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Pathwise integration with respect to paths of finite

quadratic variation

Anna ANANOVA and Rama CONT
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Abstract

We study a notion of pathwise integral, defined as the limit of non-anticipative Rie-
mann sums, with respect to paths of finite quadratic variation. The construction allows to
integrate ’gradient-type’ integrands with respect to Hölder–continuous functions of Hölder
index p < 1/2. We prove a pathwise isometry property for this integral, analogous to the
well-known Ito isometry for stochastic integrals. This property is then used to represent
the integral as a continuous map on an appropriately defined vector space of integrands and
obtain a pathwise ’signal plus noise’ decomposition for a large class of irregular paths ob-
tained through functional transformations of a reference path with non-vanishing quadratic
variation.
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In his seminal paper ’Calcul d’Ito sans probabilités’ [11], Hans Föllmer proved a change
of variable formula for smooth functions of paths with infinite variation, using the concept of
quadratic variation along a sequence of partitions. A path x ∈ C0([0, T ],R) is said to have finite
quadratic variation along the sequence of partitions πm = (0 = tm0 < tm1 < · · · < tmk(m) = T ) if
for any t ∈ [0, T ], the limit

[x]π(t) := lim
m→∞

∑
tmi ≤t

(x(tmi+1)− x(tmi ))2 <∞ (1)

exists and defines a continuous increasing function [x]π : [0, T ] → R+ called the quadratic
variation of x along π. Föllmer [11] defined a integral with respect to such paths, as a pathwise
limit of Riemann sums along the partitions πm, for integrands of the type ∇f, f ∈ C2(Rd).

This construction has been extended in various directions, to less regular functions [1, 8, 18]
and path-dependent functionals [3, 6, 7]. In particular, Cont & Fournié [3] proved change of
variable formulas for pathwise integrals of the type∫ T

0

∇ωF (t, ω).dπω

where F is a non-anticipative functional and ∇ωF a directional derivative (Dupire derivative).
This paper is a systematic study of Föllmer’s pathwise approach to stochastic integration and

its extension to path-dependent functionals [3].
Our main result is a pathwise isometry formula for such integrals (Theorem 7): we give

conditions on the integrand φ and the path ω ∈ C0([0, T ],R) under which

[

∫ .

0

φ.dπω]π(t) =

∫ t

0

|φ|2d[ω]π.

Our conditions notably allow for Hölder-continuous paths with Hölder index strictly less than
1/2, so our results apply to Brownian paths and paths of diffusion processes. Integrating our
formula over the space of continuous functions with the Wiener measure, or any other measure
under which the canonical process is a square-integrable martingale, then yields the well-known
Ito isometry formula [14], showing that underlying the Ito isometry is an identity which holds
pathwise.

This result is then used to identify a space of integrands on which the pathwise integral defines
a continuous mapping for the ’quadratic variation’ metric (Proposition 13). This continuity
property, together with its interpretation as a limit of Riemann sums, distinguish our pathwise
integral from other constructions which have one property or the other but not both [15, 16, 18].

A second result of our paper is to obtain a pathwise ’signal plus noise’ decomposition for
irregular paths, in the spirit of [12]: we show that, give a path ω̄ with non-vanishing quadratic
variation, any regular functional may be uniquely decomposed as the sum of a pathwise integral
with respect to ω̄ and a function with zero quadratic variation (Proposition 14).

Finally, we clarify the pathwise nature of the integral defined in [3]: we show (Theorem 16)
that this integral is indeed a pathwise limit of non-anticipative Riemann sums, which is important
for interpretation and in applications.

Outline Section 1 recalls some key definitions and results on functional calculus from [3,
2] and recalls the definition of the Föllmer integral [11] and its extension to path-dependent
integrands by Cont & Fournié [3]. The ’isometry formula’ for this integral is derived in Section
2 (Theorem 7). We use this result in Section 3 to represent the integral as a continuous map
(Proposition 13). Finally, in Section 4 we investigate the ’pathwise’ nature of the integral and
show that its value along a path may be represented as a limit of non-anticipative Riemann sums
computed along the same path.
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1 Non-anticipative functional calculus and integration of
gradient functionals

Our approach relies on the Non-anticipative Functional Calculus [3, 2], a functional calculus
which applies to non-anticipative functionals of cadlag paths with finite quadratic variation, in
the sense of Föllmer [11]. We recall here some key concepts and results of this approach, following
[2].

Let X be the canonical process on Ω = D([0, T ],Rd), and (F0
t )t∈[0,T ] be the filtration gen-

erated by X. We are interested in causal, or non-anticipative functionals of X [10], that is,
functionals F : [0, T ]×D([0, T ],Rd) 7→ R such that

∀ω ∈ Ω, F (t, ω) = F (t, ωt). (2)

The process t 7→ F (t,Xt) then only depends on the path of X up to t and is (F0
t )-adapted.

It is convenient to define such functionals on the space of stopped paths [2]: a stopped path
is an equivalence class in [0, T ]×D([0, T ],Rd) for the following equivalence relation:

(t, ω) ∼ (t′, ω′)⇐⇒ (t = t′ and ω(t ∧ .) = ω′(t′ ∧ .) ) . (3)

The space of stopped paths is defined as the quotient of [0, T ]×D([0, T ],Rd) by the equivalence
relation (3):

ΛT = {(t, ω(t ∧ ·)), (t, ω) ∈ [0, T ]×D([0, T ],Rd)} =
(
[0, T ]×D([0, T ],Rd)

)
/ ∼

We denote WT the subset of ΛT consisting of continuous stopped paths. We endow this set with
a metric space structure by defining the following distance:

d∞((t, ω), (t′, ω′)) = sup
u∈[0,T ]

|ω(u ∧ t)− ω′(u ∧ t′)|+ |t− t′| = ‖ωt − ω′t′‖∞ + |t− t′|

(ΛT , d∞) is then a complete metric space. Any map F : [0, T ]×D([0, T ],Rd)→ R verifying the
causality condition (2) can be equivalently viewed as a functional on the space ΛT of stopped
paths:

Definition 1. A non-anticipative functional on D([0, T ],Rd) is a measurable map
F : (ΛT , d∞) −→ R on the space (ΛT , d∞) of stopped paths.

We denote by C0,0(ΛT ) the set of continuous maps F : (ΛT , d∞) 7→ R. Some weaker notions
of continuity for non-anticipative functionals turn out to be useful [4]:

Definition 2. A non-anticipative functional F is said to be:

• continuous at fixed times if for any t ∈ [0, T ], F (t, ·) is continuous with respect to the
uniform norm ‖ · ‖∞ in [0, T ], i.e. ∀ω ∈ D([0, T ],Rd), ∀ε > 0, ∃η > 0, ∀ω′ ∈ D([0, T ],Rd),

‖ωt − ω′t‖ < η =⇒ |F (t, ω)− F (t, ω′)| < ε

• left-continuous if ∀(t, ω) ∈ ΛT , ∀ε > 0, ∃η > 0 such that ∀(t′, ω′) ∈ ΛT ,

(t′ < t and d∞ ((t, ω), (t′, ω′)) < η) =⇒ |F (t, ω)− F (t′, ω′)| < ε

We denote by C0,0
l (ΛT ) the set of left-continuous functionals. Similarly, we can define the

set C0,0
r (ΛT ) of right-continuous functionals.
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We also introduce a notion of local boundedness for functionals.

Definition 3. A non-anticipative functional F is said to be boundedness-preserving if for every
compact subset K of Rd, ∀t0 ∈ [0, T ], ∃C(K, t0) > 0 such that:

∀t ∈ [0, t0], ∀(t, ω) ∈ ΛT , ω([0, t]) ⊂ K =⇒ |F (t, ω)| < C(K, t0).

We denote by B(ΛT ) the set of boundedness-preserving functionals.

We now recall some notions of differentiability for functionals following [3, 2, 9]. For e ∈ Rd
and ω ∈ D([0, T ],Rd), we define the vertical perturbation ωet of (t, ω) as the càdlàg path obtained
by shifting the path by e after t:

ωet = ωt + e1[t,T ].

Definition 4. A non-anticipative functional F is said to be:

• horizontally differentiable at (t, ω) ∈ ΛT if

DF (t, ω) = lim
h→0+

F (t+ h, ωt)− F (t, ωt)

h
(4)

exists. If DF (t, ω) exists for all (t, ω) ∈ ΛT , then (4) defines a non-anticipative functional
DF , called the horizontal derivative of F .

• vertically differentiable at (t, ω) ∈ ΛT if the map:

g(t,ω) : Rd −→ R
e 7→ F (t, ωt + e1[t,T ])

is differentiable at 0. Its gradient at 0 is called the Dupire derivative (or vertical derivative)
of F at (t, ω):

∇ωF (t, ω) = ∇g(t,ω)(0) ∈ Rd (5)

i.e. ∇ωF (t, ω) = (∂iF (t, ω), i = 1, · · · , d) with

∂iF (t, ω) = lim
h→0

F (t, ωt + hei1[t,T ])− F (t, ωt)

h

where (ei, i = 1, · · · , d) is the canonical basis of Rd. If F is vertically differentiable at
all (t, ω) ∈ ΛT , ∇ωF : ΛT → Rd defines a non-anticipative functional called the vertical
derivative of F .

We may repeat the same operation on ∇ωF and define similarly ∇2
ωF , ∇3

ωF , · · · . This leads
us to define the the following classes of smooth functionals:

Definition 5. We define C1,k
b (ΛT ) as the set of non-anticipative functionals F : (ΛT , d∞)→ R

which are

• horizontally differentiable with DF continuous at fixed times;

• k times vertically differentiable with ∇jωF ∈ C0,0
l (ΛT ) for j = 0, · · · , k;

• DF,∇ωF, · · · ,∇kωF ∈ B(ΛT ).
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We denote C1,∞
b (ΛT ) = ∩k≥1C1,k

b (ΛT ).
Consider now a sequence πn = (0 = tn0 < tn1 .. < tnk(n) = T ) of partitions of [0, T ]. |πn| =

sup{|tni+1 − tni |, i = 1..k(n)} → 0 will denote the mesh size of the partition. A càdlàg path
x ∈ D([0, T ],R) is said to have finite quadratic variation along the sequence of partitions (πn)n≥1

if for any t ∈ [0, T ] the limit

[x](t) := lim
n→∞

∑
tni+1≤t

(x(tni+1)− x(tni ))2 <∞ (6)

exists and the increasing function [x] has Lebesgue decomposition

[x]π(t) = [x]cπ(t) +
∑

0<s≤t

|∆x(s)|2

where [x]cπ is a continuous, increasing function. We denote the set of such paths Qπ([0, T ],R).
A d-dimensional path x = (x1, ..., xd) ∈ D([0, T ],Rd) is said to have finite quadratic variation

along π if xi ∈ Qπ([0, T ],R) and xi+xj ∈ Qπ([0, T ],R) for all i, j = 1..d. Then for any i, j = 1..d
and t ∈ [0, T ], we have

∑
tnk∈πn,tnk≤t

(xi(tnk+1)− xi(tnk )).(xj(tnk+1)− xj(tnk ))
n→∞→ [x]ij(t) =

[xi + xj ](t)− [xi](t)− [xj ](t)

2
.

The matrix-valued function [x] : [0, T ]→ S+
d whose elements are given by

[x]ij(t) =
[xi + xj ](t)− [xi](t)− [xj ](t)

2

is called the quadratic covariation of the path x. For further discussion of this concept, we refer
to [2, 20].

Consider now a path ω ∈ Qπ([0, T ],Rd) with finite quadratic variation along π. Since ω has
at most a countable set of jump times, we may assume that the partition ’exhausts’ the jump
times in the sense that

sup
t∈[0,T ]−πn

|ω(t)− ω(t−)| n→∞→ 0. (7)

Then the piecewise-constant approximation

ωn(t) =

k(n)−1∑
i=0

ω(ti+1−)1[ti,ti+1[(t) + ω(T )1{T}(t) (8)

converges uniformly to ω: sup
t∈[0,T ]

‖ωn(t)−ω(t)‖ →
n→∞

0.Note that with the notation (8), ωn(tni −) =

ω(tni −) but ωn(tni ) = ω(tni+1−). If we define

ω
n,∆ω(tni )
tni

= ωn + ∆ω(tni )1[tni ,T ], then ω
n,∆ω(tni )
tni −

(tni ) = ω(tni ).

Approximating the variations of the functional by vertical and horizontal increments along the
partition πn, we obtain the following pathwise change of variable formula for C1,2(ΛT ) functionals,
derived in [3] under more general assumptions:
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Theorem 6 (Pathwise change of variable formula for C1,2 functionals [3]). Let ω ∈ Qπ([0, T ],Rd)
verifying (7). Then for any F ∈ C1,2

b (ΛT ) the limit

∫ T

0

∇ωF (t, ωt−)dπω := lim
n→∞

k(n)−1∑
i=0

∇ωF
(
tni , ω

n,∆ω(tni )
tni −

)
.(ω(tni+1)− ω(tni )) (9)

exists and

F (T, ωT )− F (0, ω0) =

∫ T

0

DF (t, ωt)dt+

∫ T

0

1

2
tr
(
t∇2

ωF (t, ωt−)d[ω]c(t)
)

+

∫ T

0

∇ωF (t, ωt−)dπω +
∑

t∈]0,T ]

[F (t, ωt)− F (t, ωt−)−∇ωF (t, ωt−).∆ω(t)]. (10)

A consequence of this theorem is the ability to define the pathwise integral

∫ .

0

∇ωF (t, ωt−)dπω

as a limit of ”Riemann sums” computed along the sequence of partiitions π. For a continuous
path ω ∈ C0([0, T ],Rd) this simplifies to:∫ T

0

∇ωF (t, ω)dπω := lim
n→∞

k(n)−1∑
i=0

∇ωF
(
tni , ω

n
tni −

)
.(ω(tni+1)− ω(tni )) (11)

This integral, first constructed in [3], extends H. Föllmer’s construction [11] for integrands of the
form ∇f, f ∈ C2(Rd) to (path-dependent) integrands of the form

∇ωF, F ∈ C1,2
b (ΛT ).

The goal of this paper is to explore the properties of this integral.

2 Pathwise isometry formula

Let F ∈ C1,2
b (ΛT ) and let ω ∈ Qπ([0, T ],Rd) be a given path with finite quadratic variation

along the sequence of partitions π = {πn}. Our goal is to provide conditions under which the
the following identity holds:

[F (·, ω·)] (t) =

t∫
0

〈∇ωF (s, ωs−) t∇ωF (s, ωs−), d[ω](s)〉. (12)

This relation was first noted in [2] for piecewise-constant integrands. To extend this property to
a more general setting we assume a regularity condition on the functional F and a Hölder-type
regularity condition for the path ω.

Assumption 1. ∃K > 0, q > 0, ∀ω, ω′ ∈ D([0, T ],Rd),

|F (t, ω)− F (t, ω′)| ≤ K‖ωt − ω′t‖q∞.

Assumption 2 (Horizontal local Lipschitz property for ∇ωF ).
∀ω ∈ D([0, T ],Rd),∃ C > 0, η > 0,∀h ≥ 0,∀t ≤ T − h,∀ω′ ∈ D([0, T ],Rd):

‖ωt − ω′t‖∞ < η, ⇒ |∇ωF (t+ h, ω′t)−∇ωF (t, ω′t)| ≤ Ch.
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Consider a nested sequence of partitions πn = {tni , i = 0..m(n)} of [0, T ]. We require that
the sequence π is well-balanced in the following sense:

Assumption 3 (Well-balanced sequence of partitions).
Let πn = inf

i=0..m(n)−1
|tni+1 − tni |. We call the sequence of partitions (πn)n≥1 well-balanced if

∃c > 0,
|πn|
πn
≤ c. (13)

This condition means that the intervals in the partition πn are asymptotically comparable.
Note that since πnm(n) ≤ T , for a well-balanced sequence of partitions we have

|πn| ≤ cπn ≤
cT

m(n)
.

We further assume that:

Assumption 4. The sequence
m(n+ 1)

m(n)
is bounded.

Assumptions 3 and 4 are verified for instance by the dyadic partition, and, more generally,
any nested sequence of partitions constructed by refining the partition iteratively by splitting
the intervals into a bounded (but not necessarily constant) number of subintervals.

Consider κ > 1 and define:

ln := inf{ k ≥ n : m(k) ≥ m(n)κ }.

Then m(ln − 1) < m(n)κ ≤ m(ln), hence 1 ≤ m(ln)

m(n)κ
<

m(ln)

m(ln − 1)
.

Thus, Assumption 4 implies that, for any κ > 1, there exists a sequence (ln, n ≥ 1) such
that m(ln) = O(m(n)κ) and m(n)κ = O(m(ln)). We summarize this scaling relation with the
following notation: m(ln) ' m(n)κ.

For 0 < p < 1, denote by Cp([0, T ]) the space of p−Hölder continuous functions:

Cp([0, T ],Rd) = {f ∈ C0([0, T ]), sup
(t,s)∈[0,T ]2,t6=s

‖f(t)− f(s)‖
|t− s|p

<∞}.

For ω ∈ Cp([0, T ]), the following piecewise constant approximation

ωn :=

m(n)−1∑
i=0

ω(tni+1−)1[tni ,t
n
i+1) + ω(T )1{T} (14)

satisfies: ‖ω − ωn‖∞ ≤ |πn|p. For all the results below it is sufficient to have 1/2 > p > 0. THis
is satisfied almost-surely by paths of Brownian motion and diffusion process for any p < 1/2 [19].

The main result of this section is the following ’pathwise isometry formula’ :

Theorem 7 (Pathwise Isometry formula). Let π = (πn)n≥1 be a sequence of partitions of [0, T ]
satisfying Assumptions 3 and 4 and ω ∈ Qπ([0, T ],Rd) ∩ Cp([0, T ],Rd) for some p > 0. If

F ∈ C1,2
b (ΛT ) satisfies Assumption 2 and Assumption 1 for some q >

1

2p(2p+ 1)
, then

[F (·, ω·)] (t) =

[∫ .

0

∇ωF (s, ωs−).dπω

]
(t) =

t∫
0

〈t∇ωF (s, ωs−).∇ωF (s, ωs−), d[ω]〉. (15)
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Remark 8. We note that for typical paths of a Brownian diffusion or continuous semimartingale
with non-degenerate local martingale component, the asssumptions of Theorem 7 hold almost
surely as soon as Assumption 1 is satisfied for some q > 1/2.

Proof. Our goal is to show that

∑
πn

(
F (tni+1, ωtni+1

)− F (tni , ωtni )
)2 n→∞→

T∫
0

〈t∇ωF (t, ωt−)∇ωF (t, ωt−) d[ω]〉. (16)

For this we approximate the increments of F for the path ω by the respective increments along
the piecewise constant path ωl defined in (14) with l > n, choosing l such that that the sum∑

πn

(
F (tni+1, ω

l
tni+1

)− F (tni , ω
l
tni

)
)2

,

approximates the left-hand side of (16), with a remainder which converges to zero. To simplify
notations in the rest of the proof, we shall detail the arguments in the case d = 1, the vector
case being a straightforward extension.

By Assumption 4, we can choose l(n) ≥ n such

m(n)κ ≤ m(l) ≤ cm(n)κ for some κ > 1, c > 0.

We decompose the increment of F (t, ω) along πn as follows:

F (tni+1, ωtni+1
)− F (tni , ωtni ) = F (tni+1, ω

l(n)
tni+1−

)− F (tni , ω
l(n)
tni −

) (17)

+F (tni+1, ωtni+1
)− F (tni+1, ω

l(n)
tni+1−

) + F (tni , ω
l(n)
tni −

)− F (ti, ωtni )︸ ︷︷ ︸
Rn,1

i

Since ω ∈ Cp([0, T ]) there exists a constant K ′ > 0 and an exponent p > 0 such that

‖ωn − ω‖∞ ≤ K ′|πn|p. (18)

By Assumptions 1 and condition (13) on the partition, we have

|Rn,1i | ≤ 2K‖ωl − ω‖q∞ ≤ 2K(K ′)q|πl|pq ≤ 2K(K ′)q
|cT |pq

m(l)pq
.

Summing over the partition πn and absorbing all constants into a single one denoted C, this
yields: ∑

πn

|Rn,1i |
2 ≤ Cm(n)

m(l)2pq

Since l = l(n) is such that m(l) ' m(n)κ, we obtain:∑
πn

|Rn,1i |
2 ≤ C

m(n)2κpq−1
.

Since ωl is piecewise constant, we can decompose the first term in (17) into horizontal and vertical
increments and approximate each horizontal (resp. vertical) increment in terms of the horizontal
(resp. vertical) derivative of F , as in [3]:
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F (tni+1, ω
l
tni+1−)− F (tni , ω

l
tni −) =

∑
tlj∈[tni ,t

n
i+1)

(
F (tlj+1, ω

l
tlj+1−

)− F (tlj , ω
l
tlj−

)
)

=
∑

tlj∈[tni ,t
n
i+1)

∇ωF (tlj , ω
l
tlj−

)(ω(tlj+1)− ω(tlj)) +
1

2

∑
tlj∈[tni ,t

n
i+1)

∇2
ωF (tlj , ω

l
tlj−

)(ω(tlj+1)− ω(tlj))
2

+O(|tni+1 − tni |) +
∑

tlj∈[tni ,t
n
i+1)

εli,j(ω(tlj+1)− ω(tlj))
2 with εl := max

i,j
{ εli,j }

n→∞→ 0.

By Rn,2i we denote the sum of the last three terms in the right hand side of the above equality.
We have

|Rn,2i |
2 ≤ C|πn||tni+1 − tni |+ C

 ∑
tlj∈[tni ,t

n
i+1)

(ω(tlj+1)− ω(tlj))
2

2

,

Let ki denote the number of partition intervals from πl which are contained in [tni , t
n
i+1]. From

the assumptions on the structure of the partitions we deduce that ki ≤ C
m(l)

m(n)
. By (18),

∣∣ω(tlj+1)− ω(tlj)
∣∣ ≤ K ′|πl|p ≤ K ′|cT |p

m(l)p
, hence

|Rn,2i |
2 ≤ C|πn||tni+1 − tni |+ C

m(l)

m(n)
· 1

m(l)2p
·

∑
tlj∈[tni ,t

n
i+1)

(ω(tlj+1)− ω(tlj))
2.

Since
∑

i:tni ∈πn

∑
tlj∈[tni ,t

n
i+1)

(ω(tlj+1)−ω(tlj))
2 converges to [ω](T ), it is bounded with respect to n, so

we obtain ∑
i : tni ∈πn

|Rn,2i |
2 ≤ CT |πn|+ C

m(l)

m(n)
· 1

m(l)2p
≤ CT

m(n)
+

C

m(n)(2p−1)κ+1
.

Next, we write the first term in (19) as follows:∑
tlj∈[tni ,t

n
i+1)

∇ωF (tlj , ω
l
tlj−

)(ω(tlj+1)− ω(tlj)) =

∇ωF (tni , ω
l
tni −)(ω(tni+1)− ω(tni ))+∑

tlj∈[tni ,t
n
i+1)

(
∇ωF (tlj , ω

l
tlj−

)−∇ωF (tni , ω
l
tni −)

)
(ω(tlj+1)− ω(tlj)).

(19)

Denote the last sum above by Rn,3i . Using Abel’s summation by parts formula:

Rn,3i =
∑

tlj∈[tni ,t
n
i+1)

(
∇ωF (tlj , ω

l
tlj−

)−∇ωF (tlj−1, ω
l
tlj−1−

)
)

(ω(tni+1)− ω(tlj)) (20)
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To obtain an estimate for Rn,3i we control the two increments in the right-hand side separately.
We can split the above increment of ∇ωF into its horizontal and vertical parts:

∇ωF (tlj , ω
l
tlj−

)−∇ωF (tlj−1, ω
l
tlj−1−

) = ∇ωF (tlj , ω
l
tlj−

)−∇ωF (tlj−1, ω
l
tlj−1

)+

∇ωF (tlj−1, ω
l
tlj−1

)−∇ωF (tlj−1, ω
l
tlj−1

).

Assumption 2 on ∇ωF implies the following bound:

|∇ωF (tlj , ω
l
tlj−

)−∇ωF (tlj−1, ω
l
tlj−1

)| ≤ C(tlj − tlj−1).

The second term is equal to

∇ωF (tlj−1, ω
l,ω(tlj)−ω(tlj−1)

tlj−1−
)−∇ωF (tlj−1, ω

l
tlj−1−

) =

∫ ω(tlj)−ω(tlj−1)

0

∇2
ωF (tlj−1, ω

l,h

tlj−1−
)dh.

Since ∇2
ωF is bounded in a neighborhood of ω, we get

|∇ωF (tlj−1, ω
l,ω(tlj)−ω(tlj−1)

tlj−1−
)−∇ωF (tlj−1, ω

l
tlj−1−

)| ≤ C|ω(tlj)− ω(tlj−1)|.

Combining the above estimates we obtain:

|∇ωF (tlj , ω
l
tlj−

)−∇ωF (tlj−1, ω
l
tlj−1−

)| ≤ C
(
|tlj − tlj−1|+ |ω(tlj)− ω(tlj−1)|

)
. (21)

thus, since ω has finite quadratic variation

m(n)−1∑
i=0

∑
tlj∈[tni ,t

n
i+1)

|∇ωF (tlj , ω
l
tlj−

)−∇F (tlj−1, ω
l
tlj−1

)|2 ≤

C

m(l)−1∑
j=0

[
|tlj − tlj−1|2 + |ω(tlj)− ω(tlj−1)|2

]
≤M < +∞,

(22)

where the constant M is independent of n, l.

Next, note that by (18), we have |ω(tni+1)− ω(tlj)| ≤
C

|πn|p
≤ C

m(n)p
. As before if ki denotes

the number of partition intervals from πl which are contained in [tni , t
n
i+1], we have ki ≤ C

m(l)

m(n)
.

Hence, using (18) ∑
tlj∈[tni ,t

n
i+1)

(ω(tni+1)− ω(tlj))
2 ≤ ki|πn|2p ≤

Cm(l)

m(n)2p+1
(23)

Appying the Cauchy-Schwarz inequality to (20) yields:

|Rn,3i |
2 ≤

∑
tlj∈[tni ,t

n
i+1)

|∇ωF (tlj , ω
l
tlj−

)−∇ωF (tlj−1, ω
l
tlj−1

)|2
∑

tlj∈[tni ,t
n
i+1)

(ω(tni+1)− ω(tlj))
2

Inserting (23) here and taking into account(22) we finally obtain:∑
i : tni ∈πn

|Rn,3i |
2 ≤ CMm(l)

m(n)2p+1
≤ CM

m(n)2p+1−κ .

10



To summarize, we have shown:

F (tni+1, ωtni+1
)− F (tni , ωtni ) = ∇ωF (tni , ω

l
tni −)(ω(tni+1)− ω(tni )) +Rn,1i +Rn,2i +Rn,3i , (24)

where ∑
i : tni ∈πn

|Rn,1i |
2 ≤ C

m(n)2κpq−1
,

∑
i : tni ∈πn

|Rn,2i |
2 ≤ CT

m(n)
+

C

m(n)(2p−1)κ+1

and ∑
i : tni ∈πn

|Rn,3i |
2 ≤ CM

m(n)2p+1−κ .

Now choose κ > 1 such that 2κpq > 1, (2p− 1)κ+ 1 > 0 and 2p+ 1− κ > 0 to ensure that∑
i : tni ∈πn

|Rn,νi |
2 → 0, ν = 1, 2, 3. For this we need

1

2pq
< κ < min{ 2p + 1,

1

1− 2p
}, this is

possible for p ≤ 1

2
and q >

1

2p(2p+ 1)
e.g. p = 1/2 and any q > 1/2 satisfy this condition, and

there are solutions with p < 1/2, q < 1.

Denoting Rni = Rn,1i +Rn,2i +Rn,3i , we obtain:

∑
i : tni ∈πn

|Rni |2 ≤ 3

 ∑
i : tni ∈πn

|Rn,1i |
2 +

∑
i : tni ∈πn

|Rn,2i |
2 +

∑
i : tni ∈πn

|Rn,3i |
2

 n→∞→ 0,

therefore ∣∣∣∣∣∣
∑

i : tni ∈πn

(
F (tni+1, ωtni+1

)− F (ti, ωtni )
)2

−
∑

i : tni ∈πn

(Ani )
2

∣∣∣∣∣∣ ≤∑
i : tni ∈πn

|Rni |2 + 2
∑

i : tni ∈πn

|Ani ||Rni |
n→∞→ 0,

where Ani = ∇ωF (tni , ω
l
tni −)(ω(tni+1)− ω(tni )). Indeed, using the Cauchy-Schwarz inequality, the

last term is bounded by

2

√ ∑
i : tni ∈πn

|Ani |2
√ ∑
i : tni ∈πn

|Rni |2.

It remains to note that∑
i : tni ∈πn

|Ani |2 =
∑

i : tni ∈πn

∇ωF (tni , ω
l
tni −)2(ω(tni+1)− ω(tni ))2 →

∫ T

0

∇ωF (t, ωt)
2d[ω](t).

We thus obtain the desired result:∑
i : tni ∈πn

(
F (tni+1, ωtni+1

)− F (tni , ωtni )
)2

→
∫ T

0

∇F (t, ωt)
2d[ω](t).
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Remark 9. We note here that the conclusions of Theorem 7 hold if instead of requiring F ∈
C1,2
b (ΛT ) we simply require that F ∈ C0,2

b (ΛT ) and that ∇ωF satisfies the horizontal local Lips-
chitz condition (Assumption 2).

Remark 10. Let P be the Wiener measure on C0([0, T ],R). Then the integral

∫ .

0

∇ωF (t, ω).dπω

is a version of the Ito integral

∫ .

0

∇ωF (t,W )dW and integrating (15) with respect to P yields

the well-known Ito isometry formula [14]:

E

(
[

∫ .

0

∇ωF (t,W )dW ](T )

)
= E

(
|
∫ T

0

∇ωF (t,W )dW |2
)

= E

(∫ T

0

|∇ωF (t,W )|2dt

)
.

So, Theorem 7 reveals that the Ito isometry is underpinned by a pathwise identity which does not
rely on the Wiener measure.

3 Continuity property and the rough-smooth decomposi-
tion of paths

3.1 Continuity and isometry property of the integral

Theorem 7 is strongly reminiscent of the Ito isometry formula [14] and suggests that the existence
of an isometric mapping underlying the pathwise integral. We will now proceed to make this
structure explicit.

A consequence of Theorem 7 is that, for a ’rough’ path with non-degenerate quadratic vari-
ation, F (., ω) has zero quadratic variation along π if and only if ∇ωF vanishes along ω:

Proposition 11. Let ω ∈ Qπ([0, T ],Rd) ∩ Cp([0, T ],Rd) for some 0 < p ≤ 1/2 such that
d[ω]

dt
:= a(t) > 0 is a right-continuous, positive definite function and F ∈ C0,2

b (ΛT ) be a non-

anticipative functional which satisfies Assumption 2 and Assumption 1 for some q ≤ 1.
Then the path t 7→ F (t, ω) has a zero quadratic variation along the partition π if and only if

∇ωF (t, ω) = 0, ∀t ∈ [0, T ].

Proof. Indeed, from Theorem 7

[F (·, ω·)] (T ) =

T∫
0

t∇ωF (s, ω)a(s)∇ωF (s, ω) ds.

Since a(t) ∈ S+
d the integrand on the right hand side is non-negative and strictly positive

unless ∇ωF (s, ωs) = 0. So by right-continuity of the integrand the integral is zero if and only if
∇ωF (·, ω·) ≡ 0.

Thus if we start from an irregular path (meaning, with non-zero quadratic variation), this
property is locally preserved by any regular functional transformation F as long as ∇ωF does
not vanish.

For p > 0, denote

Cp−([0, T ],Rd) := ∩
0<q<p

Cq([0, T ],Rd) (25)
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the space of functions which are p− ε Hölder continuous for every ε > 0.
Let F ∈ C1,2

b (ΛT ) be a functional satisfying Assumption 2 and Assumption 1 for any q < 1.
We denote R(ΛT ) the set of such regular functionals.

We note that for ω ∈ C 1
2−([0, T ],Rd), we have F (·, ω) ∈ C 1

2−([0, T ],R).
Let a : [0, T ] → Sd+ be a continuous function taking values in positive-definite symmetric

matrices.

Definition 12 (Harmonic functionals). F ∈ R(ΛT ) is called a−harmonic if

∀(t, ω) ∈ ΛT , DF (t, ωt) +
1

2
〈∇2

ωF (t, ωt), a(t)〉 = 0.

We denote Ha(ΛT ) the space of a(·)-harmonic functionals.

Note that for any F ∈ R(ΛT ) the functional defined by

G(t, ω) = F (t, ω)−
∫ t

0

DF (s, ω)ds− 1

2

∫ t

0

〈∇2
ωF (s, ω), a(s)〉ds

is a(·)-harmonic.
The class of harmonic functionals plays a key role in probabilistic interpretation of the Func-

tional Ito calculus [13, 5, 2]. We will now see that this class also plays a role in the extension of
the pathwise integral.

Let ω̄ ∈ Qπ([0, T ],Rd) ∩ Cp([0, T ],Rd) such that d[ω̄]/dt = a. The functional change of
variable formula (Theorem 6 ) then implies that

∀F ∈ Ha(ΛT ), ∀t ∈ [0, T ], F (t, ω̄) = F (0, ω̄) +

∫ t

0

∇ωF (u, ω̄).dπω̄.

By Theorem 7, we have

[F (., ω̄)]π(t) =

∫ t

0

t∇ωF (u, ω̄).a(u)∇ωF (u, ω̄)du = ‖∇ωF (., ω̄)‖2L2([0,T ],a) <∞.

Consider the vector spaces

Ha(ω̄) :=
{
F (·, ω̄·)

∣∣F ∈ Ha(ΛT )
}
⊂ Qπ([0, T ],R), Va(ω̄) :=

{
∇ωF (·, ω̄·)

∣∣F ∈ Ha(ΛT )
}
⊂ L2([0, T ], a).

Proposition 11 then implies that the map

Ha(ω̄) → R+

ω → ‖ω‖π =
√

[ω]π(T )

defines a norm on Ha(ω̄). The pathwise integral can then be lifted to a continuous map

Iω̄ :
(
Va(ω̄), ‖ · ‖L2([0,T ],a)

)
→ (Ha(ω̄), ‖ · ‖π)

φ = ∇ωF (., ω̄) → Iω̄(φ) :=

∫ ·
0

φ.dπω̄. (26)

which is in fact an isometry:

Proposition 13 (Isometry property). Iω̄ :
(
Va(ω̄), ‖ · ‖L2([0,T ],a)

)
→ (Ha(ω̄), ‖ · ‖π) is an injec-

tive isometry.
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3.2 Rough-smooth decomposition of paths

Consider the space of paths obtained by a regular transformation of the reference path ω̄:

R(ω̄) :=
{
F (·, ω̄)

∣∣F ∈ R(ΛT )
}
⊂ Qπ([0, T ],R).

The following result gives a ’signal plus noise’ decomposition for such paths, in the sense of
Dirichlet processes [12]:

Proposition 14 (Rough-smooth decomposition of paths). Any path ω ∈ R(ω̄) has a unique
decomposition

ω(t) = ω(0) +

∫ t

0

φ.dπω̄ + s(t) (27)

where φ ∈ Va(ω̄) and [s]π = 0.

The term

∫ t

0

φ.dπω̄ is the ’rough’ component of ω which inherits the irregularity of ω̄ while

s(.) represents a ’smooth’ component with zero quadratic variation.
Proof: Let ω ∈ R(ω̄). Then there exists F ∈ R(ΛT ) with ω(t) = F (t, ω̄). The functional

change of variable formula (Theorem 6) applied to F then yields the decomposition with φ =
∇ωF (.ω̄) ∈ Va(ω̄).

Consider now two different decompositions

ω(t)− ω(0) =

∫ t

0

φ1.d
πω̄ + s1(t) =

∫ t

0

φ2.d
πω̄ + s2(t).

so s1−s2 =

∫
(φ1−φ2).dπω̄. Since [s1−s2]π = 0, using Proposition 11 we conclude that φ1 = φ2

which then yields uniqueness of the decomposition 14.

4 Pathwise nature of the integral

The definition (11) of the integral

∫
∇ωF (., ω)dπω involves values of the integrand ∇ωF along

piecewise constant approximations of ω. To be able to intepret

∫
∇ωF (., ω)dπω as a pathwise

integral, we must show that it only depends on the values ∇ωF (t, ω), t ∈ [0, T ] of the integrand
along the path ω.

Our goal is to provide conditions under which the following property holds:

Property 1 (Pathwise nature of the integral). Let F1, F2 ∈ C1,2
b (ΛT ), and ω ∈ Qπ([0, T ],R) ∩

Cp([0, T ]) for some 0 < p < 1/2. If ∇ωF1(t, ωt) = ∇ωF2(t, ωt), ∀t ∈ [0, T ] then∫ T

0

∇ωF1 · dπω =

∫ T

0

∇ωF2 · dπω.

We will prove several versions of this property under various regularity assumptions on F .

Proposition 15. Let F ∈ C1,4
b (ΛT ) be a non-anticipative functionals such that F,∇F,∇2F,∇3

ωF ∈
C0,1
b (ΛT ) and satisfy Assumptions 1 and 2 for all q < 1. Let ω ∈ Qπ([0, T ],Rd)∩C1/2−([0, T ],Rd).

Then

(∀t ∈ [0, T ],∇ωF (t, ωt) = 0) ⇒
∫ t

0

∇ωF (u, ω)dπω = 0.

14



Proof. Since ∇ωF,∇2
ωF satisfy the assumptions of Proposition 11 we have first ∇2

ωF (·, ω·) ≡ 0
and consequently ∇3

ωF (·, ω·) ≡ 0. The change of variable formula then yields

F (r, ωr) = F (0, ω0) +

∫ r

0

DF (u, ωu)du+

∫ r

0

∇ωF (u, ωu)dω(u), ∀r ∈ [0, T ].

Thus, we need to prove that the function

W (r) := F (r, ωr)−
∫ r

0

DF (u, ωu)du, r ∈ [0, T ]

is constant. We will prove only that W (T ) = W (0). The same proof will work if we take instead
of T any partition point of a partition in π, since π is dense in [0, T ] the result will follow by the
continuity of W .

We will prove by contradiction: assume W (T ) 6= W (0) then there exists δ > 0 such that
|W (T )−W (0)| > δT . For any integer n ≥ 1 we can write

W (T )−W (0) =
∑
tni ∈πn

(
W (tni+1)−W (tni )

)
this implies that there exists in ∈ { 0, 1, . . . ,m(n)− 1 } such that

|W (tnin+1)−W (tnin)| > δ(tnin+1 − tnin).

Our goal is to obtain an estimate on W (tnin+1) − W (tnin) which will contradict the above
inequality.

Fix an integer n ≥ 1 and denote t := tnin , s := tnin+1. Next we choose an integer l > n

and denote by τk, k = 0, 1, . . . , N the partition points in πl(in increasing order) which lay in the

interval [t, s]. Since the partitions satisfy the Assumption 3 we have that |πl| ' τk+1−τk '
s− t
N

and |πn| ' s− t. Since ω ∈ Cp([0, T ]),

|ω(τk+1)− ω(τk)| ≤ C |s− t|
p

Np
and |ω(s)− ω(t)| ≤ C|s− t|p.

where the constant C > 0 does not depend on n, l. Note also that the number N is the number

of intervals of the form [τk, τk+1] which are contained in [t, s], thus N ' m(l)

m(n)
.

We introduce the following approximation of the path ω on [0, s] by a path which coincides
with ω on [0, t) and is piecewise constant on [t, s]:

ωN (r) = ω(r)1[0,t)(r) +

N−1∑
k=0

ω(τk+1)1[τk,τk+1)(r) + ω(s)1{s}.

Then, noting that ωt = ωNt−, we have

F (s, ωs)− F (t, ωt) = F (s, ωs)− F (s, ωNs−) + F (s, ωNs−)− F (t, ωNt−) (28)

Next, we write the second term in 28 as a sum:

F (s, ωNs−)− F (t, ωNt−) =

N−1∑
k=0

(
F (τk+1, ω

N
τk−)− F (τk, ω

N
τk−)

)
.
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Since F ∈ C1,2
b (ΛT ), each summand in the above sum may be expanded using a second-order

Taylor expansion, which yields

F (τk+1, ω
N
τk−)− F (τk, ω

N
τk−) = ∇ωF (τk, ω

N
τk−) (ω(τk+1)− ω(τk))

+
1

2
∇2
ωF (τk, ω

N
τk−) (ω(τk+1)− ω(τk))

2
+

∫ τk+1

τk

DF (u, ωNu )du+O
(
|ω(τk+1)− ω(τk)|2

)
.

Hence

F (s, ωNs−)− F (t, ωNt−) =

∫ t

s

DF (u, ωNu )du+

N−1∑
k=0

∇ωF (τk, ω
N
τk−) (ω(τk+1)− ω(τk))

+
1

2

N−1∑
k=0

∇2
ωF (τk, ω

N
τk−) (ω(τk+1)− ω(τk))

2
+O

(
N−1∑
k=0

|ω(τk+1)− ω(τk)|3
)
.

(29)

We denote WN (r) = F (r, ωNr−)−
∫ r

t

DF (u, ωNu )du, r ∈ [t, s], then the above equation gives

WN (s)−WN (t) = F (s, ωNs−)− F (t, ωNt−)−
∫ t

s

DF (u, ωNu )du =

N−1∑
k=0

∇ωF (τk, ω
N
τk−) (ω(τk+1)− ω(τk))︸ ︷︷ ︸

A

+
1

2

N−1∑
k=0

∇2
ωF (τk, ω

N
τk−) (ω(τk+1)− ω(τk))

2

︸ ︷︷ ︸
R1

+O

(
N−1∑
k=0

|ω(τk+1)− ω(τk)|3
)

︸ ︷︷ ︸
R2

.

(30)

Since by Proposition 11 ∇2
ωF (τ0, ω

N
τ0−) = ∇2

ωF (t, ωt) = 0, ∇2
ωF is locally Lipschitz in time,

satisfies Assumption 1, and ω is p-Hőlder continuous, we get

|∇2
ωF (τk, ω

N
τk−)| = |∇2

ωF (τk, ω
N
τk−)−∇2

ωF (t, ωt)|
≤ |∇2

ωF (τk, ω
N
τk−)−∇2

ωF (τk, ωt,τk−t)|+ |∇2
ωF (τk, ωt,τk−t)−∇2

ωF (t, ωt)|
≤ C‖ωNτk− − ωt,τk−t‖

q
∞ + C(τk − t) ≤ C|τk − t|pq + C(τk − t) ≤ C|s− t|pq.

(31)

Hence

|R1| ≤ C|s− t|pq
N−1∑
k=0

(ω(τk+1)− ω(τk))
2 ≤ CN |s− t|pq |s− t|

2p

N2p
= CN1−2p|s− t|p(q+2) (32)

Note also that since ω is p-Hőlder continuous

|R2| ≤ CN
|s− t|3p

N3p
= CN1−3p|s− t|3p. (33)

Using the condition ∇ωF (τ0, ω
N
τ0−) = ∇ωF (t, ωt) = 0, for the first term on the right hand
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side of 30, we have

A =

N−1∑
k=0

∇ωF (τk, ω
N
τk−) (ω(τk+1)− ω(τk)) =

N−1∑
k=0

k−1∑
j=0

(
∇ωF (τj+1, ω

N
τj+1−)−∇ωF (τj , ω

N
τj−)

)
(ω(τk+1)− ω(τk))

(34)

We decompose the increments of ∇ωF in the above formula into vertical and horizontal compo-
nents:

∇ωF (τj+1, ω
N
τj+1−)−∇ωF (τj , ω

N
τj−) = ∇ωF (τj+1, ω

N
τj+1−)−∇ωF (τj , ω

N
τj )︸ ︷︷ ︸

r1,j

+

∇ωF (τj , ω
N
τj )−∇ωF (τj , ω

N
τj−).

The first term on the right hand side is bounded by the horizontal Lipschitz Assumption 2
on ∇ωF :

|r1,j | = |∇ωF (τj+1, ω
N
τj ,τj+1−τj )−∇ωF (τj , ω

N
τj )| ≤ C(τj+1 − τj) = C

|s− t|
N

.

Using Taylor expansion for the function h 7→ ∇ωF (τj , ω
N,h
τj−), the second term can be written

as

∇ωF (τj , ω
N,ω(τj+1)−ω(τj)
τj− )−∇ωF (τj , ω

N
τj−) = ∇2

ωF (τj , ω
N
τj−) (ω(τj+1)− ω(τj))

+
1

2
∇3
ωF (τj , ω

N
τj−) (ω(τj+1)− ω(τj))

2
+O

(
|ω(τj+1)− ω(τj)|3

)
︸ ︷︷ ︸

r2,j

(35)

A =

N−1∑
k=0

k−1∑
j=0

∇2
ωF (τj , ω

N
τj−) (ω(τj+1)− ω(τj)) (ω(τk+1)− ω(τk))︸ ︷︷ ︸

B

+
1

2

N−1∑
k=0

k−1∑
j=0

∇3
ωF (τj , ω

N
τj−) (ω(τj+1)− ω(τj))

2
(ω(τk+1)− ω(τk))︸ ︷︷ ︸

R3

+

N−1∑
k=0

k−1∑
j=0

r2,j (ω(τj+1)− ω(τj))
2

(ω(τk+1)− ω(τk))︸ ︷︷ ︸
R4

To estimate R3 we note that using the same argument as in 31, since by we get

|∇3
ωF (τj , ω

N
τj−)| ≤ C|s− t|pq,

consequently

|R3| ≤ CN2|s− t|pq |s− t|
2p

N2p

|s− t|p

Np
= CN2−3p|s− t|p(q+3). (36)

17



Since |r2,j | ≤ C
|s− t|3−p

N3p
, we have

|R4| ≤ CN2 |s− t|3p

N3p

|s− t|2p

N2p

|s− t|p

Np
= CN2−6p|s− t|6p (37)

To estimate B we do similar computations as for A, using ∇3
ωF (τ0, ω

N
τ0−) = ∇3

ωF (t, ωt) = 0:

B =

N−1∑
k=0

k−1∑
j=0

j−1∑
i=0

(
∇2
ωF (τi+1, ω

N
τi+1−)−∇2

ωF (τi, ω
N
τi−)

)
(ω(τj+1)− ω(τj)) (ω(τk+1)− ω(τk))

changing the order of summation

B =

N−1∑
i=0

(
∇2
ωF (τi+1, ω

N
τi+1−)−∇2

ωF (τi, ω
N
τi−)

) ∑
k>j>i

(ω(τj+1)− ω(τj)) (ω(τk+1)− ω(τk)) .

∣∣∣∣∣∣
∑
k>j>i

(ω(τj+1)− ω(τj)) (ω(τk+1)− ω(τk))

∣∣∣∣∣∣ =

∣∣∣∣∣ (ω(τN )− ω(τi+1))
2 −

∑
j>i (ω(τj+1)− ω(τj))

2

2

∣∣∣∣∣
≤ C|s− t|2p +NC

|s− t|2p

N2p
≤ CN1−2p|s− t|2p.

(38)

Next, we decompose the increments of ∇2
ωF in the above formula into vertical and horizontal

components:

∇2
ωF (τj+1, ω

N
τj+1−)−∇2

ωF (τj , ω
N
τj−) = ∇2

ωF (τj+1, ω
N
τj+1−)−∇2

ωF (τj , ω
N
τj )+

∇2
ωF (τj , ω

N
τj )−∇2

ωF (τj , ω
N
τj−).

The first term on the right hand side is bounded by the horizontal local Lipschitz continuity
of ∇ωF (Assumption 2):

|∇ωF (τj+1, ω
N
τj+1−)−∇ωF (τj , ω

N
τj )| = |∇ωF (τj+1, ω

N
τj ,τj+1−τj )−∇ωF (τj , ω

N
τj )| ≤ C(τj+1 − τj).

For the second term using Taylor expansion we have

∇2
ωF (τj , ω

N
τj )−∇2

ωF (τj , ω
N
τj−) = ∇3

ωF (τj , ω
N
τj−) (ω(τj+1)− ω(τj)) +O

(
(ω(τj+1)− ω(τj))

2
)

since as was mentioned above |∇3
ωF (τj , ω

N
τj−)| ≤ C|s− t|pq, we obtain

|∇2
ωF (τj , ω

N
τj )−∇2

ωF (τj , ω
N
τj−)| ≤ C |s− t|

p(q+1)

Np
+ C
|s− t|2p

N2p
≤ C |s− t|

p(q+1)

Np
. (39)

Combining the estimates (38) and (39) yields:

|B| ≤ NC |s− t|
p(q+1)

Np
CN1−2p|s− t|2p = CN2−3p|s− t|p(q+3). (40)

From (30)and (35) we have

WN (s)−WN (t) = A+R1 +R2 = B +R1 +R2 +R3 +R4

18



Combining (32),(33), (36), (37) and (40) we obtain:

|WN (s)−WN (t)| ≤ C[N2−3p|s− t|p(q+3) +N1−2p|s− t|p(q+2) +N1−3p|s− t|3p

+N2−6p|s− t|6p] ≤ C[N2−3p|s− t|p(q+3) +N1−2p|s− t|p(q+2)].

Recall that

W (r) := F (r, ωr)−
∫ r

0

DF (u, ωu)du, and WN (r) := F (r, ωNr−)−
∫ r

0

DF (u, ωnu)du,

since F (t, ωt−) = F (t, ωNt−)

W (s)−W (t) = WN (s)−WN (t) + F (s, ωs)− F (s, ωNs−) +

∫ s

t

(
DF (u, ωu)−DF (u, ωNu )

)
du

On the other hand by Assumption 1 and using ω ∈ Cp([0, T ]), we have

|F (s, ωs)− F (s, ωNs−)| ≤ K‖ωs − ωNs−‖q∞ ≤ C
|s− t|pq

Npq
.

Thus

|W (s)−W (t)| ≤ |WN (s)−WN (t)|+ C
|s− t|pq

Npq
+ sup

u
|DF (u, ωu)−DF (u, ωNu )||s− t|

≤ C[N2−3p|s− t|p(q+3) +N1−2p|s− t|p(q+2)] + C
|s− t|pq

Npq
+ |s− t| sup

u
|DF (u, ωu)−DF (u, ωNu )|.

Next we are going to arrange N to be such that the sum of the first three terms on the right-hand
side in the above inequality is optimal. For that we need the two dominant terms of that sum to

be roughly equal: N2−3p|s−t|p(q+3) ' |s− t|
pq

Npq
, i.e., N ' |s−t|−

3p
2−3p+pq . Recall that N ' m(l)

m(n)

and |s− t| ' m(n)−1, thus, we need to choose l = l(n) such that m(l) ' m(n)
2+pq

2−3p+pq . Plugging

N ' |s− t|−
3p

2−3p+pq in the inequality, after routine computations, we get

|W (s)−W (t)| ≤ C|s− t|αp,q + C|s− t|α
′
p,q + sup

u
|DF (u, ωu)−DF (u, ωNu )||s− t|.

where

αp,q := p

(
q +

3pq

2− 3p+ pq

)
< α′p,q := p

(
q +

1 + 2pq

2− 3p+ pq

)
.

One can check that αp,q → 5/4 > 1 as p → 1/2−, q → 1−, thus we can choose p and q close

to 1/2 and 1 respectively so that αp,q > 1. As n → +∞ we have N ' m(n)
3p

2−3p+pq → +∞
and |s − t| ' m(n)−1 → 0. Hence, by continuity of DF and since ‖ωs − ωNs−‖∞ → 0, we have

sup
u∈[t,s]

|DF (u, ωu)−DF (u, ωNu )| → 0, this with the above inequality implies that

|W (s)−W (t)|
s− t

≤ C|s− t|αp,q−1 + sup
u∈[t,s]

|F (u, ωu)−DF (u, ωNu )| → 0,

which is a contradiction, since by the choice of s = tnin+1, t = tnin we have
|W (s)−W (t)|

s− t
> δ.
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We are now ready to prove the main result of this section, which gives sufficient conditions

on the functional F under which the pathwise integral

∫
∇ωF (t, ω).dπω is a (pathwise) limit of

Riemann sums computed along ω itself:

Theorem 16. Let F ∈ C1,4
b (ΛT ) be a non-anticipative functional such that F,∇F,∇2F,∇3

ωF ∈
C0,1
b (ΛT ) satisfy Assumptions 1, 2 for all q < 1. Let ω ∈ Qπ([0, T ],Rd) ∩ C1/2−([0, T ],Rd).

Then, the path-wise integral

∫
∇ωF (t, ω).dπω is a limit sum of Riemann sums computed along

ω: ∫ T

0

∇ωF (u, ω)dπω = lim
n→+∞

m(n)−1∑
i=0

∇ωF (tni , ωtni ) ·
(
ω(tni+1)− ω(tni )

)
.

In particular, if F (t, ω) = 0 for all t ∈ π then

∫ T

0

∇ωF (u, ω)dπω = 0.

This is a corollary of the following Lemma:

Lemma 17. Let F ∈ C1,4
b (ΛT ) be a non-anticipative functionals such that F,∇F,∇2F,∇3

ωF

are C0,1
b (ΛT ) non-anticipative functionals satisfying the Assumptions 1, 2 for all q < 1. Let

ω ∈ Qπ([0, T ],Rd) ∩ C1/2−([0, T ],Rd). For t < s ∈ πn we have

F (s, ωs)− F (t, ωt) =

∫ s

t

DtF (u, ωu)du+∇ωF (t, ωt) (ω(s)− ω(t))

+
1

2
∇2
ωF (t, ωt) (ω(s)− ω(t))

2
+

1

3!
∇3
ωF (t, ωt) (ω(s)− ω(t))

3
+ o(|s− t|).

Proof. Let us first consider the case where ∇ωF (t, ωt) = 0, ∇2
ωF (t, ωt) = 0, ∇3

ωF (t, ωt) = 0.
Then, if we set

W (r) := F (r, ωr)−
∫ r

0

DF (u, ωu)du, r ∈ [0, T ]

Now, note that in the proof of Proposition 15, when estimating the difference W (s) −W (t) we
only used the conditions ∇ωF (t, ωt) = 0, ∇2

ωF (t, ωt) = 0, ∇3
ωF (t, ωt) = 0. Therefore, using the

same estimates as in the proof of Proposition 15 we obtain that there exists α > 1 such that

|W (s)−W (t)| ≤ C|s− t|α + sup
u
|DF (u, ωu)−DF (u, ωNu )||s− t|.

Thus

F (s, ωs)− F (t, ωt)−
∫ s

t

DF (u, ωu)du = W (s)−W (t) = o(|s− t|).

Let us now consider the general case. For the given path ω ∈ Qπ([0, T ],Rd) ∩ C1/2−([0, T ]),
we consider an auxiliary functional F̃ , defined for a path x ∈ D([0, T ],Rd) by

F̃ (u, xu) = F (u, xu)−∇ωF (t, ωt) (x(u)− ω(t))

−1

2
∇2
ωF (t, ωt) (x(u)− ω(t))

2 − 1

3!
∇3
ωF (t, ωt) (x(u)− ω(t))

3
.

It is easy to check that F̃ satisfies the assumptions of Proposition 15, with ∇ωF̃ (t, ωt) = 0,
∇2
ωF̃ (t, ωt) = 0, ∇3

ωF̃ (t, ωt) = 0 and DF̃ (t, ωt) = DF (t, ωt) Thus, as proved above

F̃ (s, ωs)− F̃ (t, ωt) =

∫ s

t

DF (u, ωu)du+ o(|s− t|),

and the result follows.

20



References
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Soc. Math. France, 109 (1981), pp. 3–40.
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