
HAL Id: hal-01286477
https://hal.science/hal-01286477v1

Submitted on 10 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Parallel Intensionally Fully Abstract Games Model
of PCF

Simon Castellan, Pierre Clairambault, Glynn Winskel

To cite this version:
Simon Castellan, Pierre Clairambault, Glynn Winskel. The Parallel Intensionally Fully Abstract
Games Model of PCF. Thirtieth Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), Jul 2015, Kyoto, Japan. �10.1109/LICS.2015.31�. �hal-01286477�

https://hal.science/hal-01286477v1
https://hal.archives-ouvertes.fr

The parallel intensionally fully abstract
games model of PCF

Simon Castellan and Pierre Clairambault
ENS de Lyon, CNRS, Inria, UCBL, Université de Lyon

LIP, 46 allée d’Italie, 69364 Lyon, France

Glynn Winskel
Computer Laboratory, University of Cambridge

15 JJ Thomson Avenue, Cambridge CB3 0FD, UK

Abstract—We describe a framework for truly concurrent game
semantics of programming languages, based on Rideau and
Winskel’s concurrent games on event structures. The model
supports a notion of innocent strategy that permits concurrent
and non-deterministic behaviour, but which coincides with tra-
ditional Hyland-Ong innocent strategies if one restricts to the
deterministic sequential case. In this framework we give an
alternative interpretation of Plotkin’s PCF, that takes advantage
of the concurrent nature of strategies and formalizes the idea that
although PCF is a sequential language, certain sub-computations
are independent and can be computed in a parallel fashion. We
show that just as Hyland and Ong’s sequential interpretation
of PCF, our parallel interpretation yields a model that is
intensionally fully abstract for PCF.

I. INTRODUCTION

Regardless of mathematical elegance, partial order models
of concurrent computation are in principle more informative
than their interleaving counterparts: they avoid the state ex-
plosion problem inherent to interleavings, and retain explicit
information on causality. This can be useful for instance for the
purposes of error diagnostics, or security analysis. However,
although we have truly concurrent models for simple process
languages such as CCS, extracting partial order models from
source code remains a challenge, especially if one considers
rich concurrent programming languages with complex compu-
tational features such as higher-order, state or exceptions.

In order to construct compositionally a fine-grained rep-
resentation of the execution of higher-order programs, game
semantics is a powerful tool. Game semantics proposes to
see computation as an interaction between agents (strategies)
exchanging messages, hence reducing higher-order compu-
tation to the exchange of first-order tokens. Thanks to this
methodology, game semantics has not only given intensionally
fully abstract models of PCF [10, 1] but also pushed beyond
the purely functional setting and given effectively presentable
fully abstract models of higher-order programming languages
with rich computational features such as control or state.

Most games models for concurrent programming languages
[7, 12], however, are based on interleavings. Several truly con-
current frameworks for game semantics have been proposed
[6, 14, 16, 9], but have yet to be applied to the semantics of
programming languages beyond CCS or linear logic – this is
in part due to the fact that truly concurrent notions of strategies
are mathematically more elaborate than their interleaved coun-
terparts, and are more subtle to handle. Moreover, changing

the basic metalanguage for game semantics means losing a
whole body of work, such as the pleasing characterisation
offered by Hyland-Ong (HO) games of various computational
effects in terms of conditions on sequential strategies. The first
contribution of this paper is a framework for truly concurrent
game semantics, that comprises representations of compu-
tational features such as non-determinism and concurrency
while containing as a sub-case the usual HO games – in
particular we have notions of visibility and innocence, that
in the sequential deterministic case coincide with standard
HO innocence. We believe that this framework should prove
adequate for further developments on truly concurrent games
models of programming languages.

Our second contribution is an application of our framework
to give a parallel intensionally fully abstract model for PCF.
That might seem counter-intuitive, given the status of PCF
as a paradigmatic sequential language. However, although all
the primitives of PCF are purely sequential, that does not
mean that its implementation has to be sequential. In particular,
operations such as the conditional if ∶ B → B → B → B could
in principle be optimized by evaluating all three arguments in
parallel, and returning the adequate one according to the result
of the first argument. Standard game semantics of PCF specify
explicitly an evaluation order, and forbids this operational
reading of if . Our game semantics, while authorizing the
execution as prescribed by the sequential game semantics of
PCF, will make this parallel computation official and express
this parallelism in a truly concurrent manner. Despite this
added intensional behaviour, our conditions will be enough
to guarantee that our strategies are extensional, and that their
extensional collapse is the fully abstract model for PCF.

Related work. On the game-theoretic front, the present
contribution was made possible by the recent developments
[16, 4, 21] initiated by Rideau and Winskel around a frame-
work for game semantics based on event structures – our
basic setting is an extension of the games with symmetry of
[4]. The framework of [16] generalizes earlier approaches to
deterministic truly concurrent notions of games [2, 14, 6], used
in particular by Melliès to build a fully complete model of
full propositional linear logic [13]. Also relevant is the work
of Hirschowitz and Pous [9, 8], which gives a fully abstract
model of CCS w.r.t. fair testing, based on a notion of strategy
as a sheaf on a category of plays.

Outline. In Section II we will present our notions of games

Types. A,B ∶∶= B ∣ N ∣ A→ B

Terms. M,N ∶∶= x ∣ λx. M ∣M N ∣ Y ∣
tt ∣ ff ∣ if M1M2M3 ∣
n ∣ succ M ∣ pred M ∣ iszero M

Fig. 1. The language PCF

and strategies and compare them with the HO innocent well-
bracketed strategies. In Section III, we present the math-
ematical foundations for our model, and describe a sound
interpretation of PCF. Finally, in Section IV we prove a finite
definability result and deduce full abstraction.

II. PARALLEL PCF-STRATEGIES

We introduce in Figure 1 the syntax of PCF as used in this
paper. In this paper X will range over ground types, ie. B or
N. The typing rules we consider are standard, except for the
typing rule for if that is replaced with:

Γ ⊢M ∶ B Γ ⊢ N1 ∶ X Γ ⊢ N2 ∶ X
Γ ⊢ if MN1N2 ∶ X

Note that if N1, N2 have arbitrary type A = A1 → ⋅ ⋅ ⋅→ An →
X, if MN1N2 can still be used and is considered syntac-
tic sugar for λx1 . . . xn. if M (N1 x1 . . . xn) (N2 x1 . . . xn).
Terms of PCF are executed following the standard call-by-
name big-step operational semantics, yielding an evaluation
relation ⇓ between closed terms and values (ie. constants of
ground type or λ-abstraction). As usual we write M ⇓ if M ⇓ v
for some v. In this section, we aim to explain concretely what
our model computes, and how it represents programs.

A. Sequential PCF-strategies presented concretely

HO game semantics formalizes the intuition that a program
is a strategy having a dialogue with its execution environment.
A possible dialogue on the type B⇒ B⇒ B⇒ B could be:

B ⇒ B ⇒ B ⇒ B
q (−,Qu)

q (+,Qu)
tt (−,An)

q (+,Qu)
tt (−,An)

tt (+,An)

Each move is either Player or Opponent, and is either
a Question or an Answer. Questions correspond to variable
calls, whereas Answers indicate a call terminating. The dashed
lines between moves (traditionally called justification pointers)
convey information about thread indexing; in this example they
are redundant but become required at higher types. Sequential
innocent strategies consist of sets of dialogues as above,
where Opponent moves are justified by the preceding one

– such dialogues are known as P -views. A strategy for a
PCF term contains several such dialogues, specifying the term
entirely. In our example, the dialogue is actually a branch
of the strategy for if , that interrogates its left argument first,
then the second or third depending on the result. This strategy
contains in total four maximal P-views, described by:

B ⇒ B ⇒ B ⇒ B
q (−,Qu)

q (+,Qu)
tt (−,An)

q (+,Qu)
b (−,An)

b (+,An)

B ⇒ B ⇒ B ⇒ B
q (−,Qu)

q (+,Qu)
ff (−,An)

q (+,Qu)
b (−,An)

b (+,An)

Such non-empty sets of P-views (satisfying further conditions
called determinism and well-bracketing) are called sequential
PCF-strategies, or PCF-strategies for short.

B. PCF∥-strategies

Instead of investigating its arguments sequentially, an op-
timized implementation of if could evaluate the second and
third arguments before they are needed, without waiting for
the first call to terminate. This intuition leads to a different
notion of strategy, and a different interpretation of PCF.

1) A partial order for if: States of this optimized strategy
for if will no longer be total orders but partial orders. For
instance, a state of if where the first argument returns tt could
be (labelling the distinct copies of B for clarity):

B1 ⇒ B2 ⇒ B3 ⇒ B4

q4

qq rr
(−,Qu)

q1 q2 (+,Qu)
tt1

--
ff2

,,
(−,An)

ff4 (+,An)

Additionally to the justification pointers, the strategy is now
equipped with a relation → indicating immediate causality
(omitted for readability when it coincides with vertical juxta-
position). In the sequential diagrams of Subsection II-A these
were not required since in a sequential setting immediate
causality is chronological contiguity. In the diagram above,
any two events not related by the transitive closure of im-
mediate causality are concurrent, and occur independently. So
(amongst other actions) if interrogates its two first arguments
in parallel, and is able to answer ff if the first argument returns
tt and the second ff. Instead of being a total order, a “branch”
of a strategy will have to be generalized to a partial order –
of course “branch” here is misused, instead we will speak of
a prime, i.e. a partial order with a maximum element. As we
will see soon, the full strategy will contain other primes for
different executions leading to an answer in B4.

2) Event structures: Even though our strategies for PCF
are all deterministic, we aim for a framework that can accom-
modate non-deterministic behaviour. Accordingly, we will use
event structures [18]: a concurrent analogue of trees, providing
a description of systems that features both independence of
events, and non-determinism. Formally, an event structure is
(E,≤,Con) with E a set of events, ≤ a partial order indicating
causal dependency, and Con a nonempty consistency relation
consisting of finite subsets of E, such that:

{e′ ∈ E ∣ e′ ≤ e} is finite for all e ∈ E
{e} ∈ Con for all e ∈ E
Y ⊆X ∈ Con Ô⇒ Y ∈ Con
X ∈ Con & e ≤ e′ ∈X Ô⇒ X ∪ {e} ∈ Con

For example, the event structure for the non-deterministic
strategy returning a random boolean is:

q

~~
tt ff

where the wiggly line indicates immediate conflict, i.e. the
consistent sets are those not containing both tt and ff.

Event structures will sometimes be equipped with a polarity
function pol ∶ E → {−,+} specifying whether an event
e is Player (pol(e) = +) or Opponent (pol(e) = −). An
event structure E with pol is called an event structure with
polarities, or esp for short.

3) Notations: For e, e′ ∈ E, we write e _ e′ for immediate
causality, i.e. e < e′ and for all e′′ such that e ≤ e′′ ≤ e′, we
have e = e′′ or e′′ = e′. If E is an event structure, we write
C (E) for the set of configurations of E, comprising the finite
subsets x ⊆f E such that x ∈ Con and x is down-closed, i.e.
for all e ∈ x, e′ ≤ e, we also have e′ ∈ x. For e ∈ E, we write
[e] the corresponding prime configuration or prime for short,
defined as [e] = {e′ ∈ E ∣ e′ ≤ e}. Finally if E has polarity,
we write x ⊆+ y (resp. x ⊆− y) if x ⊆ y and pol(y ∖ x) ⊆ {+}
(resp. pol(y ∖ x) ⊆ {−}).

C. Concurrent pre-strategies playing on arenas

We now describe more formally our notion of strategy.
1) Arenas: As usual in HO game semantics, the types of

PCF will be interpreted as arenas.

Definition II.1. An arena is a tuple (A,≤,pol , λ) such that
(A,≤,Pf(A),pol) is a countable esp satisfying:

∀a, a′, a′′ ∈ A, a ≤ a′′ ∧ a′ ≤ a′′ Ô⇒ a ≤ a′ ∨ a′ ≤ a
∀a, a′ ∈ A, a _ a′ Ô⇒ pol(a) ≠ pol(a′)
∀a ∈ A, a ∈ min(A) Ô⇒ pol(a) = −

with min(A) the set of minimal events of A and λ ∶ A →
{Qu,An} a Question/Answer labeling function, such that:

∀a ∈ A, a ∈ min(A) Ô⇒ λ(a) = Qu
∀a1, a2 ∈ A, a1 _ a2 Ô⇒ λ(a1) = Qu

Readers familiar with HO games will recognize the notion
of arena of [10], with the partial order ≤ primitive rather than
immediate causality _ (traditionally written ⊢ in HO games).

Types of PCF∥ are interpreted as arenas. In particular, the
basic type B is interpreted as (read from top to bottom):

JBKG =
q

⟨pol,λ⟩
↦ (−,Qu)

tt ff
⟨pol,λ⟩
↦ (+,An)

The type N for natural numbers is interpreted similarly, but
with a countably infinite number of answers 0,1, In the
remainder of this paper we will often omit the semantic brack-
ets and have the same notations for constructions on types and
arenas, except when brackets are useful for disambiguation.

Given two arenas A and B, A⇒ B is defined as having:
● Events, {(1, (b, a)) ∣ a ∈ A& b ∈ min(B)}∪ {(2, b) ∣ b ∈ B}.
● Causality,

{((1, (b, a1)), (1, (b, a2))) ∣ a1 ≤ a2 & b ∈ min(B)}∪
{((2, b1), (2, b2)) ∣ b1 ≤ b2}∪
{((2, b), (1, (b, a))) ∣ a ∈ A& b ∈ min(B)}

● Polarity, pol((1, (b, a))) = −pol(a), pol((2, b)) = pol(b).
● Qu/An labeling, λ((1, (b, a))) = λ(a) and λ((2, b)) = λ(b).

The reader familiar with sequential HO games will recog-
nize here the usual arrow arena construction A ⇒ B. With
these definitions, the arena B⇒ B⇒ B⇒ B of if is:

q

q q q tt ff

tt ff tt ff tt ff

2) Expanded game: In sequential HO games, strategies do
not play on arenas but rather on the derived game of plays with
pointers [10], where the same move can be reused at will. We
perform a similar construction here: from each arena we derive
a game where events can be played as many times as required.
Unlike sequential HO games though, rather than building a tree
of plays we build an event structure where duplicated events
retain the causal structure of the arena. Unlike sequential
plays where distinct copies of the same move are kept apart
chronologically, here we handle explicit copy indices.

To define it we need the notion of an indexing function. If
a ∈ A for A an arena, an indexing function for a is:

α ∶ [a]→ ω

associating a copy index (a natural number) to each depen-
dency of a, itself included. For α ∶ [a]→ ω, we write lblα = a
for its label and indα = α (lblα) for its index, ie. the copy
index it associates to the maximum of its domain.

Definition II.2. Let A be an arena. There is an esp !A having:

● Events: indexing functions,
● Causality: α ≤ α′ defined as lblα ≤ lblα′ and α,α′ agree

on their common domain,
● Consistency: trivial – all finite sets consistent.
● Polarity: pol(α) = pol(lblα).

q0
4

vv
��

((
q0
1

�� ��

q0
2

�� ��

q0
3

�� ��
tt0

1

%% ((

ff0
1

((**

tt0
2

��

ff0
2

yy

tt0
3

��

ff0
3

yy
tt0

4 ff0
4 tt1

4 ff1
4

Fig. 2. The reduced pre-strategy for if ∶ B1 ⇒ B2 ⇒ B3 ⇒ B4

Events α ∈ !A inherit a Question/Answer labeling from A. We
also define !+A duplicating only positive events, ie. with α ∶
[a]→ ω such that for all a′ ≤ a with pol(a′) = −, α(a′) = 0.

Configurations of !A correspond to Boudes’ thick subtrees
[3] of arenas: a configuration x ∈ C (!A) visits a prefix of the
arena A, but with branches duplicated at will. For now !A is
still technically an arena, but we will not consider it as such: in
the compositional development to come we will equip it with
an additional notion of symmetry (see Section III). Symmetry
is key for the compositional structure of our model, but we
can ignore it for the purposes of this section.

3) Pre-strategies: A map from event structure A to event
structure B can be thought of as a simulation of A within B.
Formally it is a function f ∶ A→ B on events, which:

● Preserves configurations: for all x ∈ C (A), f x ∈ C (B),
● Is locally injective: for all x ∈ C (A), for all e, e′ ∈ x,
f e = f e′ Ô⇒ e = e′.

Additionally if A and B have polarity, f preserves it.
Now, a pre-strategy on arena A is defined as a map of esps.

σ ∶ S → !A

This definition allows us to make formal the diagrams of
the previous subsection: the nodes represent events of S,
annotated with the label of the corresponding event in the game
(as obtained through σ). The arrow → represents immediate
causality in S, while the dashed lines – justification pointers
– represent the relation induced on S by immediate causality
in !A. The diagrams of Subsection II-B were incomplete since
they omitted copy indices. With these, the full (reduced – see
below) pre-strategy for if is pictured in Figure 2.

The superscript of a move s indicates its copy index, i.e.
ind (σ s). The full index function can be recovered from the
copy index annotations of the dependencies in !A, as expressed
by the dashed lines. As there are several compatible ways of
returning tt (resp. ff), the pre-strategy has to use distinct copy
indices for the projection to the game to be locally injective.

Any sequential innocent strategy on an arena A in the sense
of HO games [10] can be represented as a pre-strategy σ ∶
S → !A, where S is the forest of correct P-views, and a P -
view is sent by σ to its latest move along with a copy index,
chosen as to avoid collisions. However, there are many more
pre-strategies, some non-deterministic or concurrent.

D. Conditions for PCF∥-strategies

Of course, not all pre-strategies σ ∶ S → !A are relevant
for PCF. For the purposes of this paper, we need to describe
a class of strategies containing our strategy for if and closed
under composition (as will be made formal in the next section),
but still small enough so that strategies within it have the same
distinguishing power as terms of PCF.

A first remark is that PCF∥-strategies should be uniform,
in the sense that their behaviour should not depend on Op-
ponent’s choice of copy indices. This seemingly elementary
notion actually requires some machinery to formalize in a
compositional setting. However, since in this section we only
examine pre-strategies as purely static objects, we will content
ourselves with examining reduced pre-strategies, which –
as in the examples above – only acknowledge Opponent
moves of copy index 0, i.e. play on the expanded game !+A.
Uniformity aside, we now examine which properties PCF∥-
strategies should satisfy w.r.t. causality and consistency. We
introduce the conditions from the more robust to the more
PCF-specific.

1) Courteous and receptive pre-strategies: Following [16]
we define a strategy as a pre-strategy σ ∶ S → !+A which is:

● Receptive: For all x ∈ C (S), for all σ x ⊆− y′, there is a
unique x ⊆ x′ ∈ C (S) such that σ x′ = y′.

● Courteous: For all s1, s2 ∈ S such that s1 _ s2, if
pol(s1) = + or if pol(s2) = − then σ s1 _ σ s2.

In game semantics, receptivity is always present in one way
or another. It is explicit and named contingent completeness
in [10], but in most works on game semantics it is hard-
wired by asking that strategies contain only plays of even
length (Opponent extensions being always present, they bring
no additional information).

On the other hand, courtesy expresses that a strategy can
only add causal links from negative to positive events. Of
course it makes sense that if the rules of the game authorize
Opponent to make a move, Player can not force them to
wait. What might be more surprising is that Player is not
capable of putting additional causal links between their own
(positive) moves! One way to understand that is that strategies
are thought of as interacting in a distributed fashion, over a
network with an uncontrolled latency. So even though Player
might want to play their moves in a specific order, they cannot
control in what order they will reach their Opponent – this
intuition is made formal by the result of [16] that receptive
courteous strategies are exactly those that are unchanged by
their composition with copycat.

Courtesy has a more chaotic history than receptivity: in
essence, it is already present in interleaving-based game
semantics for concurrency, where it forces strategies to be
saturated under a number of permutations, in effect breaking
unauthorized causal links. Under this form it dates back to
[12], and is called saturation in [7] – a name that does not fit
here, since it is not a saturation condition. In true concurrency
approaches to game semantics, it appears under the name of
“innocence” in [16, 6], and “courteousness” in Melliès and

Mimram’s asynchronous games [14]. We believe innocence is
a slightly misleading name, since (as appears in this paper)
it has no direct relationship with Hyland and Ong’s notion of
innocence, so we use courtesy instead.

2) Visibility: In sequential HO games, strategy branches
where Opponent always points to the previous move (ie. P -
views) correspond to branches of terms. Here this intuition still
holds, except that P -views are replaced by grounded causal
chains. A grounded causal chain in S is a sequence of events:

ρ1 _ . . . _ ρn

where ρ1 ∈ min(S). If ρn = s ∈ S, we write ρ ∈ gcc(s); we
also write ∣ρ∣ = n for the length of ρ. In our games, grounded
causal chains (gccs for short) give a notion of thread: if throws
three sub-threads, and possibly merges some of them later.
Each thread should go on independently, until it is merged
with another or terminated. In particular, each thread should
only use resources introduced within it; we call this visibility.
A strategy σ ∶ S → !+A is visible iff:

∀s ∈ S, ∀ρ ∈ gcc(s), σ ρ ∈ C (!+A)

This amounts to ρ containing all the justifiers (i.e. immediate
dependencies in the game) of Player events. Since σ is
courteous, then in ρ ∈ gcc(s) causal links from positive to
negative events match the causal links of the game – in other
words Opponent points to the previous move, so the projection
of ρ to the arena A is a P -view.

Visibility is of paramount importance in our development,
and is indispensable to the stability under composition of
almost all the forthcoming conditions. For visible strategies
it makes sense to think of gccs as threads, and most of the
remaining conditions restrict how strategies are allowed to
generate, merge, or terminate threads.

3) Innocence: The sequential innocent deterministic strate-
gies (described by a set of P -views) of [10] are the cornerstone
of HO games. In our setting, they correspond to the (automat-
ically visible) strategies σ ∶ S → !+A additionally satisfying:
(a) Backward sequentiality. The moves available to σ are
entirely determined by gccs: for all s ∈ S, [s] is a gcc.
(b) Forward sequentiality. If s ∈ S and [s] extends by positive
distinct s1, s2, then [s] ∪ {s1, s2} /∈ ConS .
(c) Determinism. ConS comprises all finite subsets of S.

It can be proved that strategies on !+A satisfying (a), (b)
and (c) are in bijection with usual HO innocent strategies
on A, up to the choice of copy indices. We note in passing
that conditions (a) and (b) together are stable under our
forthcoming notion of composition, yielding a notion of non-
deterministic sequential innocence, a problem that is known
to be difficult in sequential HO games.

However, for our purposes this definition does not fit: our
parallel strategy for if fails both (a) and (b). We need to autho-
rize prime configurations [s] to be properly partially ordered,
while ensuring that distinct Opponent moves following from
the same player move are considered independently by Player.
To formalize this, we say that for a strategy σ ∶ S → !+A a
configuration x ∈ C (S) is normal if two Opponent moves

never share the same justifiers: more formally, for all s1, s2 ∈ x
negative events both minimal or such that there is s ∈ S such
that s _ s1, s _ s2 (or equivalently by courtesy, σ s _ σ si),
we have s1 = s2. Then, σ is innocent iff its behaviour is
specified by normal configurations: for all s ∈ S, [s] is normal.

Concurrent innocence no longer implies visibility, although
it will be stable under composition only in the presence of
visibility. Finally, in the presence of forward sequentiality this
definition is equivalent to the one above and so conservatively
extends usual sequential innocent strategies.

4) Well-bracketing: We first introduce some notation and
terminology. If σ ∶ S → !+A is a strategy, S inherits a Qu/An
labelling from A: an event s ∈ S is a Question/Answer if
lbl (σ s) is. We will sometimes annotate symbols for events
with their Qu/An or polarity labelling. We might say for
instance ”let s−,Qu ∈ S”, meaning that s is an Opponent
Question. Given a set X ∈ ConS and sQu

1 ∈ X , we say that
s1 is answered in X if there is an answer sAn

2 ∈ X with
σ s1 _ σ s2. Additionally X is complete if all the questions
of X are answered in X . Finally If ρ is a gcc in S, then we
write ρi≤ ≤j for the segment of ρ lying between indices i and
j, endpoints included. We also use the strict variant ρi< <j .
Finally, ρω denotes the last event of a gcc ρ.

We now give conditions (a), (b) and (c) for well-bracketing.
(a) In any gcc ρ in S, if σρi _ σρAn

j , then ρi is the pending
question (the latest unanswered question) in ρ <j , ie. gccs are
well-bracketed in the usual sense. Lifting this condition would
authorize strategies for control operators such as call/cc [11].
(b) Answering is affine: for any x ∈ C (S), if s+,An

1 , s+,An
2 ∈ x

both answer the same question, then there are t−,An
1 , t−,An

2 ∈ x
also answering the same question.

Not having condition (b) means that besides having strate-
gies for the booleans tt and ff one has also, among others,
a strategy that answers both tt and ff: this strategy creates
two copies of its runtime environment and throws two threads,
returning tt in the first and ff in the second. There is a striking
similarity with the C primitive fork, that creates two threads
and gives each of them a unique identifier – the details of this
connection are left for future work. Before we are done with
well-bracketing, there is one last condition to mention:
(c) Take ρ, ρ′ ∈ gcc(s) for s ∈ S. Suppose moreover that ρi =
ρ′j and that ρi< <∣ρ∣ and ρ′j< <∣ρ′∣ are disjoint. Then ρi< <∣ρ∣ and
ρ′j< <∣ρ′∣ are complete. Graphically, in a diagram as below:

ρi+1
// ρ∣ρ∣−1

))// ρi

66

''
ρ∣ρ∣

ρ′j+1
// ρ′
∣ρ′∣−1

66

the two separate branches are complete – if Player creates two
threads, he can only merge them again once all their questions
are answered. A similar condition appears in Wall’s games
model for syntactic control of interference, see [17].

A visible strategy σ ∶ S → !+A is well-bracketed when it
satisfies all three conditions (a), (b) and (c).

5) Decomposing PCF∥-strategies: As we shall see later,
our interpretation of PCF will yield strategies satisfying these
conditions. Note however that soundness for PCF depends on
much weaker conditions (the key one is single-threadedness,
see Subsection III-D). With the full set of conditions we aim
for a much stronger correspondence with syntax; in fact we
will describe in Subsection IV-2 a decomposition result akin
to the usual definability of sequential innocent strategies.

III. CONCURRENT HYLAND-ONG GAMES

We now describe the mathematical structure required to
compositionally generate the strategies described above from
PCF terms. The basic ideas behind our mathematical develop-
ment come from the games on event structures introduced in
[16]. To express uniformity of strategies w.r.t. copy indices,
we use the notion of symmetry on event structures [19].
In particular we will use a variant of the games on event
structures with symmetry of [4].

A. Event structures with symmetry

A symmetry on an event structure (possibly with polarity)

E, is usually defined as a span E Ẽ
lEoo rE // E in the

category of event structures (possibly with polarity), which
is an equivalence relation in the categorical sense, lE and
rE are rigid and are functional bisimulations, expressed as
a configuration extension property (see [19]). Intuitively a
symmetry on E can be regarded as a proof-relevant notion
of equivalence relation between configurations of E, in a way
that respects the operations available on event structures.

In full generality, symmetry provides an abstract notion
of bisimulation in a categorical setting [19]. In the concrete
case of event structures, symmetries can be presented more
concretely: any configuration x ∈ C (Ẽ) generates a bijection:

θx = {(lE ẽ, rE ẽ) ∣ ẽ ∈ x}

This Ẽ gives a collection of such isomorphisms. But actually
symmetry on event structures can be axiomatized directly in
terms of the isomorphisms generated. So although we will
occasionally refer to symmetry presented as a span as above,
we will often rely on the following equivalent presentation.

1) Isomorphism families: An isomorphism family on an
event structure E is a set of bijections θ ∶ x ≅ y where x, y ∈
C (E). For θ in the isomorphism family, we write x

θ
≅E y. This

set of bijections has to be closed under certain operations:

(1) Identity: for all x ∈ C (E), x
idx≅E x.

(2) Inverse: if x
θ
≅E y then y

θ−1

≅E x.

(3) Composition: if x
θ
≅E y then y

φ
≅E z then x

φ○θ
≅E z.

(4) Restriction: if x
θ
≅E y and x′ ⊆ x with x′ ∈ C (E), there is a

(necessarily unique) θ′ ⊆ θ and y′ ∈ C (E) such that x′
θ′

≅E y′.
(5) Extension: if x

θ
≅E y and x ⊆ x′ ∈ C (E), there exists a (not

necessarily unique) θ ⊆ θ′ and y′ ∈ C (E) such that x′
θ′

≅E y′.
Conditions (1), (2) and (3) express that isomorphisms equip

the set of configurations with a groupoid structure. Conditions

(4) and (5) express that isomorphisms behave like a history-
preserving bisimulation. The notion extends directly in the
presence of other data such as polarity or Question/Answer
labelling, which should be preserved by isomorphisms. An
event structure with symmetry (resp. and polarity) is called an
ess (resp. essp) for short. Event structures with a symmetry/an
isomorphism family are denoted by E ,F ,A,B,

We will be particularly interested in essps with a unique
choice of extensions for positive events: an essp A is thin
iff for all x

θ
≅A y, if θ has positive extensions to valid

isomorphisms x1
θ1≅A y1 and x2

θ2≅A y2, if x1 ∪ x2 ∈ C (A)
then θ1∪θ2 is valid as well. In other words, the left projection
of the symmetry reflects positive compatibility.

2) Maps and symmetry: For E and F ess and f ∶ E → F
a map between the underlying event structures, we can apply
f to bijections θ ∶ x ≅ y between configurations of E using:

f θ = {(f e1, f e2) ∣ (e1, e2) ∈ θ}

We say that f ∶ E → F preserves symmetry (also written f ∶
E → F) iff for all x

θ
≅E y, f x

f θ
≅F f y. There is a category ESS

of ess and maps preserving symmetry, and a category ESSP
in the presence of polarities. If f, g ∶ E → F are parallel maps
preserving symmetry we will say that they are symmetric,
written f ∼ g, whenever for all x ∈ C (E), we have:

f x
{(f e,g e)∣e∈x}

≅F g x

3) Games with symmetry: Instead of playing directly on
arenas, our strategies will play on the derived games with
symmetry. A thin concurrent game (tcg for short) is a tuple
(A,≤,pol , λ) satisfying the conditions of an arena except
negativity, and equipped with an isomorphism family addi-
tionally assumed to be race-free: for all x

θ
≅A y with a

positive θ∪{(s+1 , s+2)} and a negative extensions θ∪{(s−3 , s−4)}
to valid isomorphisms, then θ ∪ {(s1, s2), (s3, s4)} is in the
isomorphism family as well. Moreover, we assume that A has
two sub-essp A+ and A− on events A, such that A+ (resp.
A⊥
−

) is thin, and closed under all negative extensions of the
isomorphisms in A (resp. A⊥). Anticipating the next subsec-
tion, this exactly means that the identity maps idA ∶ A+ → A
and id⊥A ∶ A⊥

−
→ A⊥ are themselves ∼-strategies. We say that

A and A⊥ have receptive thin sub-symmetries.
Essps support operations of simple parallel composition

A ∥ B (having as events the disjoint union {1}×A∪ {2}×B
and other components inherited) and dualization A⊥ (having
polarity reversed, swapping A+ and A− and leaving other
components unchanged), see [4] for details – these operations
preserve the conditions for tcgs.

If A is an arena, we will be interested in particular in the
following game with symmetry.

Definition III.1. From an arena A, the tcg !A is defined as
having components (!A,≤,pol , λ) as described in Subsection
II-C, and isomorphism family comprising bijections θ ∶ x ≅ y
such that lbl○θ = lbl, and θ preserves and reflect causal order.

So, θ leaves invariant the label in the arena of the move
played, and preserves justification – however, it can change
copy indices. With this definition, !A is a tcg: its negative
and positive sub-essps respectively comprise isomorphisms
preserving indices of positive (resp. negative) events.

B. Uniform strategies

We now define uniform strategies on tcgs, ∼-strategies.
1) ∼-pre-strategies: A ∼-pre-strategy on a tcg A is a map

of essps:
σ ∶ S → A

so S has to be equipped with a symmetry as well, preserved by
σ. Our first condition on ∼-strategies is that they should behave
as strategies in the sense of [16] at the level of symmetries.
They should be receptive and courteous, but their action on
symmetry should be receptive too: if x

θ
≅S y, if σ θ extends to

σ x ∪ {α}
σ θ∪{(α−1 ,α

−
2)}≅A σ y ∪ {α′}

then there are uniquely defined s, s′ ∈ S such that:

x ∪ {s}
θ∪{(s,s′)}

≅S y ∪ {s′}

with σ s = α and σ s′ = α′. We only have to require the
existence, the uniqueness comes from receptivity of σ. A ∼-
pre-strategy satisfying this is called strong-receptive.

2) Weak equivalence: Previously, we have seen that strate-
gies with repetitions carry a choice of copy indices for their
positive moves in !A. In order to satisfy the laws of cartesian
closed categories (ccc) required for soundness, we need to
express that strategies play the same moves up to symmetry.

A weak equivalence between two ∼-pre-strategies σ ∶ S →
A and τ ∶ T → A is given by two maps f ∶ S → T and
g ∶ T → S , making the two triangles commute up to symmetry:

S
f
))

σ
�� ∼

Tghh
τ
~~

A

and such that f ○g ∼ idT and g ○f ∼ idS . Weak equivalence is
a canonical notion of equivalence between ∼-pre-strategies, as
it expresses isomorphism up to symmetry. We write σ ≃ τ if σ
and τ are weakly equivalent, and σ ≅ τ for the isomorphism
– if all the symmetries involved are equalities.

3) ∼-strategies: Unfortunately, the equivalence relation ≃
fails to be a congruence on ∼-pre-strategies: it is not preserved
by composition (introduced in the next section). Proving that
≃ is a congruence intuitively requires one to canonically
transport configurations of strategies through isomorphisms in
the game. As it is, symmetry ensures that such a transport
exists, but not that it can be canonically chosen to induce
a map. This is a very subtle point, which (among other
reasons) motivated the introduction of saturated strategies in
[4]. Saturated strategies are closed under the action of the
symmetry on the game, hence providing a canonical way to
transport configurations according to such isomorphisms.

Here, we follow a different route and require instead the
symmetry of strategies to be as minimal as possible, formal-
ized by the notion of thin essps introduced before. So formally,
a ∼-strategy on game with symmetry A is a courteous, strong-
receptive and thin ∼-pre-strategy, meaning that its domain is
thin. For an arena A we can now define formally a PCF∥-
strategy σ ∶ S → !A to be a ∼-strategy that is deterministic,
innocent and well-bracketed.

The rest of this section is devoted to the construction of a
ccc of ∼-strategies including PCF∥-strategies. First, we will
organize tcgs and ∼-strategies into a compact closed category
Tcg/≃. Restricting on tcgs coming from arenas, we will form a
cartesian closed sub-category Cho/≃ (for “concurrent Hyland-
Ong games”) of Tcg/≃, supporting the interpretation of PCF.

In Section IV we will show that PCF∥-strategies form a
sub-ccc of Cho/≃, that is fully abstract for PCF.

C. A category of ∼-strategies
In this subsection, we will construct a ∼-bicategory (a

bicategory whose coherence laws hold up to ∼ only) Tcg (for
thin concurrent games) having as objects tcgs, as morphisms
∼-strategies σ ∶ S → A⊥ ∥ B (also written σ ∶ A

Tcg
+ // B, leaving

S implicit), and weak equivalences as 2-cells. There is also
a quotient category Tcg/≃, however for now we refrain from
quotienting: some of our later constructions will take place on
concrete strategies rather than weak equivalence classes.

1) Pullbacks and parallel interaction: In game semantics,
composition of strategies σ ∶ A

Tcg
+ // B and τ ∶ B

Tcg
+ // C

is usually performed by parallel interaction, where σ and
τ are allowed to communicate on B, followed by hiding,
where only the external events occurring on A or C are
retained. Traditionally, parallel interaction is formulated as an
intersection of the plays that both σ and τ are prepared to
play. In our games on event structures, parallel interaction is
conveniently formulated as an adequate pullback. In general,
the category of ess and maps preserving symmetry does not
have all pullbacks, however it has enough of them:

Lemma III.2. For A a tcg and strong-receptive pre-∼-
strategies σ ∶ S → A and τ ∶ T → A⊥, then temporarily
forgetting about polarities there is a pullback in ESS:

S ⊛ TΠ1

zz
Π2

%%
S

σ %%
T

τyyA

Arbitrary maps f ∶ A → C and g ∶ B → C might not have a
pullback, because they might not agree on possible extensions
of isomorphisms in C, so the extension property might fail
for the natural candidate for the isomorphism family of the
pullback. However in the situation described in the lemma
above, strong-receptivity of σ and τ ensures that they will
always find a common extension of a given isomorphism.

In this paper we will omit the construction of pullbacks,
which can be found eg. in [20]. However we mention a key
representation of their configurations and isomorphisms:

Proposition III.3. Let A be a tcg, and σ ∶ S → A and
τ ∶ T → A⊥ be ∼-strategies. Then the configurations of the
(underlying event structure S ⊛ T of the) pullback S ⊛ T
uniquely correspond to composite bijections:

x
σ
≅ σ x = τ y

τ
≅ y

with x ∈ C (S) and y ∈ C (T), x
σ
≅ σ x is the bijection induced

by σ, and the composite bijection is secured, ie. the transitive
relation generated by (s, t) ≤ (s′, t′) if s ≤ s′ or t ≤ t′ is a
partial order – which corresponds to the order of the pullback.

Isomorphisms of S⊛T correspond to commuting diagrams:

x1
σ
≅

θ ≅S
σ x1 = τ y1

τ
≅ y1

θ′ ≅T
x2

σ
≅ σ x2 = τ y2

τ
≅ y2

Interestingly, the symmetry S̃ ⊛ T is the pullback S̃ ⊛ T̃ .
2) Projection and hiding: Now that we have a notion of

parallel interaction, we need a way to express hiding. This is
done via the notion of projection. If E is an event structure
and V ⊆ E is a subset of the events of E, then there is a new
event structure E ↓ V whose events are those in V , and whose
causal order and conflict are inherited from E [16].

If E is an ess, then V ⊆ E is closed under symmetry when
for all v ∈ V , for all x

θ
≅E y such that v ∈ x, we have θ v ∈ V

as well. In that case, the set comprising bijections:

x ∩ V
θ∩V 2

≅ y ∩ V

for all x
θ
≅E y is an isomorphism family, generalizing the

notion of projection in the presence of symmetry.
3) Composition: We finally define the composition of ∼-

strategies. Take σ ∶ S → A⊥ ∥ B and τ ∶ T → B⊥ ∥ C strong-
receptive ∼-pre-strategies. We follow [16] and form:

(S ∥ C)⊛ (A ∥ T)
Π1

tt Π2
**

S ∥ C
σ∥C
**

A ∥ T
A∥τ
tt

A ∥ B ∥ C

which exists by Lemma III.2. We write τ ⊛ σ = (σ ∥ C) ○Π1.
Then, we need to hide: we do that by forming

V = {v ∈ (S ∥ C)⊛ (A ∥ T) ∣ ∀b ∈ B, (τ ⊛ σ) v ≠ (2, b)}

so V contains the events of the pullback that map either to A
or C, in other words which are external. The set V is closed
under symmetry, so we can form:

T ⊙ S = (S ∥ C)⊛ (A ∥ T) ↓ V

then τ ⊛ σ ∶ (S ∥ C)⊛ (A ∥ T)→ A ∥ B ∥ C restricts to

τ ⊙ σ ∶ T ⊙ S → A ∥ C

and reinstating polarities, we obtain τ ⊙ σ ∶ T ⊙ S → A⊥ ∥ C.
Interestingly, from this definition we have the isomorphism

T̃ ⊙ S ≅ T̃ ⊙ S̃; in fact this could even be used as a definition
of the symmetry of T ⊙ S.

4) Copycat: If A is an esp, there is a new esp CCA having:
● Events, those of A⊥ ∥ A,
● Causal order, the transitive closure of:

{((1, a), (1, a′)) ∣ a ≤ a′} ∪ {((2, b), (2, b′)) ∣ b ≤ b′}
∪ {((1, a), (2, a)) ∣ pol(a) = +}
∪ {((2, a), (1, a)) ∣ pol(a) = −}

● Consistency, that of A⊥ ∥ A.
For A a game wih symmetry, we need to equip CCA with a
symmetry. There is a canonical choice: indeed as remarked in
[21], for x, y ∈ C (A) we have x ∥ y ∈ C (CCA) iff we have:

x ⊇+⊆− y

Isomorphisms on CCA are then defined as pairs of isomor-

phisms x1
θ
≅A x2 and y1

θ′

≅A y2 such that the diagram

x1 ⊇
+

θ ≅A
x1 ∩ y1 ⊆

−

θ∩θ′ ≅A
y1

θ′ ≅A
x2 ⊇

+ x2 ∩ y2 ⊆
− y2

commutes. Each such diagram induces a bijection between
x1 ∥ y1 ∈ C (CCA) and x2 ∥ y2 ∈ C (CCA), and the
isomorphism family of CCA comprises all such bijections.
For arbitrary essp A, this need not be a valid isomorphism
family as it can fail extension. However it is valid if the
isomorphism family of A is race-free, which is the case
for tcgs. In terms of symmetry, these definitions imply the
isomorphism C̃CA ≅ CCÃ.

Thus from a tcg A we obtain a ∼-pre-strategy ccA ∶
CCA → A⊥ ∥ A, which satisfies all the conditions to be a
∼-strategy. Our definitions of composition and copycat are
compatible with those of [16], so for the same reason as there
we know that there is a bicategory having arenas as objects,
∼-strategies as morphisms and isomorphisms preserving the
projection to the game on the nose as 2-cells. However,
we have argued before that we need to relate strategies via
weak equivalences rather than isomorphisms, and the universal
property of pullback does not ensure that weak equivalence is
preserved under composition. Proving this, and setting up the
framework so that it is true (while avoiding the saturation of
[4]) was a significant part of the endeavour.

5) Bipullbacks and preservation of weak equivalence:
Preservation of weak equivalence by composition relies on
the observation that the pullbacks involved in the composition
also satisfy a weaker universal property up to symmetry:

Lemma III.4. If σ ∶ S → A and τ ∶ T → A⊥ are strong-
receptive, courteous pre-∼-strategies with receptive thin sub-
symmetries, then their pullback:

S ⊛ TΠ1

zz
Π2

%%
S σ

%%
T

τyyA

also satisfies the universal property of bipullbacks: for all
f ∶ X → S and g ∶ X → T making the outer square commute

up to symmetry (ie. σ ○ f ∼ τ ○ g), there exists h ∶ X → S ⊛T ,
unique up to symmetry, such that Π1 ○h ∼ f and Π2 ○h ∼ g.

The hypotheses of the lemma provide us, for each x ∈
C (X), with configurations f x ∈ C (S) and g x ∈ C (T) and

an isomorphism σ (f x)
θx≅A τ (g x). Roughly, the proof of the

lemma constructs interactively yS isomorphic to f x and yT
isomorphic to g x such that σ yS = τ yT , so that the pullback
property can be applied. Each extension of x is positive for
either S or T : accordingly S or T has a canonical extension
granted by its thin symmetry, to which the other strategy has
to be receptive by strong-receptivity.

From this weaker universal property, it follows that weak
equivalence is preserved by composition – note that applying
this on the composition pullback uses the fact that tcgs have re-
ceptive thin sub-symmetries. The ∼-strategies are stable under
composition, and comprise copycat. Similarly to [4], we have
that Tcg is a ∼-bicategory satisfying the laws of a compact
closed category up to isomorphism and weak equivalence.

D. A ccc of concurrent Hyland-Ong games

We now describe a sub-∼-category Cho of Tcg, that gives
a concurrent generalization of standard HO games.

Objects of Cho are negative arenas, ie. arenas whose
minimal events are negative. A Cho-strategy from arena A

to arena B (written σ ∶ A Cho
+ // B) is a negative ∼-strategy

σ ∶ S → !A⊥ ∥ !B (ie. S is negative), which is single-threaded:
(1) For any s ∈ S, [s] has exactly one minimal event,
(2) For any x ∈ C (S) such that x ∪ {s1}, x ∪ {s2} ∈ C (S)

and x ∪ {s1, s2} /∈ C (S), then [s1] ∩ [s2] ≠ ∅.
Both negativity and single-threadedness are stable under
coitegativity ensures that σ does not start playing on A,
and single-threadedness will ensure that it satisfies surjective
pairing. Finally, 2-cells are weak equivalences.

We mention a convenient operation for constructing strate-
gies. Take a Cho-strategy σ ∶ S → !B⊥ ∥ !C and a strong-
receptive, courteous map f ∶ !B⊥ → !A⊥ Then, the composite:

(f ∥ !C) ○ σ ∶ S → !A⊥ ∥ !C

is still a Cho-strategy. Moreover if A = B and f ∼ id!A, it
follows that the obtained map is weakly equivalent to σ.

1) Cartesian structure: Since morphisms in Cho are nega-
tive strategies and arenas are negative, it follows that the empty
arena 1 is terminal. From two arenas A and B, one can form
the product arena A×B; it is simply defined as A ∥ B. Firstly
there are projections, obtained as:

$A = (iA ∥ !A) ○ cc !A ∶ CC!A → !(A ×B)⊥ ∥ !A

where iA ∶ !A⊥ → !(A × B)⊥ is the injection map, which is
strong-receptive (since A, B are negative) and courteous. The
other projection $B ∶ A ×B Cho

+ // B is defined similarly.
From σ ∶ S → !A⊥ ∥ !B and τ ∶ T → !A⊥ ∥ !C, we define

their pairing ⟨σ, τ⟩ ∶ A Cho
+ // B ×C. For that, we need to make

sure that σ and τ reach a disjoint image in !A⊥. Take A an
arena, and ι ∶ ω → ω an injection. Then ι induces a map

ι ∶ !A → !A. The extended ι applies the injection to the copy
indices of all minimal events, leaving the rest unchanged. More
precisely, for α ∈ !A, ι(α) is an index function α′ defined as:

α′ ∶ [lblα] → ω
a ↦ ι(α(a)) if a ∈ min(A)
a ↦ α(a) otherwise

Note that for any such ι, the map ι⊥ ∶ !A⊥ → !A⊥ is strong-
receptive and courteous, and we always have ι⊥ ∼ id!A⊥ , by
definition of the symmetry on !A. Take two such injections that
have a disjoint codomain, e.g. ιe(n) = 2n and ιo(n) = 2n+ 1.
Then, by the observation above we have Cho-strategies:

(ι⊥e ∥ !B) ○ σ ∶ A Cho
+ // B (ι⊥o ∥ !C) ○ τ ∶ A Cho

+ // C

with disjoint images in !A⊥. So by co-pairing (and injection
of !B and !C into !(B ×C)) we obtain:

⟨σ, τ⟩ ∶ S ∥ T → !A⊥ ∥ !(B ×C)

which is a Cho-strategy. It follows (by a reasoning similar
to that for the neutrality of copycat) that $B ⊙ ⟨σ, τ⟩ is
isomorphic to (ι⊥e ∥ !B) ○ σ, which is weakly equivalent to
σ since ιe ∼ id!A – the same holds for $C ⊙ ⟨σ, τ⟩ ≃ τ .

Finally, any σ ∶ A Cho
+ // B ×C satisfies surjective pairing:

σ ≃ ⟨$B ⊙ σ,$C ⊙ σ⟩

This relies on the fact that Cho-strategies are single-threaded
Indeed, for σ ∶ S → !A⊥ ∥ !(B ×C) single-threaded, x ∈ C (S)
can be decomposed as x = xB ∪ xC , where xB , xC ∈ C (S)
are disjoint (by (1)) and only reach respectively B and C.
Likewise, two configurations xB ∈ C (S), xC ∈ C (S) reaching
only respectively B and C are compatible by (2) – the proof
of the weak equivalence above follows these lines.

From all the above, it follows that Cho is cartesian up to
weak equivalence. We now check that it is cartesian closed.

2) Exponentials: A morphism from A × B to C in Cho
is a map: σ ∶ S → !(A × B)⊥ ∥ !C. Up to isomorphism, its
codomain is !A⊥ ∥ !(B⊥ ∥ C), which suggests B⊥ ∥ C as
an exponential object. However, B⊥ ∥ C is not a valid arena,
since it fails negativity – and negativity is essential to ensure
that the empty arena 1 is a terminal object.

The standard arena construction A ⇒ B introduced in
Subsection II-C solves this issue by setting minimal events of
B as dependencies for events in A. Showing that this defines
an exponential of A and B relies on the following lemma.

Lemma III.5. There is a bijection Φ preserving and reflecting
weak equivalence between Cho-strategies σ ∶ C Cho

+ // A⇒ B,
and negative single-threaded ∼-strategies σ′ ∶ !C

Tcg
+ // !A⊥ ∥

!B. Moreover, for all τ ∶D Cho
+ // C, Φ(σ ⊙ τ) ≃ Φ(σ)⊙ τ .

Proof: First, we note that for arenas A and B there is a
strong-receptive, courteous map of essp:

χA,B ∶ !(A⇒ B)→ !A⊥ ∥ !B

Events β ∶ [(2, b)] → ω are kept unchanged. However,
we have multiple copies of A on the left hand side and

only one on the right hand side, so we need to reindex
minimal events of A to avoid collisions. Therefore we send
events α ∶ [(1, (b, a))] → ω with a minimal to (1, α′) with
α′(a) = ⟨♯ b,α((2, b)), α((1, (b, a)))⟩ where ♯ ∶ B → ω is
given by countability of B, and ⟨−,−,−⟩ ∶ ω3 → ω is any
injection. If a is non-minimal, its copy index is unchanged.

For σ ∶ S → !A⊥ ∥ !(B ⇒ C), Φ(σ) is (!A⊥ ∥ χB,C)○σ. For
σ ∶ S → !A⊥ ∥ (!B⊥ ∥ !C)), by (1) of single-threadedness any
s ∈ S has a unique minimal dependency mapping to a minimal
event of !C. Thus σ factors uniquely through !A⊥ ∥ χB,C up
to symmetry, from which the lemma follows.

From the lemma above, the cartesian structure (up to ≃) of
Cho and the compact closed structure (up to ≃) of Tcg, it
follows that Cho is cartesian closed (up to ≃).

E. Recursion

Usually, the interpretation of the fixpoint combinator Y is
obtained by showing that the ccc of strategies is enriched over
a category of sufficiently complete partial orders. Once this is
established, the recursive equation for Y can be solved by
computing the right least upper bound. Here however (as in
AJM games [1]) the ccc Cho/≃ is a quotient, and it is not clear
that the natural induced order on equivalence classes has the
adequate completeness properties. Instead we use an ordering
on concrete strategies rather than equivalence classes.

Definition III.6. Let σ ∶ S → A and τ ∶ T → A be negative
single-threaded ∼-strategies on a tcg A. Then σ ⊴ τ iff we
have the inclusion map S ↪ T with all data in S coinciding
with the restriction of that in T , and for all s ∈ S, σ s = τ s.

The ∼-strategies onA ordered by ⊴ form a directed complete
partial order (dcpo). It is not pointed though – it does not have
a least element: indeed there is one minimal ∼-strategy on A
for each renaming of its minimal negative events. We call such
a minimal ∼-strategy empty. For each A we will consider one
empty ∼-strategy in particular, written �A ∶ min−(A) → A,
that acts as the identity on the ess min−(A) having as events
the minimal negative events of A, with isomorphism family
closed by receptivity. Not every ∼-strategy σ ∶ S → A is above
�A, however there is alway σ† ∶ S → A such that σ† ≃ σ and
�A ⊴ σ†, obtained by renaming minimal events of S.

Let us write DA for the pointed dcpo of ∼-strategies above
�A. For an arena A we can now define the following operation,
using the ccc combinators of Cho:

F ∶ D!(A→A)⊥∥!A → D!(A→A)⊥∥!A

σ ↦ (evA,A ⊙ ⟨ cc !(A→A), σ⟩)†

Then F is a continuous function, and has a least upper bound
Y = ∨F ∶ A ⇒ A

Cho
+ // A, which is easily shown using ccc

laws to be a fixpoint combinator up to weak equivalence.

F. Reduced form for PCF∥-strategies

Describing Cho-strategies for basic combinators of PCF
can be challenging, as one has to give the isomorphism family.
However, we show here that in the presence of visibility, inno-
cence and determinism, full Cho-strategies can be recovered

from the more compact (symmetry-free, Opponent replication
free) notion of reduced PCF∥-strategy used in Section II – a
situation analogous to the presentation of sequential innocent
strategies as sets of P-views (compact, not compositional) or
as sets of plays (not compact, compositional).

First of all, let us take a PCF∥-strategy σ ∶ S → !A. Its
reduced form, written Srf , is the sub-event structure of S
comprising all events s ∈ S such that for all t− ≤ s, ind (σ t) =
0. In other words, Srf is the restriction of S where Opponent
moves always have a copy index of 0 – there is no Opponent
duplication. The map σ ∶ S → !A also induces a map of esp
σrf ∶ Srf → !+A. The event structure Srf inherits a symmetry
from S; however then this symmetry is trivial. Indeed if x, y ∈
C (Srf) are such that x

θ
≅S y, then from σ thin it follows that

x = y and θ = idx. The symmetry on Srf is irrelevant, so σrf

is a reduced PCF∥-strategy in the sense of Subsection II-D.
From reduced PCF∥-strategies we can build full strategies.

Lemma III.7. For a reduced PCF∥-strategy σ ∶ S → !+A,
there is a PCF∥-strategy σ ∶ S → !A such that σrf ≃ σ.

Proof: The underlying event structure for S has for events
indexing functions α ∶ [s]→ ω such that for all t+ ≤ s, α(t) =
0. Those are causally ordered as for !A, and all finite sets are
consistent. The symmetry is designed as for !A.

The map σ sends (α− ∶ [s−] → ω) ∈ S to the event of
!A with lbl (σ s) as label and indα as copy index. For α+ ∶
[s+] → ω, σ α+ has label lbl (σ s) and as index an injective
function of the indices of σ s and the negative dependencies
of s. We get a PCF∥-strategy satisfying the required equation.

In fact, there is a bijection (up to weak equivalence) between
PCF∥-strategies and reduced forms thereof. We define a
PCF∥-strategy to be finite whenever its reduced form is.

Any PCF∥-strategy σ ∶ S → !A is also a Cho-strategy: it is
necessarily negative and is single-threaded by innocence.

G. Interpretation of PCF

Any term x1 ∶ A1, . . . , xn ∶ An ⊢ M ∶ A of PCF is
interpreted as a Cho-strategy JMK ∶ S → !Π1≤i≤nAi

⊥ ∥ !A.
The interpretation of PCF follows from the ccc structure, and
from the strategies for the basic combinators of PCF described
through their reduced forms in Figure 3 (op stands for succ
or pred). In these diagrams we omit the copy index whenever
it is 0. Missing from this figure is the reduced form of the
strategy for if , which appears in Figure 2.

Theorem III.8. For all ⊢M ∶ X, M⇓ iff JMK is non-empty.

Proof: From left to right (soundness), it follows from the
ccc laws up to weak equivalence and the fact that the strategies
of Figure 3 obey the required elementary equations. From right
to left (adequacy), it follows from the same properties, with a
straightforward use of logical relations.

IV. FULL ABSTRACTION FOR PCF

We start this final section by the following proposition:

JbBK = B
q

b

JnNK = N
q
n

JopK = N +3 N
q

ssq
n

++
op(n)

JiszeroK = N +3 B
q

rrq

0
--

n + 1
,,tt ffn

Fig. 3. Interpretation of the basic combinators of PCF

Proposition IV.1. There is a sub-∼-bicategory PcfPar of Cho
with arenas as objects, negative PCF∥-strategies as mor-
phisms, and weak equivalences as 2-cells. Moreover, PcfPar
satisfies the laws of a ccc up to weak equivalence.

Proof: The difficult part is checking that composition pre-
serves our conditions on strategies. Visibility and determinism
are both stable under composition. Assuming visibility, so are
innocence and well-bracketing.

Now, we prove that the extensional quotient of PcfPar is
fully abstract for PCF. From now on we will often write σ ∶ A
instead of σ ∶ S → A and leave S implicit.

We write M ≃obs N for observational equivalence between
terms, defined as usual [10]. We also define it on PCF∥-
strategies by defining a test on arena A as any negative PCF∥-
strategy α ∶ !A⊥ ∥ !X. For σ ∶ !A and σ′ ∶ !A we say that σ and
σ′ are observationally equivalent, written σ ≃obs σ

′, whenever
for all α ∶ !A⊥ ∥ !X, α⊙σ ≃ α⊙σ′. For standard reasons, ≃obs

is preserved by all our constructions on strategies. To prove
full abstraction, we prove a finite definability result up to ≃obs.

Take a type A = A1 → ⋅ ⋅ ⋅ → An → X of PCF, with
Ai = Ai,1 → ⋅ ⋅ ⋅ → Ai,pi → Xi. An alternative presentation
of the standard finite definability argument for PCF follows
from the remark that any innocent σ ∶ A can be decomposed
into a flow substrategy σflow ∶ X1 → . . .Xn → X (comprising
the plays of σ where Opponent only plays answers), and for
each Player question q in σflow in Xi, the data of argument
sub-strategies σq,j ∶ A1 → ⋅ ⋅ ⋅ → An → Ai,j (1 ≤ j ≤ pi)
detailing Player’s behaviour if Opponent was to interrogate
the j-th argument of Ai. To PCF-define σ, it suffices to
PCF-define σflow and to inductively PCF-define the argument
sub-strategies. Our finite definability process will follow these
lines: we will first address the first-order case, and generalize
to higher-order using a decomposition argument.

1) First-order case: We remark that on first-order types
(ie. types of the form X1 → ⋅ ⋅ ⋅ → Xn → X), PCF∥-strategies
denote continuous functions between the corresponding Scott
domains, and that the functions definable by PCF∥-strategies
are exactly the PCF-definable functions (although they are
not computed sequentially). We assume familiarity with the
interpretation of PCF in Scott domains [15]. For a PCF type
A, we write JAKD for the corresponding domain.

Firstly, any PCF∥-strategy on a ground type must be (by
determinism and well-bracketing) either empty or weakly
equivalent to the interpretation of a constant. We write ↑ σ ∈
JXKD for the corresponding domain element. Likewise any

d ∈ JXKD corresponds to a strategy ↓ d ∶ !X defined by
the interpretation of the corresponding PCF combinator. We
generalise ↓ to first-order types by, for σ ∶ Πi≤nXi

PcfPar
+ // X:

↓ σ ∶ Πi≤nJXiKD → JXKD
⟨xi ∣ i ≤ n⟩ ↦ ↓ (σ ⊙ ⟨↑ xi ∣ i ≤ n⟩)

The following lemma is a variant of the familiar “linear
tests suffice” argument in innocent game semantics.

Lemma IV.2. For σ, τ ∶ Πi≤nXi
PcfPar

+ // X, σ ≃obs τ iff ↓ σ =↓ τ .

A ground term is a term x1 ∶ X1, . . . , xn ∶ Xn ⊢M ∶ X of
PCF extended with a constant �X ∶ X for divergence, which
contains no subterm of functional type. For a ground term Γ ⊢
M ∶ X, it is direct to prove by induction that ↓ JMK = JMKD.

Finally, we prove finite definability on first-order types.

Lemma IV.3. If σ ∶ Πi≤nXi
PcfPar

+ // X is finite negative, there
is a ground x1 ∶ X1, . . . , xn ∶ Xn ⊢Mσ ∶ X s.t. JMK ≃obs σ.

Proof: Exploiting determinism of σ, we construct by
induction a ground term Mσ performing the same queries as σ
in some sequential order, such that JMσKD =↓ σ. By Lemmas
IV.2 and the remark above, it follows that JMσK ≃obs σ.

2) Higher-order and full abstraction: Let σ ∶ Πi≤nAi
PcfPar

+ //

X be a finite PCF∥-strategy. We first extract:

Sflow = {s ∈ S ∣ σ([s]) ⊆ !(Π1≤i≤nXi)⊥ ∥ !X}

It inherits all the components of an ess from S , and gives a
negative PCF∥-strategy from Π1≤i≤nXi to X.

We call events q(+,Qu) ∈ Sflow whose negative dependencies
all have copy index 0 the primary questions of S. Each such
q maps to an initial question of some Ai, we write Qi for the
set of primary questions mapping to Ai. From there, Opponent
can ask for an arguments of type Ai,j via an event qkq,j (for
all k) immediately dependent on q. We set:

Sq,j = {s ∈ S ∣ ∃k ∈ ω, s ≥ qkq,j}

It inherits an essp structure from S. We reassign:

σq,j ∶ Sq,j → !(Π1≤i≤nAi)⊥ ∥ !Ai,j

and check that σq,j is a negative PCF∥-strategy – it is the j-th
argument sub-strategy of q.

We now reconstruct σ from the flow and argument sub-
strategies using the ccc combinators of PcfPar. We set:

σflow ∶ Sflow → !(Π1≤i≤nΠq∈QiXi)⊥ ∥ !X

The assignment σflow follows canonically from σ and the
symmetry on S , which to any Player question q(+,Qu) ∈ Sflow

depending on minimal event qi+1, associates canonically some
q ∈ Q. With this, we can finally state our decomposition result:

Proposition IV.4. For σ ∶ Π1≤i≤nAi
PcfPar

+ // X a PCF∥-strategy,

σ ≃ σflow ⊙ ⟨xi σq,1 . . . σq,pi ∣ 1 ≤ i ≤ n, q ∈ Qi⟩

with σflow and σq,j PCF∥-strategies. The notation refers to
ccc combinators, with xi the i-th projection from Π1≤i≤nAi.

The proof requires a careful analysis of the right-hand
side composition, and relies on all the conditions of PCF∥-
strategies. From this immediately follows by induction:

Proposition IV.5. If σ ∶ S → !JAK is a finite PCF∥-strategy,
there exists ⊢Mσ ∶ A such that JMK ≃obs σ.

From the above ingredients we obtain easily:

Theorem IV.6. PcfPar/≃obs is fully abstract for PCF, ie. for
all Γ ⊢M ∶ A, Γ ⊢ N ∶ A, M ≃obs N iff JMK ≃obs JNK.

Proof: A standard argument using soundness, adequacy,
finite definability, and the easy fact that if two strategies can
be distinguished by a test, then a finite test suffices.

V. CONCLUSION

We described a ccc Cho/≃ of concurrent non-deterministic
strategies, which supports concurrent notions of visibility,
well-bracketing and innocence that conservatively extends the
usual ones. In this setting, we gave a parallel intensionally
fully abstract interpretation of PCF.

As a first extension, we plan to give an intensional version of
the fully abstract model of PCF extended with the concurrent
primitive parallel-or [15]. This is trickier than it might seem:
the concurrent strategy for parallel-or is non-deterministic,
and linking its non-deterministic intensional behaviour to its
deterministic extensional behaviour requires some care.

More generally, we plan to apply this framework to give
fine-grained truly concurrent games model of higher-order
effectful concurrent programming languages.

ACKNOWLEDGMENT

We gratefully acknowledge the support of the ERC Ad-
vanced Grant ECSYM. We also would like to thank Dan Ghica
for suggesting the idea of a parallel model of PCF.

REFERENCES

[1] Samson Abramsky, Radha Jagadeesan, and Pasquale
Malacaria. Full abstraction for PCF. Inf. Comput.,
163(2):409–470, 2000.

[2] Samson Abramsky and Paul-André Melliès. Concurrent
games and full completeness. In LICS, pages 431–442.
IEEE Computer Society, 1999.

[3] Pierre Boudes. Thick subtrees, games and experiments.
In Curien [5], pages 65–79.

[4] Simon Castellan, Pierre Clairambault, and Glynn
Winskel. Symmetry in concurrent games. In Thomas A.

Henzinger and Dale Miller, editors, CSL-LICS ’14, Vi-
enna, Austria, July 14 - 18, 2014, page 28. ACM, 2014.

[5] Pierre-Louis Curien, editor. TLCA 2009, Brasilia, Brazil,
July 1-3, 2009. Proceedings, volume 5608 of LNCS.
Springer, 2009.

[6] Claudia Faggian and Mauro Piccolo. Partial orders, event
structures and linear strategies. In Curien [5], pages 95–
111.

[7] Dan R. Ghica and Andrzej S. Murawski. Angelic
semantics of fine-grained concurrency. Ann. Pure Appl.
Logic, 151(2-3):89–114, 2008.

[8] Tom Hirschowitz. Full abstraction for fair testing in CCS.
In Reiko Heckel and Stefan Milius, editors, CALCO,
volume 8089 of LNCS, pages 175–190. Springer, 2013.

[9] Tom Hirschowitz and Damien Pous. Innocent strategies
as presheaves and interactive equivalences for CCS. Sci.
Ann. Comp. Sci., 22(1):147–199, 2012.

[10] J. M. E. Hyland and C.-H. Luke Ong. On full abstraction
for PCF: I, II, and III. Inf. Comput., 163(2):285–408,
2000.

[11] James Laird. Full abstraction for functional languages
with control. In LICS, pages 58–67. IEEE Computer
Society, 1997.

[12] James Laird. A game semantics of idealized CSP. Electr.
Notes Theor. Comput. Sci., 45:232–257, 2001.

[13] Paul-André Melliès. Asynchronous games 4: A fully
complete model of propositional linear logic. In LICS,
pages 386–395. IEEE Computer Society, 2005.

[14] Paul-André Melliès and Samuel Mimram. Asynchronous
games: Innocence without alternation. In Luı́s Caires
and Vasco Thudichum Vasconcelos, editors, CONCUR,
volume 4703 of LNCS, pages 395–411. Springer, 2007.

[15] Gordon D. Plotkin. LCF considered as a programming
language. Theor. Comput. Sci., 5(3):223–255, 1977.

[16] Silvain Rideau and Glynn Winskel. Concurrent strate-
gies. In LICS, pages 409–418. IEEE Computer Society,
2011.

[17] Matthew Wall. Games for syntactic control of interfer-
ence. PhD thesis, University of Sussex, 2004.

[18] Glynn Winskel. Event structures. In Wilfried Brauer,
Wolfgang Reisig, and Grzegorz Rozenberg, editors, Ad-
vances in Petri Nets, volume 255 of LNCS, pages 325–
392. Springer, 1986.

[19] Glynn Winskel. Event structures with symmetry. Electr.
Notes Theor. Comput. Sci., 172:611–652, 2007.

[20] Glynn Winskel. Event structures, stable families
and games. Lecture notes, Aarhus University, At
http://daimi.au.dk/∼gwinskel, 2011.

[21] Glynn Winskel. Strategies as profunctors. In Frank
Pfenning, editor, FoSSaCS, volume 7794 of LNCS, pages
418–433. Springer, 2013.

