rǫ(t, x)(∇xΦmain

0,ǫ + ∇xΦrem
0,ǫ )(t, x) dxdt

with

Rǫ(t, x) =

∫

Rd
fǫχ(t, x, v) dv
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where χ is a given trial function, supported in {0 ≤ t ≤ M, |x| ≤ M, |v| ≤ M} for
some 0 < M < ∞.

We observe that

∇x

(
C3
θǫ − 1

| · |2 ∗ g
)

=
(∇xθǫ

| · |2 − 2(θǫ − 1)
·

| · |4
)

∗ g.

Thus, by using (27) with d = 3 and p = 2, we are led to

|∇xΦrem
0,ǫ (t, x)| ≤ Cǫ3/4

(∫

Rd

∣∣∣
(
δǫ ∗

∫

Rn
σ2(y)Ψ̃ǫ(t, ·, y) dy

)
(x′)

∣∣∣
2

dx′
)1/2

.

However, by (22) we have∥∥∥∥δǫ ∗
∫

Rn
Ψ̃ǫσ2(y) dy

∥∥∥∥
L∞([0,∞);L2(R3))

≤ ‖δǫ‖L1(R3)‖σ2‖L2n/(n+2)(Rn) sup
t≥0

(∫

Rd
‖Ψ̃ǫ(t, x, ·)‖2

L2n/(n−2)(Rn) dx

)1/2

≤ C‖σ2‖L(n+2)/2n(Rn)

(
Ēvib

0

)1/2
.

It implies that ∇xΦrem
0,ǫ (t, x) converges uniformly on (0,∞)×R

d to 0. Since Rǫ is clearly

bounded in L1((0,∞) × R
d × R

d), we conclude that∫ ∞

0

∫

Rd
Rǫ∇xΦrem

0,ǫ dxdt −−→
ǫ→0

0.

We need a more refined estimate to deal with the leading term Φmain
0,ǫ . We begin

with∣∣∣
∫ ∞

0

∫

Rd
Rǫ∇xΦmain

0,ǫ dxdt
∣∣∣

≤
(∫

Rd

(∫ ∞

0
|Rǫ|p

′

dt

)2/p′

dx

)1/2 (∫

Rd

(∫ ∞

0
|∇xΦmain

0,ǫ |p dt

)2/p

dx

)1/2

.

We realize that the components of ∇xΦmain
0,ǫ are given by the solutions Υj,ǫ of the wave

equation
(ǫ∂2

t − ∆y)Υj,ǫ = 0

with data

Υj,ǫ(0, x, y) = ∂xj

C3

| · |2 ∗ δǫ ∗ Ψ0,ǫ(x, y), ∂tΥj,ǫ(0, x, y) = ∂xj

C3

| · |2 ∗ δǫ ∗ Ψ1,ǫ(x, y),

and the space variable x ∈ R3 has only the role of a parameter. It satisfies the following
Strichartz estimate

1

ǫ1/(2p)

(∫ ∞

0

(∫

Rn
|Υǫ(t, x, y)|q dy

)p/q

dt

)1/p

≤ C
√

E vib
1,ǫ (x)

where

E
vib
1,ǫ (x) = ǫ

∫

Rn
|∂tΥǫ(0, x, y)|2 dy +

∫

Rn
|∇yΥǫ(0, x, y)|2 dy

(for admissible exponents as detailed above). The Fourier transform of x 7→ ∇x
C3
|x|2

is ξ
|ξ| , see [26, Th. 5.9], which implies that the convolution operator g 7→ ∇x

C3
|x|2 ∗ g,

is an isometry from L2(R3) to (L2(R3))3. Furthermore, we have ‖δǫ ∗ g‖L2(R3) ≤
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‖δǫ‖L1(R3)‖g‖L2(R3) = ‖g‖L2(R3). It follows that

‖∇yΥǫ(0)‖L2(R3
x×Rn

y ) ≤ ‖∇yΨ0,ǫ‖L2(R3
x×Rn

y ), ‖∂tΥǫ(0)‖L2(R3
x×Rn

y ) ≤ ‖Ψ1,ǫ‖L2(R3
x×Rn

y ).

Strichartz’ estimate then leads to(∫

Rd

(∫ ∞

0
|∇xΦmain

0,ǫ |p dt

)2/p

dx

)1/2

≤ Cǫ1/(2p)
√

E vib
0,ǫ ≤ Cǫ1/(2p)

√
Ē vib

0 .

Since fǫ is bounded in L∞(0,∞;Lp(Rd × R
d)) for all 1 ≤ p ≤ ∞, and χ is bounded

and compactly supported we conclude that∫ ∞

0

∫

Rd
Rǫ∇xΦmain

0,ǫ dxdt −−→
ǫ→0

0.

(Note that the same argument can be applied to show that ∇xΦrem
0,ǫ vanishes faster

than what has been obtained with the mere energy estimate.)

Next, we study the non linear acceleration term. Let us set

ρ̃ǫ(t, x) = δǫ ∗ δǫ ∗
∫ t/

√
ǫ

0
ρǫ(t− s

√
ǫ, x) q(s) ds.

It is clear, with Lemma 4.4, that ρ̃ǫ inherits from ρǫ the uniform estimate L∞(0,∞;L1∩
L5/3(R3)). We also denote E(x) = 1

4π
1

|x| , the elementary solution of the operator −∆x

in R
3. Note that ∇xE(x) = − x

4π|x|3 . Bearing in mind Lemma 4.8, the self–consistent
field can be split as follows

1

ǫ
∇xLǫ(fǫ)(t, x) =

[
∇x

(C3θǫ

| · |2 ∗ C3θǫ

| · |2
)

− ∇xE
]

∗ ρ̃ǫ(t, x) + ∇xE ∗ ρ̃ǫ(t, x). (30)

In the right hand side, the Lr norm of the first term is dominated by ‖ρ̃ǫ‖L∞([0,∞;L1(R3))

∥∥[...
]∥∥

Lr(R3)
,

hence, owing to Lemma Lemma 4.8 it tends to 0 as ǫ → 0 in L∞(0,∞;Lr(R3)) for any
3/2 < r < ∞. Next, Lemma 4.7 tells us that

∇xE ∗ ρ̃ǫ is bounded in L∞(0,∞;L15/4(R3)).

Therefore, adapting the reasoning made in the previous sections, we deduce that we can
extract a subsequence, such that, for any trial function χ ∈ Lp′

(R3×R
3), 1/p′+1/p = 1,

1 < p < ∞,

lim
ǫ→0

∫

R3×R3
fǫ(t, x, v)χ(x, v) dv dx =

∫

R3×R3
f(t, x, v)χ(x, v) dv dx

holds uniformly on [0, T ], for any 0 ≤ T < ∞. Since the uniform estimate on the
kinetic energy imply the tightness of fǫ with respect to the velocity variable, we also
have

lim
ǫ→0

∫

R3
ρǫ(t, x, v)ζ(x) dx =

∫

R3
ρ(t, x)ζ(x) dx, ρ(t, x) =

∫

R3
f(t, x, v) dv,

uniformly on [0, T ], for any 0 ≤ T < ∞ and any ζ ∈ Lq(R3), q ≥ 5/2 or ζ ∈ C0(R3).
Clearly, for any ζ ∈ C∞

c (R3), δǫ ∗ δǫ ∗ ζ converges to ζ in Lq(R3), 5/2 ≤ q < ∞, and in
C0(R3). Therefore
∫

R3
(δǫ ∗ δǫ ∗ ρǫ)(t, x)ζ(x) dx =

∫

R3
ρǫ(t, x) (δǫ ∗ δǫ ∗ ζ)(x) dx −−→

ǫ→0
κ

∫

R3
ρ(t, x) ζ(x) dx
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uniformly in [0, T ]. Then, we look at the difference
∣∣∣∣
∫

R3
ρ̃ǫ(t, x)ζ(x) dx− κ

∫

R3
ρ(t, x)ζ(x) dx

∣∣∣∣

≤
∫ t/

√
ǫ

0

∣∣∣∣
∫

R3
(δǫ ∗ δǫ ∗ ρǫ)(t −

√
ǫs, x)ζ(x) dx−

∫

R3
ρ(t−

√
ǫs, x)ζ(x) dx

∣∣∣∣ |q(s)| ds

+

∫ t/
√

ǫ

0

∣∣∣∣
∫

R3
ρ(t−

√
ǫs, x)ζ(x) dx−

∫

R3
ρ(t, x)ζ(x) dx

∣∣∣∣ |q(s)| ds

+

∫ ∞

t/
√

ǫ
|q(s)| ds

∣∣∣∣
∫

R3
ρ(t, x)ζ(x) dx

∣∣∣∣ .

Let us denote by Iǫ(t), IIǫ(t) and IIIǫ(t) the three integrals in the right hand side. By
using Lemma 4.4 and the available estimates, we obtain, for any 0 ≤ t ≤ T < ∞

|Iǫ(t)| ≤ ‖q‖L1([0,∞)) sup
0≤u≤T

∣∣∣∣
∫

R3

(
δǫ ∗ δǫ ∗ ρǫ − ρ

)
(u, x)ζ(x) dx

∣∣∣∣ −−→
ǫ→0

0,

while a direct application of the Lebesgue theorem shows that, for any 0 < t ≤ T < ∞
lim
ǫ→0

IIǫ(t) = 0 = lim
ǫ→0

IIIǫ(t).

Therefore, for any ζ ∈ Lq(R3), 5/2 ≤ q < ∞ and any ζ ∈ C0(R3),

lim
ǫ→0

∫

R3
ρ̃ǫ(t, x)ζ(x) dx = κ

∫

R3
ρ(t, x)ζ(x) dx

holds for a. e. t ∈ (0, T ), with the domination
∣∣∣∣
∫

R3
ρ̃ǫ(t, x)ζ(x) dx

∣∣∣∣ ≤ ‖ζ‖Lp′ (R3) sup
ǫ>0, 0≤t≤T

‖ρǫ(t, ·)‖Lp(R3),

for any 1 ≤ p ≤ 5/3.
In oder to justify that the limit f is a solution of the Vlasov–Poisson equation, the

only difficulty relies on the treatment of the non linear acceleration term:

NLǫ(χ) =

∫ ∞

0

∫

R3×R3
fǫ∇x

1

ǫ
Lǫ(fǫ) · ∇vχdv dxdt

where χ is a trial function in χ ∈ C∞
c ([0,∞) × R

d × R
d). Bearing in mind (30), it is

convenient to rewrite

NLǫ(χ) =

∫ ∞

0

∫

R3

(∫

R3
fǫ∇vχdv

)
· ∇xE ∗ ρ̃ǫ dxdt+ Rǫ, lim

ǫ→0
Rǫ = 0.

Lemma 4.7 implies that ∇xE ∗ ρ̃ǫ is bounded in L∞(0, T ;L15/4(R3)). For µ > 0, we
introduce the cut–off function θ̃µ(x) = θ(x/µ). Then we split

∇xE∗ρ̃ǫ(t, x) =

∫

R3
θ̃µ(x−y)

x− y

4π|x− y|3 ρ̃ǫ(t, y) dy+

∫

R3

(
1−θ̃µ(x−y)

) x− y

4π|x− y|3 ρ̃ǫ(t, y) dy.

The first term in the right hand side can be made arbitrarily small in Lp norm, 1 ≤
p ≤ 5/3, uniformly with respect to ǫ, since it can be dominated by
∥∥∥∥∥

∫

|x−y|≤2µ

x− y

4π|x− y|3 ρ̃ǫ(t, y) dy

∥∥∥∥∥
Lp(R3)

≤ ‖ρ̃ǫ(t, ·)‖Lp(R3)

∫

|x−y|≤2µ

dy

4π|x− y|2 ≤ C µ.
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In the second term, for fixed x ∈ R
3 and µ, y 7→

(
1 − θ̃µ(x − y)

) x−y
4π|x−y|3|1|x−y|≥µ is a

continuous function which vanishes as |y| → ∞, so that, for any t > 0,

lim
ǫ→0

∫

R3

(
1 − θ̃µ(x− y)

) x− y

4π|x− y|3 ρ̃ǫ(t, y) dy =

∫

R3

(
1 − θ̃µ(x− y)

) x− y

4π|x− y|3 ρ(t, y) dy.

By standard arguments of integration theory (see for instance [21, Th. 7.61]), we
deduce that (a suitable subsequence of) ∇xE ∗ ρ̃ǫ converges to ∇xE ∗ ρ a. e. and
strongly in Lp

loc((0, T ) × R
3), for any 1 ≤ p < 15/4. On the other hand,

∫
R3 fǫ∇vχdv

is compactly supported and converges to
∫
R3 fǫ∇vχdv weakly in any Lq((0, T ) × R

3).
(In fact this convergence, as well as ρǫ → ρ can be shown to hold strongly, by applying
average lemma techniques, see [14, Th. 5].) We conclude that

lim
ǫ→0

NLǫ(χ) =

∫ ∞

0

∫

R3

(∫

R3
f∇vχdv

)
· ∇xE ∗ ρdxdt.

It ends the proof of Theorem 4.2.
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