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Interpretation and approximation tools 
for big, dense Markov chain transition matrices 
in population genetics
Katja Reichel* , Valentin Bahier†, Cédric Midoux†, Nicolas Parisey, Jean‑Pierre Masson and Solenn Stoeckel

Abstract 

Background: Markov chains are a common framework for individual‑based state and time discrete models in evolu‑
tion. Though they played an important role in the development of basic population genetic theory, the analysis of 
more complex evolutionary scenarios typically involves approximation with other types of models. As the number 
of states increases, the big, dense transition matrices involved become increasingly unwieldy. However, advances in 
computational technology continue to reduce the challenges of “big data”, thus giving new potential to state‑rich 
Markov chains in theoretical population genetics.

Results: Using a population genetic model based on genotype frequencies as an example, we propose a set of 
methods to assist in the computation and interpretation of big, dense Markov chain transition matrices. With the help 
of network analysis, we demonstrate how they can be transformed into clear and easily interpretable graphs, provid‑
ing a new perspective even on the classic case of a randomly mating, finite population with mutation. Moreover, we 
describe an algorithm to save computer memory by substituting the original matrix with a sparse approximate while 
preserving its mathematically important properties, including a closely corresponding dominant (normalized) eigen‑
vector. A global sensitivity analysis of the approximation results in our example shows that size reduction of more 
than 90 % is possible without significantly affecting the basic model results. Sample implementations of our methods 
are collected in the Python module mamoth.

Conclusion: Our methods help to make stochastic population genetic models involving big, dense transition matri‑
ces computationally feasible. Our visualization techniques provide new ways to explore such models and concisely 
present the results. Thus, our methods will contribute to establish state‑rich Markov chains as a valuable supplement 
to the diversity of population genetic models currently employed, providing interesting new details about evolution 
e.g. under non‑standard reproductive systems such as partial clonality.

Keywords: Discrete stochastic model, Sparse approximation, Eigenvector, Network analysis, Population genetics, 
Compositional data, de Finetti diagram
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Background
Natural systems often possess inherently discrete states 
in space, time or both. Atoms, molecules and cells, 
organs, individuals, populations and taxa usually appear 
as distinct entities; along the time axis, the radiation 
cycles we use as the basis for atomic clocks, neuronal 

action potentials, developmental stages in an organisms 
life cycle, generations and the revolutions of the earth 
around the sun are examples for similar patterns.

Modeling these discrete systems as such can have 
advantages over continuous approximations. One of the 
earliest examples comes from thermodynamics [1], where 
heat emission spectra could only be predicted correctly 
if energy “comes in packets”, known as “quanta”. This 
discovery led to the new field of quantum mechanics, 
which provided the necessary theory for understanding 
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the photovoltaic effect [2], thus proving essential for the 
invention of solar cells. In biology, the re-discovery of 
Mendel’s rules and thus of the “quantal” nature of genetic 
heritability, at about the same time as Planck’s famous 
speech, has had a similar impact on the study of evolu-
tion as the latter’s research has had on thermodynamics 
[3]. While most of the objects of biological research have 
long been recognised as discrete (e.g., the word individ-
ual literally means not dividable, a notion very similar to 
that of a quantum), we still struggle with understanding 
the processes, such as evolution, linking them to poten-
tial emergent properties (analogous to the physicists’ heat 
spectra) at higher levels. Mathematical models preserv-
ing the discrete nature of the biological system are thus 
an interesting field of study.

Markov chains are a classical framework for modeling 
state and time discrete stochastic systems. Based on 
the assumption that the modeled system is memoryless 
(Markov property, [4]), the basic model equation con-
sists in multiplying a “start” vector, providing the state of 
the system at a given time, with a typically square “step” 
matrix. This matrix holds the transition probabilities, 
which depend on the model parameters and typically 
remain constant through time, between all possible states 
of the system within one time step. By analyzing the tran-
sition matrix, both the “short term” transient behavior 
and the “long term” limiting behavior of the model can be 
studied, thus putting the matrix at the center of attention 
for the biological interpretation of the results. Markov 
chains and other related forms of matrix-based models, 
such as Leslie models in population dynamics, are already 
widely in use (e.g. [5– 7]), yet in many cases the number 
of modeled states is comparatively small and/or a major 
part of the transitions are considered impossible. The lat-
ter property leads to many zeros in the transition matrix, 
which then becomes sparse, as opposed to a dense matrix 
where zeros are rare. Computationally, sparse matrices 
are advantageous since memory may be saved by storing 

only those values which are different from zero. Special 
algorithms exist to carry out standard operations (e.g. 
matrix multiplication) directly on matrices stored in a 
sparse format (e.g. [8, 9]).

In population genetics, state and time discrete Markov 
chains are known primarily by the example of the clas-
sic biallelic Wright-Fisher model [3], which uses a one-
dimensional random walk to describe the evolution of 
allele frequencies under genetic drift. For a population of 
N diploid organisms, the states of the Markov chain cor-
respond to each of the 2N + 1 possible combinations of 
counts of the two alleles that sum to the constant total 
2N. Accordingly, a square transition matrix (assuming 
constant population size) would have (2N + 1)2 entries. 
As the number of states further increases both with the 
population size and the complexity of the underlying 
genetic system (number of alleles and loci, Table 1), the 
dynamics of allele frequencies in bigger populations are 
typically approximated by a continuous diffusion process 
based on the Fokker-Planck/Kolmogorov equations [5], 
or even by deterministic equations assuming an “infinite” 
population size (e.g. as for the derivation of the Hardy-
Weinberg equilibrium, [10, 11]). An alternative approach 
is coalescence theory, which uses re-defined discrete 
states and a reversed continuous time scale to specifi-
cally approximate certain aspects of the original state and 
time discrete Markov chain (e.g. [12, 13]). While each of 
these approximations has its strengths and weaknesses 
(e.g. as discussed in [14, 15]), population genetic models 
that stay with the classic state and time discrete, chrono-
logical framework appear to be rare. One example is the 
model presented in [16]: an extension of a classic biallelic 
Wright-Fisher model, it is based on genotype rather than 
allele frequencies. This design appears better adapted for 
the study of partially clonal populations, but also results 
in a bigger state space (e.g. for two alleles, combinations 
of the counts of each of three genotypes rather than those 
of the two alleles). The technical effort of storing and 

Table 1 Examples of matrix size based on the Stoeckel-Masson model. Memory use is approximate and assumes 64-bit 
accuracy

N P L A g |S| Memory use

20 2 1 2 3 231 420 KB

100 2 1 2 3 5151 205 MB

500 2 1 2 3 125,751 120 GB

1000 2 1 2 3 501,501 2 TB

20 4 1 2 5 10,626 865 MB

20 2 2 2 9 3,108,105 75 TB

20 2 1 4 10 10,015,005 730 TB

20 2 2 4 100 9.8× 10
20

6.5× 10
21 YB
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manipulating the big, dense transition matrices essential 
to such a model hardly seems to merit the results, which 
in turn have to be extracted from a great amount of data; 
adapted methods for interpretation and storage size 
reduction appear to be missing.

In this article, we provide a set of methods for visual-
izing and interpreting both the transient and limiting 
behavior of population genetic models involving state-
rich, irreducible, aperiodic and time-homogeneous 
Markov chains, based on the transition matrix and its 
dominant eigenvector, as well as a method for approxi-
mating a dense transition matrix by a sparse substitute. 
For the first part, we combine de Finetti diagrams [17] 
with network analysis, extending both concepts to pro-
vide clear and informative diagrams for the analysis of 
population genetic processes. For the second part, we use 
a predefined threshold (minimal percentage of informa-
tion contained in the transition matrix) to keep only the 
more probable transient behavior of the model, while at 
the same time ensuring that mathematically important 
matrix properties are kept. The model presented in [16] 
serves as an example to illustrate our methods.

Model example
The population genetic model of Stoeckel and Mas-
son [16] describes the evolution of genotype frequen-
cies based on a single locus with two alleles a and A in a 
fixed-size population of diploid, partially asexual organ-
isms. States are defined as assignations of the N individu-
als in the population to the three possible genotypes (aa, 
aA, AA). The transition probabilities between the states 
depend on a symmetric mutation rate µ and a constant 
rate of asexual reproduction c, defined as the probabil-
ity that an individual in the next generation was derived 
clonally from a single parent.

Transition matrices M resulting from this model are 
generally square, due to the fixed population size (a com-
mon feature of many population genetic models, com-
pare [3]). They also have a density of one—transitions 
between all states are possible in one step, although some 
of them (e.g. all individuals aa to all individuals AA) are 
very unlikely. The corresponding Markov chain is thus 
irreducible (single communicating class, no absorb-
ing states) and aperiodic (period of all states equals one, 
same state possible in consecutive time steps). Since the 
mutation rate µ is symmetric, i.e. changes from a to A are 
just as likely as the inverse, M is also partially symmetric: 
if the transition probabilities from one particular state 
to all others have been calculated, swapping the names 
of all alleles also gives a correct result (compare Figs. 1, 
2). The notation in this article assumes left-stochastic 
matrices (columns represent the transition probabilities 
from one state to all others and thus sum to one), which 

implies that the limiting behavior of the Markov chain is 
described by its transition matrices’ (normalized) right 
eigenvector v to the eigenvalue with the largest absolute 
value (and multiplicity one, [18]): one.

The number of states in this model, and thus the size 
of the transition matrix M, depends on the one hand on 
the population size and on the other hand on the com-
plexity of the genomic system being modeled, in par-
ticular the number of different genotypes possible. For a 
given number of genotypes g, the cardinality of the state 
space S (respective number of rows and columns in the 
transition matrix) in a genotype-based discrete stochas-
tic model is:

From this equation it follows that the number of states 
increases exponentially with 1+ (g − 1)/(N + 1) for 
increasing N and with 1+ N/g for increasing g. For the 
number of possible genotypes, the ploidy level of the 
organism P, the number of (partially linked) loci L and 
their respective numbers of alleles Ai, with i ∈ 1 . . .L, 
need to be taken into account:

Examples for the size of the resulting transition matri-
ces are given in Table 1. From these numbers, it is clear 
that a realistic “base-by-base” model of a full genome is 
still far beyond the capacity of current computer tech-
nology; however, many cases (biallelic SNPs, unlinked 
loci or blocks of completely linked loci) can already be 
interpreted based on the very simple one-locus/two-
alleles model [19]. It remains the dependence of |S| on 
the population size N, which is fortunately not so strong 
(for N > g − 1).

To illustrate our methods, we will mostly use transi-
tion matrices derived for completely sexual populations 
(c = 0.0), a case for which both transient and limiting 
behavior are generally known and interpretations can be 
easily verified [3, 17]. For the mutation rate, µ = 10−6 
was chosen as a plausible value based on experimental 
estimates [20–23]. N is either 5 (|S| = 21), 20 (|S| = 231 ) 
or 100 (|S| = 5151), for good visibility and easy repro-
ducibility of the results. Our test of the sparse approxi-
mation method is based on the limiting distribution of 
FIS , a population genetic parameter of wide interest (e.g. 
as discussed in [23] under the name f, or in [24]) that 
was also analyzed in the original article describing our 
model example [16]. For our example, the definition of 
FIS based on the allele (νa, νA) and genotype frequencies 
(νaa, νaA, νAA) is:

(1)|S| =

((

g

N

))

=

(

N + g − 1
)

!

N ! ·
(

g − 1
)

!

(2)g =

L
∏

i=1

((

Ai

P

))

=

L
∏

i=1

(Ai + P − 1)!

P ! · (Ai − 1)!
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Results
Working with big, dense transition matrices poses two 
connected problems: on the one hand, the storage size of 
the matrix may considerably slow down calculations or 
be altogether too big for the computer, on the other hand, 
the relevant information about the model may be diffi-
cult to extract from the great amount of data contained 
in the matrix. Visualization techniques for the interpreta-
tion of matrix data can, however, also help to find matrix 
properties which allow reducing the storage size, such as 
partial symmetry or the occurrence of many near-zero 
transition probabilities. We therefore start by describing 
the visualization techniques in the first part, and then 
move on to storage size reduction by sparse approxima-
tion in the second part of the results.

(3)

FIS = 1−
νaA

2 νaνA
= 1−

νaA

2 (νaa + 0.5 νaA)(νAA + 0.5 νaA)
.

Visualization
An intuitive first step in analyzing the transient behav-
ior of a Markov chain model is a diagnostic visualiza-
tion of the transition matrix. By summarizing results 
in an accessible way, the resulting diagram may ideally 
also provide a basis for direct biological interpretation. 
With one exception (landscape plot), all the following 
visualization methods are available using the functions 
histogrid, histo3d and networkplot (with its support 
function percolation) in the mamoth module; an exam-
ple for the runtime of each method is given in Additional 
file 1.

Heat map
A heat map or histogram of the transition matrix, where 
the transition probabilities p are symbolized by color/ 
shade or height, is perhaps the easiest way to visualize 
it (Fig. 1). The resolution may be enhanced by an appro-
priate transformation of the range of values for p, for 

Fig. 1 Heat maps of transition matrices for N = 5,µ = 10
−6

, c = 0.0. a original probabilities, dense matrix b. logit(10) transformed probabilities, 
dense matrix c. Sparse approximate matrix of a, implicitly stored zero values in hatched grey d. As in b, with alternative state order, red lines connect 
identical values
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example by using a negative logarithm ([0; 1] → [0;∞]) 
or a logit transformation ([0; 1] → [−∞;∞]).

For big matrices, heat maps can be costly to produce 
(memory size) and are often still not very clear, due to 
the large number of cases. However, they may help to 
recognize basic patterns (symmetries, groups of simi-
lar/more strongly connected states etc.) of potential 
value for finding more adapted visualizations/numerical 
methods.

In our example, the heat map shows that many of 
the transition probabilities in the matrix are, though 
not equal, very close to zero. After re-ordering 
the states, the partial symmetry of the matrix also 
becomes visible.

Network display
The duality between matrices and graphs (e.g. [7, 25]) 
provides an alternative for the visualization and math-
ematical analysis of either structure. In a graph G(V , E) , 
the states of a Markov chain are thus represented as 
nodes/vertices V and the transitions as (weighted and 
directed) edges E connecting them, which is especially 
useful for sparse transition matrices.

For big, dense matrices, the number of edges in the 
resulting complete multidigraph (of edge multiplic-
ity two) equals the number of entries in the transition 
matrix and is thus too big for easy interpretation. Con-
cepts from network theory can be used to selectively dis-
play edges and summarize information about each state 

a b

c d

Fig. 2 Network display of transition matrices for N = 20,µ = 10
−6

, c = 0.0. a. De Finetti diagram showing symmetry (dashed blue axis, red arrows 
corresponding to identical probabilities) and FIS isocurves (gray and black). b pstay (node color), probability to stay at each node for one time step. 
c Most probable path connecting (N,0,0) to (0,0,N). d Most probable neighbors (directed edges) and in‑degree (node color), i.e. for each node the 
most likely outbound transition at the next time step and the number of inbound most likely transitions from other states. Enlarged version in 
Additional file 2
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of the model system on the nodes. This leads to a variety 
of very clear synthetic representations constructed with 
different parameters and taking into account different 
time scales: from one generation (based on M) across t 
generations (based on Mt) up to the long-time equilib-
rium (dominant eigenvector of M, v).

To facilitate biological interpretation, we arranged the 
nodes of the network according to biological “meta data”. 
For our model example where states represent distribu-
tions of individuals on three genotypes (aa, aA, AA) 
under a constant population size (compositional data), 
we placed the nodes in a de Finetti diagram ([17], see 
Fig. 2), a specialized ternary plot for population genetics.

The following visualization techniques are based on 
selectively displaying the network’s edges:

Most probable neighbor This is the analog to a near-
est neighbor if distances (edge weights) represent prob-
abilities. For each state i, there are one or several states 
j which have the highest probability to be the destination 
of a transition in the next time step; tracing these con-
nections gives the expectation for the one-step transient 
behavior of the model. 

In our example, the most likely state for the next gen-
eration (Fig. 2) is always on or very near to the Hardy-
Weinberg Equilibrium, which is represented by the 
continuous black curve going through (1/4; 1/2; 1/4) in 
the diagram in Fig. 2a.

Most probable path This is the counterpart of a shortest 
path if distances (edge weights) represent probabilities. 
For each non-commutative pair of states i and j, there 
exists at least one series of consecutive edges connect-
ing i to j along which the product of the edge weights is 
maximal. It can be determined by using an “ordinary” 
shortest path algorithm (e.g. [26, 27]) on a negative log 
transform of the transition matrix. The most probable 
path is the most likely trajectory of the model system to 
get from one state to another.

In our example (Fig.  2), a change from a population 
with only the aa genotype to one with only the AA gen-
otype would closely follow the Hardy-Weinberg curve.

Flow threshold Using the smallest probability along the 
most likely path between two nodes i and j as a threshold, 
very rare transitions can be excluded. 

In our example (Additional file 3), horizontal transitions 
along the base of the triangle, where no heterozygotes 
are produced despite of two homozygous genotypes 
being present in the population, would be excluded.

The following visualization techniques are based on 
changing the appearance of the network’s nodes:

Degree For each node in a graph representing a dense 
matrix, the number of incoming (in-degree) and outgo-
ing (out-degree) edges is normally (approximately) equal 
to the number of nodes (matrix rows/columns). This 
method should therefore be used in connection with 
selective edge plotting and interpreted according to 
context. 

In our example (Fig. 2), the nodes with the highest in-
degree are nearest neighbors to the largest number of 
nodes; if all states were equally likely at the current 
generation, those next to (0.25; 0.5; 0.25) on the Hardy-
Weinberg curve would be the most likely in the next 
generation.

Betweenness-centrality Based on the same concept 
as the most probable path, this can be redefined as the 
number of most probable paths passing through each 
node when connections between each pair of nodes are 
considered. It can be derived in a similar way as the most 
probable path, by applying a standard algorithm devel-
oped for additive distances to a negative log transform of 
the multiplicative probabilities in M. Nodes with a high 
betweenness-centrality represent frequent transient 
states.

In our example, these are all the states along the Hardy-
Weinberg curve except for the fixation states (Addi-
tional file 4).

Probabilities For each state i in the Markov chain 
model, several probabilities can be calculated—and dis-
played on the nodes—to describe both the transient and 
limiting behavior:
pstay  probability to stay for one time step
  pstay(i) = pi,i, the probabilities on the matrix 

diagonal; for each state i this is the probability 
that the system remains at state i for the next 
time step (“stickiness”). This probability allows 
the easy detection of (near-)absorptive states.

  In population genetics, the fixation states 
{(N ; 0; 0), (0; 0;N )} are typical examples 
(Fig. 2).

pout  probability to leave in one time step
  pout(i) = 1− pi,i, the column sums of the 

matrix without the diagonal; for each state i 
this is the probability that the system changes 
state at the next time step (“conductivity”). 
Being the opposite of pstay, this probability 
allows the detection of states which are rarely 
occupied for consecutive time steps. In our 
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example, these are the states where the popu-
lation consists of an approximately even mix-
ture of both homozygotes (central basis of the 
triangle) or only of heterozygotes (top of the 
triangle; Additional file 3). In contrast, the row 
sums of a left-stochastic matrix may exceed 
one and are thus not probabilities. As a result 
of the Markov property, a probability to arrive 
always depends on the state at the previous 
time step, which results in a number of pos-
sible definitions.

p(i|j)   probability to arrive from state j in one time 
step

  p(i|j) = pj,i, j ∈ S, all probabilities in one col-
umn of the transition matrix; the probability 
distribution (mean, variance, skew according 
to arrangement of nodes) for transitions start-
ing from one particular state. This allows the 
prediction of the most likely states for the next 
time step. In our example, the variance around 
the fixation states is much more limited than 
at the interior states of the triangle (Addi-
tional file 4).

pin  probability to arrive in one time step
  pin(i) = 1/(|S| − 1) ·

∑

j pj,i for i �= j, the row 
sums of the matrix divided by the number of 
other states; probability to arrive at state i if all 
previous states are equally likely. This shows 
states which are generally very likely destina-
tions for one-step transitions. In our example, 
these are the states around the Hardy-Wein-
berg curve (additional file 3).

p∞in   probability to arrive in an infinite run
  p∞in (i) =

∑

j pj,i · vj for i �= j, the sum over 
the element-wise product of eigenvector and 
matrix row, without the diagonal; probabili-
ties to arrive at state i if the likelihood of the 
previous states is distributed according to the 
limiting distribution. This shows the states 
which are the most frequent destination of 
transitions in an infinite run of the model. In 
our example, these are the two states next to 
the fixation states where there is exactly one 
“foreign” allele (Additional file 4).

p∞  limiting distribution/eigenvector-centrality
  p∞(i) = vi, the eigenvector; probability to 

find the system at state i after infinitely many 
time steps, or proportion of time spent in each 
state averaged over infinitely many time steps 
(limiting distribution). This is the prediction 

for the most likely states independently of the 
start state. As is well known for our exam-
ple, these are the fixation states (Additional 
file  3).Expected time to first passage To cal-
culate the expected time to arrive at a certain 
(group of ) states from any other, the “target” 
states are considered absorptive (first passage 
time, [7]). Based on the sub-matrix M′ includ-
ing only the transition probabilities between 
non-target states, the times ttarget are

where 1 is a row vector of ones matching the dimension 
of M′ and I is the corresponding unit matrix. The first 
passage times of the target states are zero.

For our example, plotting the expected time to the fixa-
tion states shows that it depends predominantly on the 
current state’s allele frequencies (Additional file 4).

Landscape plot
Combining length and direction of the transitions in the 
most probable neighbor plot (Fig. 2) gives a three dimen-
sional “landscape” illustrating the most probable dynam-
ics of the Markov chain, similar to the “gravity well” plots 
known from physics. The expected changes in the geno-
type frequencies are thus represented in a more intuitive 
fashion, by imagining the population as a small ball roll-
ing on a “landscape” from “hills” to “valleys”. Elevations 
h are derived from the equality of potential and kinetic 
energy, which resolves to

for a single time step, approximating gravitational accel-
eration by 10. For each model state/node, the distances 
d are given by the changes in genotype frequencies when 
moving to the most probable neighbor

The “landscape” is subsequently drawn as a triangular 
grid, using the elevation at each state/node as support. 
To improve readability, h can be rescaled by a constant 
factor and the landscape colored according to the relative 
elevation (taking the center of each triangle as reference). 
The resulting “landscape” shows only the (determinis-
tic) expected dynamics of the Markov chain one could 
imagine the accompanying stochastic effects as an 
“earthquake”.

In our example, the expected dynamics of the genotype 
frequencies show convergence to the Hardy-Weinberg 
equilibrium (Additional file 5).

ttarget = 1(I −M′)−1

h = d2 · 0.05

d =
√

(�aa)2 + (�aA)2 + (�AA)2.



Page 8 of 14Reichel et al. Algorithms Mol Biol  (2015) 10:31 

Note: because of its dependence on a function or matrix 
specifying the distances between states, and on the trian-
gular grid-like structure of the state space, this method is 
not included in the mamoth source code.

Approximation
One major drawback of state-rich Markov chain mod-
els is that the transition matrix in its full form takes up 
a lot of memory (Table 1). Beside switching to one of the 
alternative model types mentioned in the introduction 
(diffusion approximation, coalescence process), there are 
multiple computational approaches to addressing this 
issue while keeping the original state and time discrete 
framework, including:

  • External memory: the whole matrix is stored on a 
(sufficiently large) hard drive, only parts are loaded 
into active storage when needed (analogous to [28])

  • Iterative/selective matrix creation: the whole matrix 
is never stored, only parts are created when needed 
(e.g. in combination with algorithms such as [29])

  • Lumping states based on model properties: if a group 
of states has the same (sum of ) transition prob-
abilities leading into it and out of it to any other 
(group of ) states and the same analytical meaning 
(e.g. same value of FIS) they can be combined into 
one ([30, 31]); other algorithms of state aggregation, 
such as [32], lead to an approximation of the origi-
nal matrix

  • Sparse approximation: turning a dense matrix into 
a sparse matrix by approximating very small matrix 
elements to zero (e.g. as in [33, 34])

  • Which of the first two options is more appropri-
ate depends both on the available hardware and 
the nature of the task: if the whole matrix is needed 
repeatedly, storing it will save the time to recalcu-
late despite increased memory access times, but if 
calculating the matrix elements is fast, the matrix is 
needed only once or only some parts of the matrix 
(e.g. the most probable neighbor of each state) are 
needed, storing the matrix as a whole would be an 
unnecessary effort.

Because of the symmetry between the two allele frequen-
cies in our model example, almost half of all states could be 
pairwise lumped, thus reducing matrix size to a little over a 
quarter of the original. The exception are the states on the 
symmetry axis of the de Finetti diagram (compare Figs. 1, 
2), which do not have a “lumping partner”. Symmetry with 
respect to the allele frequencies is often found in popula-
tion genetics models [3]. However, because of this depend-
ency on model structure a size reduction algorithm based 
on lumping would not be applicable to non-symmetric 

extensions of the original model, e.g. with an asymmetric 
mutation rate or directional selection. Allele frequencies 
would have to be analyzed jointly, as the new states retain 
only the ratio of both; once lumped, “unpacking” the states 
becomes difficult.

The high number of very small values in the Markov 
chain transition matrix (Fig.  1) of our model example 
suggests that sparse approximation would be very effec-
tive. Moreover, as each column of the matrix corresponds 
to a probability distribution (constant sum of one) which 
becomes less uniform as the number of states/popula-
tion size increases (the expected convergence to a mul-
tinormal distribution with variance proportional to 1/N 
is the underlying principle of the well-known diffusion 
approximation), the proportion of very small transi-
tion probabilities is likely to augment as the matrix size 
increases. While sparse approximation is independent 
of model-specific properties such as symmetry and does 
not change the states as such, it has the disadvantage 
of changing the actual content of the transition matrix, 
potentially leading to the loss of relevant properties such 
as left-stochasticity or irreducibility.

The sparse approximation algorithm we propose 
ensures that the resulting sparse matrix still has all the 
properties relevant to its function in the Markov chain 
model. Additionally, it can be executed iteratively so that 
the complete dense matrix need not be stored. The algo-
rithm iterates over all columns of the transition matrix 
M and excludes (almost) all values which, in total, con-
tribute less than a threshold value s ∈ [0, 1] to the column 
sum:

for all columns Ci = M1...|S|,i with i ∈ [1, |S|]:

1. Create a permutation R of the row indices so that the 
corresponding entries are ranked according to size: 
R ← ordinalrank(j | 1 ≥ Ci

j ≥ 0)

2. Find the minimal rank (index of R) so the corre-
sponding entries sum at least to the threshold value s: 
r ← min(k) for 

∑Rk
R1

Ci
Rk

≥ s

3. Keep at least the two biggest values per column: 
r ← max(2, r)

4. Keep all values of equal rank: while Ci
Rr+1

= Ci
Rr

 : 
r ← r + 1

5. Round all values with ranks greater then r to zero, 
but keep those on the main diagonal and the first 
lower and first upper diagonals: Ci

Rk
← 0 for all k 

with k > r ∧ Rk /∈ {(i − 1, i, i + 1)mod |S|}

6. Rescale the column to sum to 1: Ci ← Ci/sum(Ci).

The first two steps, together with the rounding in step 
five, form the core of the algorithm (compare Fig. 3), 
steps three and four prevent distortions and steps 
five and six ensure the continued validity of essential 
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Markov chain transition matrix properties: Irreduc-
ibility is assured by keeping at least one outgoing and 
one incoming transition probability per state in such 
a way that all states remain connected (step five, first 
lower and first upper diagonal), aperiodicity by keep-
ing all probabilities to stay at the same state (step five, 
main diagonal), and the rescaling of each column 
ensures left-stochasticity of the matrix (step six). In 
contrast, the property that one-step transitions are 
possible between all states is deliberately given up. 
The sparse approximation algorithm is available as 
the appromatrix function in the mamoth module.

Both the efficiency, i.e. the density or memory use of the 
resulting matrix, and the bias vary according to the value 
of s and the distribution of values in the original matrix. 
If s is low or the probability distribution in the column is 
far from uniform, more values will be discarded (compare 
Fig. 3). An appropriate value for s has to be determined 
heuristically by testing successively increasing values, up 

to the point where the bias due to the approximation no 
longer interferes with the interpretability of the model 
results. The sum of the differences between the entries of 
the approximate and original matrices has a theoretical 
upper limit of (1− s) · |S|, but the effect of this perturba-
tion on the model output may be more complex.

In our model example, we analysed the effect of sparse 
approximation on the equilibrium FIS distribution 
derived from the dominant eigenvector of the transition 
matrix. The dominant eigenvector of either a sparse or 
dense matrix can be calculated with the eigenone func-
tion in mamoth, while a comparison between two vectors 
by a G-Test (correctly omitting infinity values from the 
test statistic) is implemented in the testvector function. 
A direct comparison between the “original” and “sparse 
approximate” equilibrium FIS distributions (Fig. 4) shows 
a very close fit which does not obscure the biologically 
relevant changes due to different rates of asexual repro-
duction. To test if the method gives similarly good 
results over a wider range of parameters (population 

Fig. 3 Illustration of the approximation algorithm (s = 0.99) for N = 20,µ = 10
−6

, c = 0.0 and the state (0, 6, 14). Reordering is based on the rela‑
tive size of the column entries and their index in the original column, respectively
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size, mutation rate, rate of asexuality and approximation 
threshold), we performed a Global Sensitivity Analy-
sis (GSA) [37, 38] using different divergence statistics 
to compare the limiting distribution of FIS derived from 
original and sparse approximate matrix [35, 39] and the 
density of the sparse matrix.

The results of the GSA show that all four model param-
eters may generally have non-linear/interacting effects 
on the quality of the approximation, but in the mean 
these effects are not very strong (Fig. 5). Memory reduc-
tion is highly efficient as the mean density of the sparse 
matrices was only ≈ 0.11. Individual densities ranged 
from ≈ 0.42 (small matrix, high threshold) to ≈ 0.03 (big 
matrix, low threshold), varying most strongly with the 
population size, though all four parameters have a sig-
nificant influence. On our reference system (Intel Core 

i7-3930K 3.2 GHz processor with 64 GB RAM), calcu-
lating the sparse approximation based on the original 
matrix took on average 1.7 s for N = 50 (14.6 s to con-
struct the original), and 31.3 s for N = 100 (221.7 s to 
construct the original). Finding the dominant eigenvec-
tor of sparse approximate and original matrix took on 
average 0.1 s (sparse) versus 51.7 s (original) for N = 50 
and 2.4 s (sparse) versus 7869.1 s (2 h,  11 min,  9.1 s, 
original) for N = 100, so that in both cases less than 
one percent of the original runtime was needed with the 
sparse approximate matrix.

The overall similarity of the original and approxi-
mate equilibrium FIS distributions, measured with 
different divergence statistics (total distance, Kullback-
Leibler divergence, power divergence statistics [40]; 
Fig. 5), is very high: e.g. the mean for the total distance 

a

b

Fig. 4 Comparison of the limiting distribution of FIS for N = 100,µ = 10
−6

, c = {0.0, 0.1}. a Probability distributions based on the original (filled 
symbols) and the approximate (unfilled symbols) matrix. b Pairwise differences between probability distributions, biologically interesting distances 
marked by triangles
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abs(forig − fapprox) is ≈ 0.06. It is largely independ-
ent of the rate of asexual reproduction and depends 
most strongly on the approximation threshold and the 
mutation rate. In contrast, the maximal difference (Kol-
mogorov-Smirnov two-sample test statistic) between 
classes of the original and approximate equilibrium FIS 
distribution is hardly affected by the mutation rate, but 
rather by approximation threshold (high mean effect) 
and rate of asexual reproduction (strong non-linearity/
interaction). Though on average not significant, the 
Kolmogorov-Smirnov test gave p-values below 0.05 in 
20 % of the parameter sets sampled. Consequently, the 
same approximation threshold can be used to compare 
the overall shape of the distributions across the whole 
range of rates of asexual reproduction, but it may have 
to be adapted if mutation rate and population size dif-
fer strongly between the modeled scenarios. Care must 
be taken when individual classes within the distribution 
(e.g. long-term fixation probability) shall be compared 

as the probabilities derived from a sparse approximate 
matrix may then be significantly different from the 
original.

In conclusion, sparse approximation using our algo-
rithm has the advantage of being easily applicable to all 
transition matrices independently of the properties of 
the underlying model, and is well suited to provide an 
overview of the equilibrium FIS distribution under dif-
ferent rates of asexual reproduction in our model exam-
ple. However, it needs an initial effort to verify the model 
results derived from the approximate matrix and to esti-
mate their final bias. For fine-scale analyses, lumping 
states may provide an approximation-free alternative, 
but is not always possible as it depends on the model 
structure.

Discussion
As the technological obstacles of working with “big data” 
become smaller, new opportunities arise especially for 

Fig. 5 Global sensitivity analysis of original vs. approximate equilibrium FIS distribution. Absolute mean µ∗ and standard deviation σ of the 
elementary effects of population size N (pops), mutation rate µ (muts), rate of asexual reproduction c (asex) and sparse approximation threshold 
s (thres) on the density of the sparse approximate matrix, and on different statistics comparing the limiting FIS distributions derived from original 
and sparse approximate matrix. Based on 150 Morris samples from the parameter space: population size (N = {10, 20, . . . , 100}), mutation rate 
(µ = {10−12

, 10
−11

, . . . , 10−3}), rate of asexual reproduction (c = {0.1, 0.2, . . . , 1.0}) and approximation threshold (s = {0.8, 0.82, . . . , 0.98}). Infinity 
values were omitted from the test statistic. The minimal upper bound of the parameters is one
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stochastic models, e.g. in population genetics. Yet these 
opportunities also lead to new challenges: results need 
to be brought into an interpretable form, and the tech-
nological boundaries further pushed back to allow even 
more complexity. We developed methods to help with 
the computational analysis and interpretation of state-
rich time- and space-discrete Markov chain models in 
population genetics, focusing on the particularly chal-
lenging case of very dense matrices.

Markov chain models are a versatile framework also for 
population genetic questions, and may often provide a first 
step in the development of analytic formulae [3]. Further 
relevant parameters such as selection, migration or “unu-
sual” reproductive systems can be easily included in such 
a model. Yet even for randomly mating population with 
genetic drift and mutation, a standard case of population 
genetics, a Markov chain model such as [16] may still yield 
additional information with the help of our visualization 
methods: In particular, the short-term dynamics, e.g. prob-
abilistic trajectories connecting a current and a previous 
or predicted state, and the resulting variation around the 
expectation of convergence to the Hardy-Weinberg equi-
librium are made visible. Especially for small populations, 
which are highly relevant e.g. for conservation genetics 
[41], and questions relating to development through time 
rather than just the long-term equilibrium, such Markov 
chain models may thus become valuable tools.

Though the size limitation for computational matrix 
analysis may never be completely removed, we showed 
that there are ways to circumvent it: even without access 
to specialized hardware, big, dense transition matri-
ces may be manageable either by lumping states, or by 
approximating rare transitions to zero with our sparse 
approximation algorithm. In our model example, the 
approximation provided sufficiently accurate results for 
the limiting distribution of FIS. Though there is an initial 
effort of verification, the advantage of sparse approximate 
matrices is considerable as they can subsequently be used 
also on less powerful hardware e.g. to speed up or allow 
the calculation of eigenvectors on systems incapable of 
storing the full model. In our model example, the size 
reduction of sometimes more than 90 % would e.g. make 
it possible to use the equilibrium FIS distributions for the 
inference of model parameters in an analysis software 
without having to store a—necessarily incomplete—refer-
ence collection of pre-calculated distributions for very big 
matrices. Moreover, some of our visualization methods 
(e.g. most probable neighbor, pin, pstay, pout, p(i|j)) can be 
used without ever storing the whole matrix, while provid-
ing even very powerful conclusions about model behavior. 
Our sparse approximation method is not intended to sub-
stitute other approaches, and we did not test if it outper-
forms the accuracy of other approximations (e.g. diffusion 

approximation) for any specific question. Rather, it is a 
supplement, allowing to keep the structure of the original 
Markov chain model with the corresponding interpreta-
tion techniques beyond the technical limit, and a poten-
tial reference for the existing methods.

Individual-based models are becoming more and more 
popular in biology [42, 43], which will further increase the 
frequency of encountering computationally challenging 
cases such as the one we presented. In population genet-
ics, modeling more complex evolutionary parameters 
such as life cycles and reproductive mechanisms, multi-
dimensional fitness landscapes or dispersal may often lead 
to the necessity of extending the traditional models from 
allele frequencies [3] to genotypes. Due to the diploid/
polyploid nature of most higher organisms, this will neces-
sarily increase the size of transition matrices and equation 
systems to be analysed. By presenting our approach, we 
hope to encourage and inspire others to extend and adapt 
our methods, thus further paving the way for the use of 
Markov Chain models with big, dense transition matrices.

Conclusion
We described and evaluated a set of tools, implemented 
in the Python module mamoth, for working with state-
rich Markov chain models in population genetics. These 
tools ease the interpretation of model behavior by pro-
viding diagnostic visualizations of transition matrices, 
and allow substituting dense transition matrices with a 
sparse counterpart by applying an iterative approxima-
tion algorithm that is independent of model symme-
try. Thus, our methods permit an advanced analysis of 
increasingly complex Markov chain models in population 
genetics, without giving up their space and time discrete 
structure. They may therefore contribute e.g. to the study 
of the population genetic consequences of partially clonal 
reproduction.

Availability and requirements
The methods we described can be easily implemented 
in any scientific programming environment; we provide 
sample code for Python for all methods which do not rely 
on the specific state definitions of our model example.

Project name: mamoth.
Project home page: http://www6.rennes.inra.fr/

igepp_eng/Productions/Software
Operating system(s): Platform independent.
Programming language: Python.
Other requirements: Python 2.7 or 3.4 and higher, 

extension modules numpy/scipy, matplotlib and net-
workx ([44– 46]).

License: GNU public license, version 2 (GPL2).
Any restrictions to use by non-academics: see GPL2 

license.

http://www6.rennes.inra.fr/igepp_eng/Productions/Software
http://www6.rennes.inra.fr/igepp_eng/Productions/Software
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