Interpretation and approximation tools for big, dense Markov chain transition matrices in population genetics. - Archive ouverte HAL
Article Dans Une Revue Algorithms for Molecular Biology Année : 2015

Interpretation and approximation tools for big, dense Markov chain transition matrices in population genetics.

Résumé

Background - Markov chains are a common framework for individual-based state and time discrete models in evolution. Though they played an important role in the development of basic population genetic theory, the analysis of more complex evolutionary scenarios typically involves approximation with other types of models. As the number of states increases, the big, dense transition matrices involved become increasingly unwieldy. However, advances in computational technology continue to reduce the challenges of "big data", thus giving new potential to state-rich Markov chains in theoretical population genetics. Results - Using a population genetic model based on genotype frequencies as an example, we propose a set of methods to assist in the computation and interpretation of big, dense Markov chain transition matrices. With the help of network analysis, we demonstrate how they can be transformed into clear and easily interpretable graphs, providing a new perspective even on the classic case of a randomly mating, finite population with mutation. Moreover, we describe an algorithm to save computer memory by substituting the original matrix with a sparse approximate while preserving its mathematically important properties, including a closely corresponding dominant (normalized) eigenvector. A global sensitivity analysis of the approximation results in our example shows that size reduction of more than 90 % is possible without significantly affecting the basic model results. Sample implementations of our methods are collected in the Python module mamoth. Conclusion - Our methods help to make stochastic population genetic models involving big, dense transition matrices computationally feasible. Our visualization techniques provide new ways to explore such models and concisely present the results. Thus, our methods will contribute to establish state-rich Markov chains as a valuable supplement to the diversity of population genetic models currently employed, providing interesting new details about evolution e.g. under non-standard reproductive systems such as partial clonality.
Fichier principal
Vignette du fichier
2015_Reichel_Algorithms for Molecular Biology_1.pdf (3.04 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01286505 , version 1 (27-05-2020)

Licence

Identifiants

Citer

Katja Reichel, Valentin Bahier, Cédric Midoux, Nicolas Parisey, Jean-Pierre Masson, et al.. Interpretation and approximation tools for big, dense Markov chain transition matrices in population genetics.. Algorithms for Molecular Biology, 2015, 10 (1), pp.31. ⟨10.1186/s13015-015-0061-5⟩. ⟨hal-01286505⟩
192 Consultations
44 Téléchargements

Altmetric

Partager

More