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TRAVELING WAVES FOR A LATTICE DYNAMICAL SYSTEM

ARISING IN A DIFFUSIVE ENDEMIC MODEL

YAN-YU CHEN, JONG-SHENQ GUO, AND FRANÇOIS HAMEL

Abstract. This paper is concerned with a lattice dynamical system modeling the evolu-

tion of susceptible and infective individuals at discrete niches. We prove the existence of

traveling waves connecting the disease-free state to non-trivial leftover concentrations. We

also characterize the minimal speed of traveling waves and we prove the non-existence of

waves with smaller speeds.

1. Introduction

In this article, we consider the following lattice dynamical system (LDS)






dsn
dt

= (sn+1 + sn−1 − 2sn) + µ− µ sn − β sn in, n ∈ Z,

din
dt

= d(in+1 + in−1 − 2in)− µ in + β sn in − γ in, n ∈ Z,

(1.1)

where sn = sn(t), in = in(t), t ∈ R, and µ, β, γ are positive constants. Here sn(t) and in(t)

represent the population density of the susceptible individuals and the infective individuals

at niches n at time t, 1 and d are the random migration coefficients for susceptible and

infective population, respectively, and µ is regarded as the rate of the inflow of newborns

into the susceptible population by assuming the total population of susceptible, infective and

recovered individuals is normalized to be 1. The death rate of the susceptible population

and the infective population are both assumed to be µ, β is the infective (transmission)

coefficient and γ is the recovered/removed coefficient. Actually, as in [27], the equation for

the recovered individuals rn(t) is given by

drn
dt

= γin − µrn,

if there is no migration of the recovered individuals.
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framework of the Labex Archimède (ANR-11-LABX-0033) and of the A*MIDEX project (ANR-11-IDEX-

0001-02), funded by the “Investissements d’Avenir” French Government program managed by the French

National Research Agency (ANR). The research leading to these results has received funding from the

European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) /

ERC Grant Agreement n.321186 - ReaDi - Reaction-Diffusion Equations, Propagation and Modelling, and

from the French ANR within the project NONLOCAL (ANR-14-CE25-0013).

2000 Mathematics Subject Classification. Primary: 34K10, 92D25; Secondary: 35K57, 34C37.

Key words and phrases. Endemic model, lattice dynamical system, upper-lower-solutions, traveling wave.
1



2 Y.-Y. CHEN, J.-S. GUO, AND F. HAMEL

For system (1.1), it easy to see there are two constant states (1, 0) and

(1.2) (s∗, e∗) :=
( 1

σ
,
µ

β
(σ − 1)

)

,

where σ := β/(µ+ γ). In this paper, we always assume that σ > 1, that is,

β > µ+ γ.

This means that, when the density of susceptible individuals is close to 1, the infective

individuals have a positive per capita growth rate. Without migration, the steady state

(1, 0) is dynamically unstable with respect to perturbations whose second component are

positive, while the steady state (s∗, e∗) is dynamically stable. System (1.1) is therefore

called monostable.

In this paper, we are interested in the existence of traveling wave solutions of (1.1). Here

a traveling wave solution is a bounded solution which can be expressed by

sn(t) = φ(n+ ct) and in(t) = ψ(n+ ct)

for n ∈ Z and t ∈ R, for some nonnegative bounded functions φ, ψ on R (the wave profiles)

and some constant c (the wave speed). By setting ξ = n+ct and substituting (sn(t), in(t)) =

(φ(ξ), ψ(ξ)) into (1.1), we obtain

(1.3)

{

−c φ′(ξ) +D[φ](ξ) + µ (1− φ(ξ))− β φ(ξ)ψ(ξ) = 0,

−c ψ′(ξ) + dD[ψ](ξ)− (µ+ γ)ψ(ξ) + β φ(ξ)ψ(ξ) = 0

for all ξ ∈ R, where

D[f ](ξ) := f(ξ + 1) + f(ξ − 1)− 2f(ξ).

Furthermore, from the epidemic point of view, we are interested in traveling wave solutions

connecting the trivial disease-free state (1, 0) as ξ → −∞ (ahead of the front) and non-trivial

states as ξ → +∞.

Define the constant c∗ by

(1.4) c∗ := inf
λ>0

d (eλ + e−λ − 2) + β − µ− γ

λ
.

By the assumption β > µ+ γ (i.e. σ > 1), we know that c∗ = c∗(d, β, µ, γ) is a well-defined

real number (and the infimum in (1.4) is a minimum) and c∗ > 0.

Our main result is the following theorem on the existence of traveling waves for (1.3) and

the characterization of their minimal speed.

Theorem 1.1. For any c ≥ c∗, there exists a bounded classical solution (φ, ψ) of the sys-

tem (1.3) such that

(1.5) 0 < φ < 1 in R, ψ > 0 in R

and

(1.6) lim
ξ→−∞

(φ(ξ), ψ(ξ)) = (1, 0),
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together with

(1.7) 0< lim inf
ξ→+∞

φ(ξ)≤s∗ ≤ lim sup
ξ→+∞

φ(ξ)<1 and 0< lim inf
ξ→+∞

ψ(ξ)≤e∗≤ lim sup
ξ→+∞

ψ(ξ)<+∞,

where (s∗, e∗) is given in (1.2). Furthermore, for any c < c∗, there is no classical solution

(φ, ψ) of the system (1.3) satisfying (1.5) and (1.6).

Behind the front, as ξ → +∞, the leftover concentrations of susceptible and infective

individuals are non-trivial. It is still an open question to know whether the traveling wave

solutions converge to the endemic state (s∗, e∗) as ξ → +∞, but Theorem 1.1 asserts that

both susceptible and infective individuals coexist behind the front and that the endemic

state (s∗, e∗) is the only possible constant leftover state. To show the convergence to the

endemic state as ξ → +∞, the difficulties come from the fact that (1.3) is a system and

is non-local (such issues also arise for equations with non-local nonlinear interaction, see

e.g. [1, 2, 4, 17, 18, 22, 20, 36, 37]). We also point out that the random migration coefficient

d for the infective individuals is any arbitrary positive real number and is therefore in general

different from that for the susceptible individuals. Furthermore, we mention that, due to

the transmission term s with opposite signs, the systems (1.1) and (1.3) are not monotone

(ne ither cooperative nor competitive) and therefore do not satisfy the maximum principle.

Let us finally mention some references on related problems. Actually, there is a vast

literature on the study of traveling wave solutions for lattice dynamical systems or discrete

versions of continuous parabolic partial differential equations. For monostable equations or

monostable monotone systems, we refer to e.g. [6, 7, 8, 15, 16, 21, 23, 25, 29, 30, 34, 35, 38, 41].

Waves for bistable lattice dynamical systems have been studied in e.g. [5, 9, 10, 11, 12, 13,

14, 24, 26, 28, 31, 32, 33, 39, 40].

Remark 1.2. Notice that the necessity condition c ≥ c∗ holds for any traveling wave (φ, ψ)

satisfying (1.3), (1.5) and (1.6). The limiting conditions (1.7) or the boundedness of ψ are

not used here.

Outline of the paper. Sections 2 and 3 are devoted to the proof of the existence of a

traveling wave in case c > c∗, with some preliminaries on lower and upper solutions in Sec-

tion 2. Approximated solutions in bounded domains are constructed and the traveling wave

solving (1.3) is obtained by passing to the limit in the whole real line. Some intricate issues

are to show that the limiting ψ component is bounded and that the leftover concentrations

are non-trivial. Section 4 is devoted to the proof of the existence of a traveling wave for

the minimal speed c∗, by passing to the limit ck → (c∗)+, after a suitable shift of the origin

and after showing that the solutions with speed ck are uniformly bounded. Lastly, Sec-

tion 5 is concerned with the proof of the necessity condition c ≥ c∗ for any traveling wave

satisfying (1.5) and (1.6).

2. Preliminaries

In this section, we always assume that c > c∗. Then the equation

(2.1) d (eλ + e−λ − 2)− c λ+ β − µ− γ = 0
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has two positive roots λ1 and λ2 with 0 < λ1 < λ2. Notice that

d (eλ + e−λ − 2)− c λ+ β − µ− γ < 0

for all λ ∈ (λ1, λ2).

2.1. Upper and lower solutions. First, we define the notion of upper solution (φ, ψ) and

lower solution (φ, ψ) of (1.3) as follows.

Definition 2.1. If φ, ψ, φ, ψ are continuous in R, of class C1 on R \ F for some finite set

F and if they satisfy the following inequalities

D[φ](ξ)− c φ
′
(ξ) + µ (1− φ(ξ))− β φ(ξ)ψ(ξ) ≤ 0,(2.2)

D[φ](ξ)− c φ′(ξ) + µ (1− φ(ξ))− β φ(ξ)ψ(ξ) ≥ 0,(2.3)

dD[ψ](ξ)− c ψ
′
(ξ)− (µ+ γ)ψ(ξ) + β φ(ξ)ψ(ξ) ≤ 0,(2.4)

dD[ψ](ξ)− c ψ′(ξ)− (µ+ γ)ψ(ξ) + β φ(ξ)ψ(ξ) ≥ 0(2.5)

for all ξ ∈ R \ F , then the functions (φ, ψ), (φ, ψ) are called a pair of upper and lower

solutions of (1.3).

Following [3, 19], we introduce

φ(ξ) = 1, ψ(ξ) = eλ1ξ, ξ ∈ R,(2.6)

φ(ξ) =

{
1− ρ eθξ, ξ ≤ ξ1,

0, ξ ≥ ξ1,
(2.7)

ψ(ξ) =

{
eλ1ξ − q eηλ1ξ, ξ ≤ ξ2,

0, ξ ≥ ξ2,
(2.8)

where

(2.9) ξ1 := −
ln ρ

θ
and ξ2 := −

ln q

(η − 1) λ1
.

Here the constants θ, ρ, η and q are chosen in sequence such that the following assumptions

(A1)-(A4) hold:

(A1) θ > 0 is small enough such that 0 < θ < λ1 and eθ + e−θ − 2− c θ − µ < 0,

(A2) ρ > max

{

1,
β

−(eθ + e−θ − 2− c θ − µ)

}

≥ 1 > 0,

(A3) η ∈ (1,min{1 + θ/λ1, λ2/λ1}) such that

d (eηλ1 + e−ηλ1 − 2)− c η λ1 + β − µ− γ < 0,

(A4) q > max

{

e(1−η)λ1ξ1 ,
β ρ

−(d (eηλ1 + e−ηλ1 − 2)− c η λ1 + β − µ− γ)

}

> 0.

Note that we have

ξ2 = −
ln q

(η − 1)λ1
< ξ1 = −

ln ρ

θ
< 0.
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Also, it easy to see that

max{0, 1− ρ eθξ} ≤ φ(ξ) ≤ φ(ξ) = 1, max{0, eλ1ξ − q eηλ1ξ} ≤ ψ(ξ) ≤ ψ(ξ) = eλ1ξ

for all ξ ∈ R.

The next lemma gives the existence of a pair of upper and lower solutions.

Lemma 2.2. The functions (φ, ψ) and (φ, ψ) defined by (2.6)-(2.8) are a pair of upper and

lower solutions of (1.3).

Proof. First, the functions φ and ψ are of class C1(R) and the inequalities (2.2) and (2.4)

hold on R, since






D[φ](ξ)− c φ
′
(ξ) + µ (1− φ(ξ))− β φ(ξ)ψ(ξ) = −β ψ(ξ) ≤ 0,

dD[ψ](ξ)− c ψ
′
(ξ)− (µ+ γ)ψ(ξ) + β φ(ξ)ψ(ξ)

= eλ1ξ
[
d (eλ1 + e−λ1 − 2)− c λ1 + β − µ− γ

]
= 0

for all ξ ∈ R.

Next, the function φ is continuous in R and of class C1(R\{ξ1}) and we would like to show

that (2.3) holds for ξ 6= ξ1. For ξ > ξ1, this is trivial since φ(ξ) = 0. When ξ < ξ1 (< 0), we

have φ(ξ) = 1− ρeθξ and so

D[φ](ξ)− c φ′(ξ) + µ (1− φ(ξ))− β φ(ξ)ψ(ξ)

= 1− ρ eθ(ξ+1) + 1− ρ eθ(ξ−1) − 2 + 2 ρ eθξ + c θ ρ eθξ + µ ρ eθξ − β eλ1ξ + β ρ e(θ+λ1)ξ

≥ eθξ
[
− ρ (eθ + eθ − 2 c θ − µ)− β e(λ1−θ)ξ

]

≥ β eθξ
[
1− e(λ1−θ)ξ

]
≥ 0

by θ < λ1 and the choice of ρ.

Finally, the function ψ is continuous in R and of class C1(R\{ξ2}) and we claim that (2.5)

holds for ξ 6= ξ2. Clearly, (2.5) holds for ξ > ξ2. For the case ξ < ξ2, due to ξ2 < ξ1 < 0, we

know that φ(ξ) = 1− ρeθξ and ψ(ξ) = eλ1ξ − qeηλ1ξ. Then we obtain

dD[ψ](ξ)− c ψ′(ξ)− (µ+ γ)ψ(ξ) + β φ(ξ)ψ(ξ)

≥ d
[
− q eηλ1(ξ+1)− q eηλ1(ξ−1)+ 2 q eηλ1ξ

]
+ c η λ1 q e

ηλ1ξ− (β − µ− γ) q eηλ1ξ− β ρ e(θ+λ1)ξ

= eηλ1ξ
{

− q
[
d (eηλ1 + e−ηλ1 − 2)− c η λ1 + β − µ− γ

]
− β ρ e[θ+(1−η)λ1]ξ

}

≥ β ρ eηλ1ξ
(
1− e(θ+(1−η)λ1)ξ

)
≥ 0

by the choices of η and q. Therefore, the proof of this lemma has been completed. �

2.2. An auxiliary truncated problem. Now, given l > −ξ2 (> 0), we consider the fol-

lowing truncated problem






D[φ]− c φ′ + µ (1− φ)− β φψ = 0 in [−l, l],

dD[ψ]− c ψ′ − (µ+ γ)ψ + β φψ = 0 in [−l, l],

(φ, ψ) = (φ, ψ) on (−∞,−l),

(φ, ψ) = (φ(l), ψ(l)) on (l,+∞),

(2.10)
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where






φ′(−l) := lim
hց0

φ(−l + h)− φ(−l)

h
, ψ′(−l) := lim

hց0

ψ(−l + h)− ψ(−l)

h
,

φ′(l) := lim
hց0

φ(l)− φ(l − h)

h
, ψ′(l) := lim

hց0

ψ(l)− ψ(l − h)

h
.

Next, we give some notations. Set Cl := C([−l, l])× C([−l, l]) and

S l :=
{
(φ, ψ) ∈ Cl | φ ≤ φ ≤ φ, ψ ≤ ψ ≤ ψ in [−l, l] and (φ, ψ)(−l) = (φ, ψ)(−l)

}
.

From the definition of φ, φ, ψ, ψ, we know that 0 ≤ φ ≤ 1 and 0 ≤ ψ ≤ eλ1l in [−l, l] for any

(φ, ψ) ∈ S l. Hence S l is a nonempty bounded closed convex set in (Cl, ‖ · ‖), where ‖ · ‖ is

the usual sup norm. For any (φ, ψ) ∈ S l, we extend (φ, ψ) be continuity outside the interval

[−l, l] as in (2.10) and we introduce the continuous functions H l
1(φ, ψ) and H

l
2(φ, ψ) defined

in R by
{

H l
1(φ, ψ)(ξ) = αφ(ξ) +D[φ](ξ) + µ (1− φ(ξ))− β φ(ξ)ψ(ξ),

H l
2(φ, ψ)(ξ) = αψ(ξ) + dD[ψ](ξ)− (µ+ γ)ψ(ξ) + β φ(ξ)ψ(ξ),

where α = αl is a positive constant such that

α > max
{
2 + µ+ β eλ1l, 2 d+ µ+ γ

}
.

For (φi, ψi) ∈ S l, i = 1, 2, with φ1 ≤ φ2 and ψ1 ≤ ψ2 in [−l, l], we have

(2.11) H l
1(φ1, ψ2)(ξ) ≤ H l

1(φ1, ψ1)(ξ) ≤ H l
1(φ2, ψ1)(ξ) and H l

2(φ1, ψ1)(ξ) ≤ H l
2(φ2, ψ2)(ξ)

for all ξ ∈ [−l, l]. Finally, we define the operator F l = (F l
1, F

l
2) from S l into Cl as follows







F l
1(φ, ψ)(ξ) = eα(−l−ξ)/c φ(−l) +

∫ ξ

−l

eα(z−ξ)/c

c
H l

1(φ, ψ)(z) dz, ξ ∈ [−l, l],

F l
2(φ, ψ)(ξ) = eα(−l−ξ)/c ψ(−l) +

∫ ξ

−l

eα(z−ξ)/c

c
H l

2(φ, ψ)(z) dz, ξ ∈ [−l, l].

Note that a fixed point (φ, ψ) of the operator F l, extended outside the interval [−l, l] as

in (2.10), gives a solution of (2.10) which is continuous in R and of class C1(R\{−l, l}).

To show the existence of such a fixed point, we apply Schauder’s fixed point theorem in

the next lemma.

Lemma 2.3. Given l > −ξ2, there exists a C(R)×C(R) and C
1(R\{−l, l})×C1(R\{−l, l})

solution (φ, ψ) of (2.10) such that

(2.12) 0 ≤ φ ≤ φ ≤ 1 and 0 ≤ ψ ≤ ψ ≤ ψ in (−∞, l].

Proof. First, we claim that F l(S l) ⊂ S l. By (2.11), for any (φ, ψ) ∈ S l, we have

F l
1(φ, ψ) ≤ F l

1(φ, ψ) ≤ F l
1(φ, ψ) and F l

2(φ, ψ) ≤ F l
2(φ, ψ) ≤ F l

1(φ, ψ) in [−l, l].

By Lemma 2.2 and the definition of the upper and lower solutions, we also derive that

φ ≤ F l
1(φ, ψ), F l

1(φ, ψ) ≤ φ, ψ ≤ F l
2(φ, ψ) and F l

2(φ, ψ) ≤ ψ in [−l, l].

Hence F l(S l) ⊂ S l.
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By using Arzela-Ascoli Theorem, the operator F l : S l → S l is completely continuous with

respect to the sup norm. With the help of Schauder’s fixed point theorem, we conclude

that there exists a pair (φ, ψ) ∈ S l such that (φ, ψ) = F l(φ, ψ). Therefore, (φ, ψ), extended

outside the interval [−l, l] as in (2.10), solves (2.10) and satisfies the properties stated in

Lemma 2.3. �

3. Existence of a traveling wave for c > c∗

3.1. Proof of Theorem 1.1 for c > c∗. In this section, we show Theorem 1.1 for any

fixed real number c ∈ (c∗,+∞). Namely, we show the existence of a bounded solution (φ, ψ)

of (1.3) satisfying 0 < φ < 1 in R, ψ > 0 in R, and such that (1.6) and (1.7) hold.

First, we consider a positive increasing sequence {lk}k∈N such that lk → ∞ as k → ∞,

and lk > −ξ2 for all k ∈ N, where ξ2 < 0 is as in (2.9). By Lemma 2.3, for each k ∈ N, there

exists a C(R) ∩ C1(R\{−lk, lk}) solution (φk, ψk) of (2.10) and (2.12) for l = lk. For each

K ∈ N such that lK ≥ 2, since ψ is bounded above in [−lK , lK ], it follows from (2.12) that

the sequences

{φk}k≥K , {ψk}k≥K , {φkψk}k≥K

are uniformly bounded on [−lK , lK ]. Also, the sequences {φ
′
k}k≥K and {ψ′

k}k≥K are uniformly

bounded in [−lK+1, lK−1], due to (2.10) and (2.12). Since φ′′
k(ξ) and ψ

′′
k(ξ) can be expressed

in terms of φk(ξ), ψk(ξ), φk(ξ ± 1), ψk(ξ ± 1), φk(ξ ± 2), ψk(ξ ± 2), φ′
k(ξ) and ψ′

k(ξ) in

[−lK +2, lK−2], one infers that the sequences {φ′′
k}k≥K and {ψ′′

k}k≥K are uniformly bounded

in [−lK+2, lK−2]. By using Arzela-Ascoli theorem on [−lK+2, lK−2] for every K ∈ N large

enough, we obtain a subsequence {(φkj , ψkj)} of {(φk, ψk)} through the diagonal process such

that

φkj → φ, ψkj → ψ, φ′
kj

→ φ′, ψ′
kj

→ ψ′ as j → +∞

uniformly in any compact subinterval of R, for some functions φ ∈ C1(R) and ψ ∈ C1(R).

Then (φ, ψ) is a solution of the system (1.3) with

(3.1) 0 ≤ φ ≤ φ ≤ 1 and 0 ≤ ψ ≤ ψ ≤ ψ in R.

By the definitions of φ, ψ and ψ, it easy to check that

(φ, ψ)(−∞) = (1, 0).

Notice also that, by differentiating the equations (1.3), one infers by induction that the

functions φ and ψ are of class C∞ in R.

Lemma 3.1. The functions φ and ψ are non-trivial, in the sense that

0 < φ < 1 and ψ > 0 in R.

Proof. Firstly, owing to the definition of ψ, we have ψ > 0 in (−∞, ξ2). For contradiction,

we assume that there exists a real number ξ0 ∈ [ξ2,+∞) such that ψ(ξ0) = 0 and ψ(ξ) > 0

for all ξ < ξ0. Since ψ ≥ 0 in R, we also have ψ′(ξ0) = 0. From the second equation of (1.3),

we get that ψ(ξ0 − 1) = ψ(ξ0 + 1) = 0, a contradiction to the definition of ξ0.

Let us now show that φ > 0 over R. Indeed, if φ(ξ∗) = 0 for some real number ξ∗, then

0 = −c φ′(ξ∗) +D[φ](ξ∗) + µ
(
1− φ(ξ∗)

)
− β φ(ξ∗)ψ(ξ∗) = −c φ′(ξ∗) +D[φ](ξ∗) + µ > 0,
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since φ′(ξ∗) = 0, D[φ](ξ∗) ≥ 0 and µ > 0. This contradiction leads to the inequality φ > 0

in R.

Similarly, we claim that φ < 1 in R by a contradiction argument. If there exists a real

number ξ̃ such that φ(ξ̃) = 1, then

0 = −c φ′(ξ̃) +D[φ](ξ̃) + µ
(
1− φ(ξ̃)

)
− β φ(ξ̃)ψ(ξ̃) = −c φ′(ξ̃) +D[φ](ξ̃)− β ψ(ξ̃) < 0,

since φ′(ξ̃) = 0, D[φ](ξ̃) ≤ 0 and ψ(ξ̃) > 0. This contradiction leads to the inequality φ < 1

in R. �

The next main step consists in showing that the function ψ is actually bounded. A first

key-point is the following Harnack type property for equations of the type (1.3) satisfied by

the second component ψ. We state this property in a more general framework.

Lemma 3.2. Let M be a positive real number. Then there exists a constant C = C(M) > 0

such that, for any continuous functions a and b with M−1 ≤ a(ξ) ≤ M and b(ξ) ≥ −M for

all ξ ∈ R and for any positive C1(R) function u satisfying

u′(ξ) ≥ a(ξ) u(ξ + 1) + b(ξ) u(ξ) for all ξ ∈ R,

there holds

C−1 ≤
u(ξ + 1)

u(ξ)
≤ C for all ξ ∈ R.

In order not to lengthen too much the main line of the proof of Theorem 1.1 with c > c∗,

the proof of Lemma 3.2 is postponed in Section 3.2.

Coming back to our solutions (φ, ψ) of (1.3), since c > 0 and φ is nonnegative, it follows

from Lemma 3.2 applied to the positive function u = ψ solving ψ′(ξ) ≥ (d/c)ψ(ξ + 1) −

(2d/c + µ/c + γ/c)ψ(ξ) that the functions ξ 7→ ψ(ξ ± 1)/ψ(ξ) are bounded in R. Hence,

from the equation (1.3) itself and since φ is bounded, the function

ξ 7→
ψ′(ξ)

ψ(ξ)

is therefore bounded too.

The following two lemmas deal with the behavior of φ and ψ at +∞ if lim supξ→+∞ ψ(ξ) =

+∞. The first one says that φ is small when ψ is large. This property actually holds locally

uniformly with respect to the speed c. It is stated in this more general framework since it

will be used again in Section 4 to get the existence of a bounded solution (φ, ψ) of (1.3) with

speed c∗.

Lemma 3.3. Let 0 < c ≤ c be two given positive real numbers. Let {ck} be a sequence of

real numbers in [c, c] and let {(φk, ψk)} be a sequence of solutions of (1.3) with speed ck and

satisfying (1.5). If {ξk} is a sequence of real numbers such that ψk(ξk) → +∞ as k → +∞,

then φk(ξk) → 0 as k → +∞.

Since this lemma is concerned with general sequences of solutions with different speeds,

and in order not to lengthen too much the main line of the proof of Theorem 1.1 with given

speed c > c∗, the proof of Lemma 3.3 is postponed in Section 3.2.
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Coming back to our solution (φ, ψ) of (1.3) satisfying (1.5) and (1.6), the following result

shows the convergence of ψ to +∞ at +∞ if it were not bounded.

Lemma 3.4. If lim supξ→+∞ ψ(ξ) = +∞, then limξ→+∞ ψ(ξ) = +∞.

Proof. Assume by way of contradiction that lim supξ→+∞ ψ(ξ) = +∞ and lim infξ→+∞ ψ(ξ) <

+∞. Since ψ′/ψ is globally bounded, there are then M ∈ R and two sequences {θk} and

{ξk} converging to +∞ and such that

ψ(θk) ≤M, θk < ξk − 1 < ξk < ξk + 1 < θk+1, ψ(ξk) = max
[θk,θk+1]

ψ
(

= max
[ξk−1,ξk+1]

ψ
)

for all k ∈ N and limk→+∞ ψ(ξk) = +∞. Therefore, ψ′(ξk) = 0 and dD[ψ](ξk) ≤ 0. Hence,

by (1.3), one infers that
(
µ+ γ − β φ(ξk)

)
ψ(ξk) ≤ 0 for all k ∈ N. This is clearly impossible

for large k since ψ(ξk) > 0, and φ(ξk) → 0 as k → +∞ by Lemma 3.3. The proof is thereby

complete. �

To proceed further, we recall the following useful fundamental theory from [8] (or [6]) in

dealing with the asymptotic tail behavior of wave profiles for a lattice dynamical system.

Proposition 3.5. [8] Let ς > 0 be a positive constant, let B : R → R be a continuous

function having finite B(±∞) := limx→±∞B(x) and let z be a continuous function such that

(3.2) ς z(x) = e
∫ x+1

x
z(s)ds + e

∫ x−1

x
z(s)ds +B(x), ∀x ∈ R.

Then z is uniformly continuous and bounded in R. In addition, the limits ω± = limx→±∞ z(x)

exist and are real roots of the characteristic equations

ς ω = eω + e−ω +B(±∞).

With this result and the previous lemmas in hand, we can show that ψ is bounded in R.

Lemma 3.6. The function ψ is bounded.

Proof. Assume not. Then lim supξ→+∞ ψ(ξ) = +∞, since ψ is continuous, positive, and

ψ(−∞) = 0. Therefore, Lemmas 3.3 and 3.4 imply that ψ(ξ) → +∞ and φ(ξ) → 0 as

ξ → +∞. From (1.3), the continuous function z := ψ′/ψ satisfies

c

d
z(x) = e

∫ x+1

x
z(s)ds + e

∫ x−1

x
z(s)ds − 2−

µ+ γ

d
+
β φ(x)

d

for all x ∈ R. Since φ has finite limits at ±∞ and φ(+∞) = 0, it then follows from

Proposition 3.5 that, in particular, z has a finite limit ω at +∞, with

(3.3) d
(
eω + e−ω − 2

)
= c ω + µ+ γ.

Since µ and γ are positive, this equation has a negative and a positive root. The function

z = ψ′/ψ cannot converge to the negative root at +∞, since ψ(+∞) = +∞. Therefore,

ψ′/ψ converges at +∞ to the positive root ω of (3.3). Remember now that λ1 < λ2 are the

two positive roots of equation (2.1). Since β > 0, one infers immediately that λ1 < λ2 < ω.

But limξ→+∞ ψ′(ξ)/ψ(ξ) = ω > 0 yields lnψ(ξ) ∼ ω ξ as ξ → +∞, while (3.1) implies that

ψ(ξ) ≤ ψ(ξ) = eλ1ξ for all ξ ∈ R. One gets a contradiction, since λ1 < ω. As a conclusion,

the function ψ is bounded and the proof of Lemma 3.6 is complete. �
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To complete the proof of Theorem 1.1 in case c > c∗, we show in the following lemmas

that none of the components φ and ψ can be trivial at +∞.

Lemma 3.7. There holds infR φ > 0.

Proof. Remember that the C∞ function φ satisfies 0 < φ < 1 in R and φ(−∞) = 1. Assume

by contradiction that infR φ = 0. Then there exists a sequence {ξk} converging to +∞ such

that φ(ξk) → 0 as k → +∞. On the other hand, since both functions φ and ψ are bounded,

the equations (1.3) guarantee that the functions φ and ψ have bounded derivatives at any

order. Therefore, by Arzela-Ascoli theorem, the functions ξ 7→ φ(ξ + ξk) and ξ 7→ ψ(ξ + ξk)

converge in C∞
loc(R) as k → +∞, up to extraction of a subsequence, to some nonnegative

C∞ functions φ∞ and ψ∞. Furthermore,

(3.4) −c φ′
∞ +D[φ∞] + µ (1− φ∞)− β φ∞ ψ∞ = 0

in R and φ∞(0) = 0. Since 0 is a global minimum of φ∞, one has φ′
∞(0) = 0 and the above

equality at 0 leads to a contradiction, since φ∞ ≥ 0 and µ > 0. Therefore, infR φ > 0. �

To show that ψ cannot approach 0 at +∞, even for a sequence, the key-step is the

following lemma saying that ψ is increasing when it is small. The property actually holds

locally uniformly with respect to the speed c and we state the lemma in this slightly more

general framework, since it will be used as such in Section 4.

Lemma 3.8. Let 0 < c ≤ c be two given positive real numbers. There is ε > 0 such that, for

any Γ ∈ [c, c] and for any solution (Φ,Ψ) of (1.3) (with speed Γ in place of c) satisfying (1.5),

there holds

∀ ξ ∈ R,
(
Ψ(ξ) ≤ ε

)
=⇒

(
Ψ′(ξ) > 0).

In order to conclude now the proof of Theorem 1.1 with c > c∗, the proof of Lemma 3.8

is postponed in Section 3.2. Coming back to our solution (φ, ψ), we immediately get from

Lemma 3.8 and the positivity of ψ in R that

(3.5) lim inf
ξ→+∞

ψ(ξ) > 0.

We also claim that

(3.6) lim sup
ξ→+∞

φ(ξ) < 1.

Indeed, otherwise, there exists a sequence of real numbers {ξk} converging to +∞ such that

φ(ξk) → 1 as k → +∞. As in the proof of Lemma 3.7, up to extraction of a subsequence,

the functions ξ 7→ φ(ξ + ξk) and ξ 7→ ψ(ξ + ξk) converge as k → +∞ in C∞
loc(R) to some

nonnegative C∞ functions φ∞ and ψ∞ solving (1.3). Furthermore, 0 < φ∞ ≤ 1 and ψ∞ > 0

in R from Lemma 3.7 and (3.5). Since φ∞(0) = 1, one has φ′
∞(0) = 0. The equation (3.4)

satisfied by φ∞ at 0 leads to a contradiction, since D[φ∞](0) ≤ 0 and −β φ∞(0)ψ∞(0) =

−β ψ∞(0) < 0. Therefore, the claim (3.6) holds.

In order to complete the proof of (1.7), let us finally show that

(3.7) lim inf
ξ→+∞

φ(ξ) ≤ s∗ ≤ lim sup
ξ→+∞

φ(ξ) and lim inf
ξ→+∞

ψ(ξ) ≤ e∗ ≤ lim sup
ξ→+∞

ψ(ξ).
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Call φ− = lim infξ→+∞ φ(ξ), φ+ = lim supξ→+∞ φ(ξ), ψ− = lim infξ→+∞ ψ(ξ) and ψ+ =

lim supξ→+∞ ψ(ξ). One already knows from (3.5), (3.6) and Lemmas 3.6 and 3.7 that

0 < φ− ≤ φ+ < 1 and 0 < ψ− ≤ ψ+ < +∞.

Consider now a sequence {ξk} converging to +∞ such that ψ(ξk) → ψ− as k → +∞. Up

to extraction of a subsequence (as for instance in the proof of Lemma 3.7), the functions

ξ 7→ φ(ξ+ ξk) and ξ 7→ ψ(ξ+ ξk) converge in C
∞
loc(R) to some bounded functions 0 < φ∞ < 1

and ψ∞ > 0 satisfying (1.3). Furthermore, 0 < ψ− = ψ∞(0) = minR ψ∞. Therefore,

ψ′
∞(0) = 0 and D[ψ∞](0) ≥ 0. Hence

−(µ + γ)ψ− + β φ∞(0)ψ− ≤ 0,

that is, β φ∞(0) ≤ µ + γ. This yields φ− = lim infξ→+∞ φ(ξ) ≤ (µ + γ)/β = 1/σ =

s∗. Similarly, it follows that φ+ = lim supξ→+∞ φ(ξ) ≥ s∗. Consider also a sequence {ζk}

converging to +∞ such that φ(ξk) → φ− as k → +∞. As above, up to extraction of a

subsequence, the functions ξ 7→ φ(ξ + ζk) and ξ 7→ ψ(ξ + ζk) converge in C∞
loc(R) to some

bounded functions 0 < Φ∞ < 1 and Ψ∞ > 0 satisfying (1.3). Furthermore, 0 < φ− =

Φ∞(0) = minRΦ∞. Therefore, Φ′
∞(0) = 0 and D[Φ∞](0) ≥ 0. Hence

µ (1− φ−)− β φ−Ψ∞(0) ≤ 0.

Since 0 < φ− ≤ s∗ = 1/σ, one gets immediately that Ψ∞(0) ≥ (µ/β)(σ − 1) = e∗, whence

ψ+ = lim supξ→+∞ ψ(ξ) ≥ e∗. Similarly, it follows that ψ− = lim infξ→+∞ ψ(ξ) ≤ e∗.

As a conclusion, (1.7) is proved and the proof of Theorem 1.1 in case c > c∗ is thereby

complete.

As explained after the statement of Theorem 1.1 in Section 1, the question of the existence

of a limit of (φ, ψ) at +∞ is unclear. However, we can say that the a priori existence of a

limit of one of these two functions guarantees the convergence of both, and that the endemic

state (s∗, e∗) defined in (1.2) is the only possible limit.

Lemma 3.9. Let (φ, ψ) be a bounded classical solution of (1.3) satisfying (1.5), (1.6)

and (1.7), with speed c ≥ c∗. If φ(+∞) or ψ(+∞) exists, then they both exist and

(φ(+∞), ψ(+∞)) = (s∗, e∗).

Proof. Assume first that l = limξ→+∞ φ(ξ) exists. Property (1.7) yields 0 < l = s∗ < 1.

Consider now any sequence {ξk} converging to +∞. Up to extraction of a subsequence, the

functions ξ 7→ φ(ξ+ξk) and ξ 7→ ψ(ξ+ξk) converge in C
∞
loc(R) to some functions φ∞ = l = s∗

and ψ∞ such that

µ (1− s∗)− β s∗ ψ∞(ξ) = 0 for all ξ ∈ R.

Therefore, the function ψ∞ is identically equal to the constant µ(1 − s∗)/(βs∗) = e∗. Since

the limit does not depend on the sequence {ξk}, one infers that limξ→+∞ ψ(ξ) = e∗.

Conversely, if L = limξ→+∞ ψ(ξ) exists, property (1.7) yields 0 < L = e∗. For any sequence

{ξk} converging to +∞, the functions ξ 7→ φ(ξ + ξk) and ξ 7→ ψ(ξ + ξk) converge in C∞
loc(R),
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up to a subsequence, to some functions φ∞ and ψ∞ = L = e∗ such that

−(µ+ γ) e∗ + β e∗ φ∞(ξ) = 0 for all ξ ∈ R.

Therefore, the function φ∞ is identically equal to the constant (µ + γ)/β = s∗. Since the

limit does not depend on the sequence {ξk}, one infers that limξ→+∞ φ(ξ) = s∗.

Therefore, if the limit l = φ(+∞) or the limit L = ψ(+∞) exists, then they both exist

such that (φ(+∞), ψ(+∞)) = (s∗, e∗). �

Remark 3.10. The condition c ≥ c∗ in Lemma 3.9 is not a restriction, since we shall prove

in Section 5 that, for any solution (φ, ψ) of (1.3) satisfying (1.5) and (1.6) with speed c,

there holds c ≥ c∗.

3.2. Proof of Lemmas 3.2, 3.3 and 3.8. In this section, we prove some technical lemmas

stated in Section 3.1.

Proof of Lemma 3.2. Although the idea of the proof is similar to the one given in [8], we

provide the details here for completeness. Up to multiplication of u by a positive constant

and up to a shift in space, one can assume without loss of generality that u(0) = 1 and it is

sufficient to show that u(±1) ≤ C = C(M). Firstly, since u′(ξ) ≥ −M u(ξ) for all ξ ∈ R,

the function ξ 7→ v(ξ) := u(ξ) eMξ is nondecreasing, hence

u(−1) ≤ eM u(0) = eM .

Secondly, for all ξ ∈ [0, 1], one has

v′(ξ) = (u′(ξ) +Mu(ξ)) eMξ ≥ a(ξ) u(ξ + 1) eMξ ≥
v(ξ + 1) e−M

M
≥
v(1) e−M

M
=
u(1)

M
.

Hence, v(ξ) ≥ v(0) + u(1) ξ/M = 1 + u(1) ξ/M for all ξ ∈ [0, 1]. In other words,

u(ξ) ≥
(

1 +
u(1) ξ

M

)

e−Mξ for all ξ ∈ [0, 1].

Finally, for all ξ ∈ [−1/2, 0],

v′(ξ) ≥ a(ξ)u(ξ + 1) eMξ ≥
eMξ

M
×

(

1 +
u(1) (ξ + 1)

M

)

e−M(ξ+1) ≥
e−M

M
×
(

1 +
u(1)

2M

)

.

Therefore,

1 = v(0) ≥ v(−1/2)
︸ ︷︷ ︸

≥0

+
e−M

2M
×

(

1 +
u(1)

2M

)

≥
e−M

2M
×
(

1 +
u(1)

2M

)

.

Hence

u(1) ≤ 2M
(
2M eM − 1

)

and the proof of Lemma 3.2 is thereby complete with C(M) = max{eM , 2M(2MeM − 1)}.2

Proof of Lemma 3.3. Let 0 < c ≤ c, {ck}, {(φk, ψk)} and {ξk} be as in the statement and

assume by way of contradiction that there are ε > 0 and a subsequence, still denoted with

the same index k, such that ψk(ξk) → +∞ as k → +∞ and φk(ξk) ≥ ε for all k ∈ N.
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Since 0 < φk < 1 and ψk > 0 in R, the equation (1.3) for φk (with ck ∈ [c, c]) implies that

φ′
k ≤ (2 + µ)/c in R. Hence

(3.8) φk(ξ) ≥
ε

2
for all ξ ∈ [ξk − δ, ξk] and for all k ∈ N,

where δ = ε c/(4 + 2µ) > 0. On the other hand, since

ψ′
k(ξ) ≥

d

c
ψk(ξ + 1)−

2d+ µ+ γ

c
ψk(ξ) for all ξ ∈ R and for all k ∈ N,

Lemma 3.2 applied to the positive functions ψk implies that the functions ξ 7→ ψk(ξ±1)/ψk(ξ)

are globally bounded independently of k ∈ N. Hence, the functions ψ′
k/ψk are globally

bounded in R independently of k ∈ N. Therefore, the limit limk→+∞ ψk(ξk) = +∞ implies

that 0 < Mk := min[ξk−δ,ξk] ψk → +∞ as k → +∞. Now, equation (1.3) and the inequalities

0 < φk < 1 and (3.8) yield

max
[ξk−δ,ξk]

φ′
k ≤

2 + µ

c
−
β εMk

2 c
→ −∞ as k → +∞.

This contradicts the global boundedness of the functions φk. The proof of Lemma 3.3 is

thereby complete. 2

Proof of Lemma 3.8. Assume by way of contradiction that there is no such ε. Then there

exist a sequence of real numbers {ck} in [c, c], a sequence of solutions {(φk, ψk)} of (1.3) with

speed c = ck and 0 < φk < 1, ψk > 0 in R, and a sequence of real numbers {ξk} such that

(3.9) ψk(ξk) → 0 as k → +∞ and ψ′
k(ξk) ≤ 0 for all k ∈ N.

Up to a shift of the origin, one can assume without loss of generality that

(3.10) ξk = 0

for all k ∈ N. Up to extraction of a subsequence, one can also assume that ck → c∞ ∈ [c, c]

as k → +∞.

Notice first that Lemma 3.2 and the equations (1.3) satisfied by (φk, ψk) with ck ∈ [c, c] ⊂

(0,+∞) imply that the sequence {ψ′
k/ψk} is bounded in L∞(R), that is, there is C > 0 such

that |ψ′
k(ξ)| ≤ C ψk(ξ) for all k ∈ N and ξ ∈ R. Since ψk(0) → 0+ as k → +∞, it follows

that

ψk → 0 locally uniformly in R as k → +∞.

As a consequence, there also holds that ψ′
k → 0 locally uniformly in R as k → +∞.

Furthermore, by differentiating the equation (1.3) satisfied by φk, one gets that the func-

tions φ′
k and φ′′

k are locally bounded (and the functions φk are globally bounded). There-

fore, the functions φk converge in C1
loc(R), up to extraction of a subsequence, to a function

0 ≤ φ∞ ≤ 1 solving (1.3) with speed c∞ and with ψ = 0, that is,

(3.11) c∞ φ′
∞ = D[φ∞] + µ (1− φ∞) in R.

Call α = infR φ∞ and let {ζm} be sequence of real numbers such that φ∞(ζm) → α as

m → +∞. Up to extraction of a subsequence, the functions ξ 7→ φ∞(ξ + ζm) converge

as m → +∞ in C∞
loc(R) to a function Φ∞ solving c∞Φ′

∞ = D[Φ∞] + µ (1 − Φ∞) in R,
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α ≤ Φ∞ ≤ 1 in R and Φ∞(0) = α. Consequently, Φ′
∞(0) = 0 and D[Φ∞](0) ≥ 0, whence

µ (1 − α) = µ (1 − Φ∞(0)) ≤ 0. Thus, α ≥ 1. Since α = infR φ∞ and φ∞ ≤ 1 in R, one

concludes that

φ∞ = 1 in R.

Now set

Ψk(ξ) =
ψk(ξ)

ψk(0)

for k ∈ N and ξ ∈ R. Since the sequence {ψ′
k/ψk} is bounded in L∞(R), the positive

functions Ψk are locally bounded, in the sense that supk∈N, |ξ|≤RΨk(ξ) < +∞ for all R > 0.

Therefore, the functions

Ψ′
k(ξ) =

ψ′
k(ξ)

ψk(0)
=
ψ′
k(ξ)

ψk(ξ)
×Ψk(ξ)

are locally bounded too. Since each Ψk satisfies

−ck Ψ
′′
k(ξ) + dD[Ψ′

k](ξ)− (µ+ γ) Ψ′
k(ξ) + β φ′

k(ξ) Ψk(ξ) + β φk(ξ) Ψ
′
k(ξ) = 0

in R and the sequence {φk} is bounded in C1
loc(R), one infers that the functions Ψ

′′
k are locally

bounded too. By Arzela-Ascoli theorem, it follows that, up to extraction of a subsequence,

the positive functions Ψk converge in C1
loc(R) to a nonnegative solution Ψ∞ of

(3.12) c∞Ψ′
∞ = dD[Ψ∞] + (β − µ− γ) Ψ∞ in R,

where one used the fact that φk(ξ) → φ∞(ξ) = 1 as k → +∞ for all ξ ∈ R. Furthermore,

we claim that Ψ∞ > 0 in R. Otherwise, there is ξ0 ∈ R such that Ψ∞(ξ0) = 0, and

Ψ′
∞(ξ0) = 0. It follows from (3.12) applied at ξ0 that Ψ∞(ξ0+1) = Ψ∞(ξ0−1) = 0, and then

Ψ∞(ξ0+m) = 0 for all m ∈ Z by immediate induction. Since c∞Ψ′
∞ ≥ (β−µ−γ−2)Ψ∞ in

R, the nonnegative function ξ 7→ Ψ∞(ξ) e−(β−µ−γ−2)ξ/c∞ is nondecreasing. Since it vanishes

at ξ0 +m for all m ∈ Z, one concludes that it is identically equal to 0, whence Ψ∞ = 0 in

R. This contradicts the fact that Ψ∞(0) = 1. Therefore,

Ψ∞(ξ) > 0

for all ξ ∈ R.

The continuous function z := Ψ′
∞/Ψ∞ obeys

(3.13)
c∞
d
z(ξ) = e

∫ ξ+1

ξ
z(s)ds + e

∫ ξ−1

ξ
z(s)ds − 2 +

β − µ− γ

d
in R.

Therefore, by Proposition 3.5, z(ξ) = Ψ′
∞(ξ)/Ψ∞(ξ) has finite limits ω± as ξ → ±∞, which

are roots of the characteristic equation

c∞ ω± = d (eω± + e−ω± − 2) + β − µ− γ.

Since c∞ ≥ c > 0 and β > µ+ γ, the roots of the previous equation are necessarily positive.

In particular, Ψ′
∞ is positive at ±∞. Furthermore, by differentiating (3.13), one gets that

(3.14) c∞ z′(ξ) = d (z(ξ + 1)− z(ξ))
Ψ∞(ξ + 1)

Ψ∞(ξ)
+ d (z(ξ − 1)− z(ξ))

Ψ∞(ξ − 1)

Ψ∞(ξ)
in R.



TRAVELING WAVE FOR A LATTICE DYNAMICAL SYSTEM 15

Therefore, if z has a minimum ξ in R, then z′(ξ) = 0 and z(ξ+1) = z(ξ−1) = z(ξ), whence

z(ξ +m) = z(ξ) for all m ∈ Z by immediate induction. As a consequence,

inf
R

z ≥ min{z(−∞), z(+∞)} > 0.

Finally, Ψ′
∞ > 0 in R, hence 0 < Ψ′

∞(0) = limk→+∞Ψ′
k(0) = limk→+∞ ψ′

k(0)/ψk(0) and

ψ′
k(0) > 0 for all k large enough. This contradicts the fact that ψ′

k(0) ≤ 0 for all k ∈ N

(remember (3.9) and (3.10)).

As a conclusion, there is ε > 0 such that ψ′(ξ) > 0 for any ξ ∈ R with ψ(ξ) ≤ ε for any

solution (φ, ψ) of (1.3) with c ∈ [c, c], 0 < φ < 1 and ψ > 0 in R. The proof of Lemma 3.8

in thereby complete. 2

4. The case c = c∗

This section is devoted to the proof of the existence of a traveling wave (φ, ψ) of (1.3)

satisfying (1.5), (1.6) and (1.7) with speed c = c∗. To do so, we consider a sequence {ck} of

real numbers such that ck ∈ (c∗, c∗ + 1] for each k ∈ N, and

ck → c∗ as k → +∞.

For each k ∈ N, Section 3 provides the existence of a traveling wave (φk, ψk) of (1.3) (with

speed ck) satisfying (1.5), (1.6) and (1.7). The natural strategy is to pass to the limit as

k → +∞, in order to get the existence of a traveling wave with the limiting speed c∗. To

achieve this goal, we need some a priori bounds for the functions ψk in order to get a non-

trivial solution at the limit. We also point out that the inequalities (3.1) satisfied by the

approximated waves (φk, ψk) do not carry over at the limit ck → c∗ (since the coefficients

in the definitions of the lower solutions depend on ck and degenerate at the limit ck → c∗).

Therefore, we will have to suitably shift and renormalize the approximated waves (φk, ψk)

before passing to the limit as k → +∞.

The first a priori bound asserts that the functions ψk do not converge to 0 uniformly as

k → +∞.

Lemma 4.1. There holds lim infk→+∞ ‖ψk‖L∞(R) > 0.

Proof. Assume that the conclusion does not hold. Then, up to extraction of a subsequence,

one can assume without loss of generality that ‖ψk‖L∞(R) → 0 as k → +∞. Since ck ∈

[c∗, c∗ + 1] ⊂ (0,+∞) for each k ∈ N, Lemma 3.8 implies that ψ′
k > 0 in R for all k large

enough. Since each ψk is bounded, it follows that the limit ψk(+∞) exists in R, for all k

large enough. Since each (φk, ψk) satisfies the assumptions of Lemma 3.9, one then infers in

particular that, for all k large enough,

ψk(+∞) = e∗ =
µ

β
(σ − 1) > 0.

This contradicts the fact that limk→+∞ ‖ψk‖L∞(R) = 0. Thus, the conclusion of Lemma 4.1

holds. �

The second key-point is the boundedness of the sequence {ψk} in L∞(R).

Lemma 4.2. There holds lim supk→+∞ ‖ψk‖L∞(R) < +∞.
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Proof. Assume that the conclusion does not hold. Then, up to extraction of a subsequence,

one has ‖ψk‖L∞(R) → +∞ as k → +∞. For each k ∈ N, since the function ψk is bounded

and positive in R, there is then ξk ∈ R such that

(4.1) ψk(ξk) ≥
(

1−
1

k + 1

)

‖ψk‖L∞(R).

In particular, ψk(ξk) → +∞ as k → +∞. Furthermore, one has

ψ′
k(ξ) ≥

d

c∗
ψk(ξ + 1)−

2d+ µ+ γ

c∗
ψk(ξ) in R

for all k ∈ N. Since each ψk is positive, it follows from Lemma 3.2 that the functions

ξ 7→ ψk(ξ ± 1)/ψk(ξ) are globally bounded in R independently of k ∈ N, and so are the

functions ξ 7→ ψ′
k(ξ)/ψk(ξ), from the equation (1.3) satisfied with speed ck ∈ (c∗, c∗ + 1]

(remember also that 0 < φk < 1 in R). As a consequence,

ψk(ξ + ξk) −→
k→+∞

+∞ locally uniformly in ξ ∈ R.

Lemma 3.3 then implies that

Φk(ξ) := φk(ξ + ξk) → 0

as k → +∞ locally uniformly in ξ ∈ R.

From the boundedness of the sequence {ψ′
k/ψk} in L

∞(R), one also infers that the functions

ξ 7→ Ψk(ξ) =
ψk(ξ + ξk)

ψk(ξk)

are locally bounded independently of k (in the sense that supk∈N ‖Ψk‖L∞(K) < +∞ for any

compact set K ⊂ R). Each function Ψk obeys

ck Ψ
′
k = dD[Ψk]− (µ+ γ) Ψk + β Φk Ψk in R,

whence the functions Ψ′
k are locally bounded too. From Arzela-Ascoli theorem, the positive

functions Ψk converge locally uniformly in R, up to extraction of a subsequence, to a con-

tinuous nonnegative function Ψ∞. Furthermore, from the above equation and the fact that

Φk → 0 as k → +∞ locally uniformly in R (together with ck → c∗ > 0), the functions Ψ′
k

converge locally uniformly in R too. Therefore, the functions Ψk converge in C1
loc(R) to Ψ∞

and the function Ψ∞ satisfies

(4.2) c∗Ψ′
∞ = dD[Ψ∞]− (µ+ γ) Ψ∞ in R.

Notice that this function Ψ∞ is thus automatically of class C∞(R). Furthermore, Ψ∞ is

nonnegative and Ψ∞(0) = limk→+∞Ψk(0) = 1. As in the proof of Lemma 3.8 for the

solution of (3.12), one then infers that Ψ∞ is positive in R.

Finally, for every ξ ∈ R, there holds ψk(ξ+ ξk) ≤ ‖ψk‖L∞(R) ≤ (1+1/k)ψk(ξk) from (4.1).

In other words, Ψk(ξ) ≤ 1 + 1/k for every ξ ∈ R and k ∈ N with k ≥ 1, whence Ψ∞(ξ) ≤ 1

for every ξ ∈ R. Therefore, since Ψ∞(0) = 1, 0 is a global maximum of the function Ψ∞,

and Ψ′
∞(0) = 0, D[Ψ∞](0) ≤ 0. The equation (4.2) evaluated at 0 leads to a contradiction,

since µ and γ are positive. The proof of Lemma 4.2 is thereby complete. �
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End of the proof of Theorem 1.1 in case c = c∗. First of all, Lemma 3.8 applied with

c = c∗ > 0 and c = c∗ + 1 yields the existence of ε > 0 such that Ψ′(ξ) > 0 for every ξ ∈ R

with Ψ(ξ) ≤ ε, and for every solution (Φ,Ψ) of (1.3) and (1.5) with speed c ∈ [c∗, c∗ + 1].

Without loss of generality, one can assume that

(4.3) 0 < ε ≤ e∗ =
µ

β
(σ − 1).

Coming back to our solutions (φk, ψk) of (1.3) (with speed ck) satisfying (1.5), (1.6) and (1.7),

it follows from Lemma 4.1 and the positivity of each ψk that one can also assume without

loss of generality that

0 < ε < inf
k∈N

‖ψk‖L∞(R).

Therefore, for each k ∈ N, since ψk(−∞) = 0 and ψk > 0, there is ξk ∈ R such that

ψk(ξk) = ε.

Shift the origin at ξk and denote

φ̃k(ξ) = φk(ξ + ξk) and ψ̃k(ξ) = ψk(ξ + ξk).

From Lemma 4.2, the sequence {ψ̃k} is bounded in L∞(R). Remember also that 0 < φ̃k < 1

in R and ck → c∗ > 0 as k → +∞. Therefore, up to extraction of a subsequence, the functions

φ̃k and ψ̃k converge in C∞
loc(R) to some bounded C∞(R) functions φ and ψ solving (1.3) with

speed c∗. Furthermore, 0 ≤ φ ≤ 1 and ψ ≥ 0 in R, while

ψ(0) = ε > 0.

In order to complete the proof of Theorem 1.1 in case c = c∗, one shall show that the

pair (φ, ψ) is non-trivial and satisfies the desired limiting conditions at ±∞, that is, the

conditions (1.5), (1.6) and (1.7) hold.

Let us first show that

ψ > 0 in R.

Indeed, if there is ξ∗ ∈ R such that ψ(ξ∗) = 0, then ψ′(ξ∗) = 0 and equation (1.3) at ξ∗

yields ψ(ξ∗ ± 1) = 0, whence ψ(ξ∗ + m) = 0 for all m ∈ Z by immediate induction. But

c∗ψ′ ≥ −(2d + µ + γ)ψ in R, whence the function ξ 7→ ψ(ξ) e(2d+µ+γ)ξ/c∗ is nondecreasing.

Since ψ ≥ 0 in R and ψ(ξ∗ + m) = 0 for all m ∈ Z, one infers that ψ = 0 in R, which is

impossible since ψ(0) = ε > 0. Thus, ψ > 0 in R. Once the positivity of ψ is known, it

follows as in the proof of Lemma 3.1 that

0 < φ < 1 in R.

In other words, the pair (φ, ψ) fulfills (1.5).

Let us then show that the pair (φ, ψ) satisfies the limiting conditions (1.6) at −∞. Since

the pair (φ, ψ) solves (1.3) and (1.5) with speed c∗, the choice of ε > 0 above and the

property ψ(0) = ε imply that ψ′ > 0 in (−∞, 0]. In particular, the limit L = limξ→−∞ ψ(ξ)

exists, and L ∈ [0, ε). If L > 0, then the same arguments as in the proof of Lemma 3.9

imply that φ(−∞) exists and φ(−∞) = (µ+ γ)/β = 1/σ ∈ (0, 1). The same arguments also



18 Y.-Y. CHEN, J.-S. GUO, AND F. HAMEL

yield L = ψ(−∞) = µ(1 − φ(−∞))/(βφ(−∞)) = (µ/β)(σ − 1) = e∗. Hence, e∗ = L < ε,

contradicting (4.3). Therefore,

L = ψ(−∞) = 0.

Furthermore, for any sequence {ξ̃k} converging to −∞, the functions ξ 7→ φ(ξ + ξ̃k) and

ξ 7→ ψ(ξ + ξ̃k) converge in C∞
loc(R), up to extraction of a subsequence, to a pair (φ∞, 0), for

some function 0 ≤ φ∞ ≤ 1 solving (3.11) with speed c∞ = c∗. It follows as in the proof of

Lemma 3.8 that φ∞ = 1 in R. Since the limit does not depend on the choice the sequence

{ξ̃k}, one gets that the limit limξ→−∞ φ(ξ) exists, and

φ(−∞) = 1.

In other words, the pair (φ, ψ) satisfies (1.6).

Let us finally show that the non-triviality conditions (1.7) hold at +∞. Firstly, as in the

proof of Lemma 3.7, there holds infR φ > 0. Secondly, Lemma 3.8 and (1.5) imply at once

that lim infξ→+∞ ψ(ξ) > 0. Thirdly, one concludes that lim supξ→+∞ φ(ξ) < 1 as in the proof

of (3.6) and that (3.7) holds as in the case c > c∗. The solution (φ, ψ) thus fulfills all desired

properties and the proof of Theorem 1.1 in case c = c∗ is thereby complete. 2

5. Non-existence of traveling waves for c < c∗

In this section, (φ, ψ) denotes a classical solution of (1.3) satisfying (1.5) and (1.6), with

a speed c ∈ R. By classical, we mean that φ and ψ are of class C1(R) (and then of class

C∞(R)) if c 6= 0, and that φ and ψ are continuous if c = 0. We shall prove that, necessarily,

c ≥ c∗. To do so, we consider separately the cases c > 0, c < 0 and c = 0.

First case: c > 0. Since the positive function ψ satisfies

ψ′(ξ) ≥
d

c
ψ(ξ + 1)−

2d+ µ+ γ

c
ψ(ξ)

for all ξ ∈ R, Lemma 3.2 implies that the functions ξ 7→ ψ(ξ ± 1)/ψ(ξ) are bounded, and

then so is the function ξ 7→ ψ′(ξ)/ψ(ξ). Consider now any sequence {ξk} converging to −∞.

The positive functions

ξ 7→ ψk(ξ) :=
ψ(ξ + ξk)

ψ(ξk)

are locally bounded and they satisfy

c ψ′
k = dD[ψk]− (µ+ γ)ψk + β φ(·+ ξk)ψk in R.

Therefore, the functions ψ′
k are locally bounded too (remember that φ(−∞) = 1). From

Arzela-Ascoli theorem, up to extraction of a subsequence, the functions ψk converge locally

uniformly (and then in C1
loc(R) from the above equation) to a function ψ∞ solving

(5.1) c ψ′
∞ = dD[ψ∞] + (β − µ− γ)ψ∞ in R.

Furthermore, ψ∞ ≥ 0 in R and ψ∞(0) = 1. As in the proof of Lemma 3.8 for the function Ψ∞

solving (3.12), it follows that ψ∞ > 0 in R. Now, the function z = ψ′
∞/ψ∞ solves

(5.2)
c

d
z(x) = e

∫ x+1

x
z(s)ds + e

∫ x−1

x
z(s)ds − 2 +

β − µ− γ

d
in R.
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Proposition 3.5 implies that the limits z(±∞) exist in R and are roots ω of the equation

c ω = d (eω + e−ω − 2) + β − µ− γ.

Since c > 0 and β > µ+ γ, the roots must be positive and c ≥ c∗ by definition of c∗ in (1.4).

The proof of the necessity condition is thereby complete in the case c > 0.

Second case: c < 0. Denote Φ(ξ) = φ(−ξ) and Ψ(ξ) = ψ(−ξ). The functions Φ

and Ψ satisfy (1.3) and (1.5) with speed |c| > 0, together with the limiting conditions

(Φ(+∞),Ψ(+∞)) = (1, 0). Furthermore, since the positive function Ψ satisfies

Ψ′(ξ) ≥
d

|c|
Ψ(ξ + 1)−

2d+ µ+ γ

|c|
Ψ(ξ)

and (1.3) with spped |c|, it follows as in the above case c > 0 that the function Ψ′/Ψ is

bounded. Since Ψ > 0 in R and Ψ(+∞) = 0, one can consider a sequence {ξk} converging

to +∞ such that

Ψ′(ξk) ≤ 0 for all k ∈ N.

As above, up to extraction of a subsequence, the functions ξ 7→ Ψk(ξ) := Ψ(ξ + ξk)/Ψ(ξk)

converge in C1
loc(R) to a positive solution Ψ∞ of (5.1) with |c| instead of c, and such that

Ψ∞(0) = 1. Furthermore, here, Ψ′
∞(0) ≤ 0. The function Z := Ψ′

∞/Ψ∞ satisfies (5.2) with

|c| instead of c and it follows from Proposition 3.5 that the limits Z(±∞) exist in R and are

roots Ω of the equation

|c|Ω = d (eΩ + e−Ω − 2) + β − µ− γ.

Since β > µ + γ, the roots are positive (and |c| ≥ c∗). In particular, Z is positive at ±∞.

But Z(0) = Ψ′
∞(0)/Ψ∞(0) = Ψ′

∞(0) ≤ 0. Hence, the continuous function Z has a minimum

Ξ in R, that is Z(Ξ) ≤ Z(ξ) for all ξ ∈ R. By differentiating the equation satisfied by Z,

one gets as in (3.14) that

|c|Z ′(ξ) = d (Z(ξ + 1)− Z(ξ))
Ψ∞(ξ + 1)

Ψ∞(ξ)
+ d (Z(ξ − 1)− Z(ξ))

Ψ∞(ξ − 1)

Ψ∞(ξ)
in R.

Hence, Z(Ξ ± 1) = Z(Ξ), and Z(Ξ + m) = Z(Ξ) = minR Z for all m ∈ Z by immediate

induction. Therefore, Z(±∞) = minR Z ≤ Z(0) ≤ 0, a contradiction with the positivity of

Z(±∞). As a consequence, the case c < 0 is ruled out.

Third case: c = 0. Here, the function ψ satisfies dD[ψ] + (β φ− µ− γ)ψ = 0 in R. Since

d > 0, β > µ+ γ, φ(−∞) = 1 and ψ > 0 in R, it follows that there exists ξ0 ∈ R such that

D[ψ](ξ) < 0 for all ξ ≤ ξ0. Denote

θ(ξ) = ψ(ξ)− ψ(ξ + 1).

The condition D[ψ] < 0 in (−∞, ξ0] means that θ(ξ − 1) < θ(ξ) for all ξ ≤ ξ0. Furthermore,

since ψ > 0 in R and ψ(−∞) = 0, there is ξ1 ≤ ξ0 such that θ(ξ1) < 0. Since θ(ξ1−m) < θ(ξ1)

for all m ∈ N with m ≥ 1, one infers that

ψ(ξ1 −m)− ψ(ξ1) =

m∑

j=1

θ(ξ1 − j) < mθ(ξ1)
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for all m ∈ N with m ≥ 1. Thus, ψ(ξ1 −m) < ψ(ξ1) +mθ(ξ1) → −∞ as m → +∞ since

θ(ξ1) < 0. This contradicts the positivity of ψ. As a consequence, the case c = 0 is ruled

out too and the proof of Theorem 1.1 is thereby complete. 2

Remark 5.1. We give here another proof of the positivity of c when ψ is bounded (cf. [25]).

Since φ(−∞) = 1 and β > µ+ γ, there is a sufficiently large K such that

β φ(ξ)− µ− γ >
β − µ− γ

2
> 0 for ξ ∈ (−∞,−K).

Integrating the second equation of (1.3) from −∞ to ξ < −K, using ψ(−∞) = 0 and the

positivity and boundedness of ψ, we obtain

c ψ(ξ) = d

{∫ ξ+1

ξ

ψ(s)ds−

∫ ξ

ξ−1

ψ(s)ds

}

+

∫ ξ

−∞

[β φ(s)− µ− γ]ψ(s) ds

≥ −d {sup
s∈R

ψ(s)}+
β − µ− γ

2

∫ ξ

−∞

ψ(s) ds

for all ξ < −K. It follows that the integral

R(ξ) :=

∫ ξ

−∞

ψ(s) ds

is well-defined for all ξ < −K (and then for all ξ ∈ R by continuity of ψ). Integrating the

second equation of (1.3) twice, we obtain

cR(x) = d

{∫ x+1

x

R(ξ) dξ −

∫ x

x−1

R(ξ) dξ

}

+

∫ x

−∞

∫ ξ

−∞

[β φ(s)− µ− γ]ψ(s) ds dξ

for all x ∈ R. Since R(ξ) is strictly increasing, we conclude that c > 0.
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(F. Hamel)Aix Marseille Université, CNRS, Centrale Marseille, Institut de Mathématiques

de Marseille, UMR 7373, 13453 Marseille, France

E-mail address : francois.hamel@univ-amu.fr


