
HAL Id: hal-01286469
https://hal.science/hal-01286469v1

Submitted on 10 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Game Semantics and Normalization by Evaluation
Pierre Clairambault, Peter Dybjer

To cite this version:
Pierre Clairambault, Peter Dybjer. Game Semantics and Normalization by Evaluation. 18th Interna-
tional Conference on Foundations of Software Science and Computation Structures (FoSSaCS), Apr
2015, Londres, United Kingdom. �10.1007/978-3-662-46678-0_4�. �hal-01286469�

https://hal.science/hal-01286469v1
https://hal.archives-ouvertes.fr

Game Semantics
and Normalization by Evaluation

Pierre Clairambault1 and Peter Dybjer2

1 CNRS, ENS Lyon, Inria, UCBL, Université de Lyon
2 Chalmers University of Technology

Abstract. We show that Hyland and Ong’s game semantics for PCF
can be presented using normalization by evaluation (nbe). We use the
bijective correspondence between innocent well-bracketed strategies and
PCF Böhm trees, and show how operations on PCF Böhm trees, such as
composition, can be computed lazily and simply by nbe. The usual equa-
tions characteristic of games follow from the nbe construction without
reference to low-level game-theoretic machinery. As an illustration, we
give a Haskell program computing the application of innocent strategies.

1 Introduction

In game semantics [17,3] types are interpreted as games between two players
(Player/Opponent), and programs as strategies for Player. Combinators for pro-
grams become operations on strategies that can be quite complex. Composition
of strategies for instance, involves an intricate mechanism of parallel interaction
plus hiding à la CCS. The proof that they satisfy required equations is typically
lengthy and non-trivial. In Hyland and Ong’s game semantics of PCF [17] in
particular, strategies interpreting programs are innocent : recall that a strategy
is a set of admissible plays for Player, and is innocent when Player’s action
only depends on a subset of the play called the P-view. So innocent strategies
are specified – and often defined as – a set of P-views (the view functions).
Composing two such strategies involves computing the full set of plays of both
strategies, composing these using parallel interaction plus hiding, and computing
the P-views of the compound strategy. These computations are quite complex.

Several authors have tried to give more direct or elegant presentations of
innocent strategies and their composition. Quite early, Curien gave syntactic
representations of innocent strategies as abstract Böhm trees [10] and gave an
abstract machine (the VAM) to compose them – this machinery is also quite
involved. Amadio and Curien [5] reason about innocent strategies for PCF syn-
tactically as PCF Böhm trees and compose them via infinitary rewriting. Finally
and more recently, Harmer, Hyland and Melliès gave an elegant categorical re-
construction of innocent strategies from a basic category of simple games [16].
The resulting algorithm to compose strategies is however still quite involved.

In the present paper we provide yet another presentation of the innocent
game semantics for PCF. Like Amadio and Curien we represent strategies as

PCF Böhm trees. However, we use normalization by evaluation (nbe) [6] rather
than infinitary rewriting. As Aehlig and Joachimski [4] showed, nbe can be used
for computing the potentially partial and infinite Böhm trees of the untyped
lambda calculus, and not only for computing normal forms. To this end they
used lazy evaluation for computing the finite approximations of the Böhm tree.

We here adapt the nbe technique to PCF Böhm trees. To compute an oper-
ation on terms (PCF Böhm trees, strategies), we first evaluate them in a non-
standard semantic domain where we then perform the corresponding semantic
operation. Finally, the result is read back to the resulting PCF Böhm tree. For
example, composition of PCF Böhm trees is performed by ordinary function
composition in the semantic domain.

Finally note that our construction and its soundness are independent of the
standard presentation of game semantics. The fact that our model agrees with
the standard presentation of the innocent model for PCF follows from high-level
reasons that use the soundness, adequacy and definability properties of game
semantics. In particular, our contribution does not (and does not aim to) give
insights into the low-level combinatorics of innocent interaction.

Related work. The first author and Murawski [9] use nbe to generate representa-
tions of innocent strategies in boolean PCF by higher-order recursion schemes.
They exploit the fact that booleans can be replaced by their Church encoding.
In contrast we consider here PCF with a datatype for lazy natural numbers,
which is infinite. Thus our proof requires different techniques and is significantly
more complex. Our approach is not particular to natural numbers and should
smoothly extend to McCusker’s games for recursive types [18].

Our non-standard semantic domain is similar to those used for previous work
on untyped nbe [15,14], where semantic elements can be thought of as infinitary
terms in higher order abstract syntax (hoas). We define a semantic domain for
PCF Böhm trees in hoas, and show how to compute semantic operations in
such a way that certain commuting conversions are executed. This is a key
difference to the semantic domain used for normalizing terms in Gödel system
T [1], which does not include these commuting conversions. We remark that
although this approach to nbe initially was used for untyped nbe, it can also
be used to advantage for typed languages. For example, it was a crucial step in
devising nbe for dependent type theory [2] to use a similar semantic domain of
untyped normal forms in hoas.

Plan of the paper. The rest of the paper is organized as follows. In Section 2
we introduce the syntax and reduction rules of PCF and our notion of model.
We recall some notions from Hyland-Ong game semantics including the notions
of innocent strategy and PCF Böhm tree. We also write a Haskell program
for application of PCF Böhm trees using nbe. In Section 3 we provide a domain
interpretation of the non-standard model used in the Haskell program. We prove
that the interpretation function preserves all syntactic conversions of PCF, and
that the interpretation of a term is identical to its PCF Böhm tree. In Section 4
we use these results to reconstruct the game model of PCF from nbe.

2 PCF, innocent strategies, and PCF Böhm trees

2.1 PCF

Our version of PCF is close to Plotkin’s original [20], except that we consider
lazy (rather than flat) natural numbers. (Ultimately, we are interested in the
connection between game semantics and Martin-Löf’s meaning explanations [13],
which are based on lazy evaluation of the terms of intuitionistic type theory.)
Nothing in our approach is particular to natural numbers and we believe the
approach extends to a more general setting of recursive types.

Types and terms. The types of PCF are generated by the type N of natural
numbers, and function types A → B. A context is a list of types denoted by
Γ,∆. The empty context is []. We define the set of raw terms by the following
grammar, where n ∈ N is a natural number.

a, b, c ::= n | app a b | λ a | 0 | suc a | case a b c | fix a | Ω

Note that we use de Bruijn indices: the variable n refers to (if it exists) the
first λ encountered after crossing n occurrences of λ when going up the syntax
tree from the variable to the root. We include the non-terminating program Ω.
Terms are assigned types using standard typing rules, displayed in Figure 1.

An−1, . . . , A0 ` i : Ai

Γ ` b : A→ B Γ ` a : A

Γ ` app b a : B

Γ,A ` b : B

Γ ` λ b : A→ B Γ ` 0 : N

Γ ` a : N Γ ` b : A Γ,N ` c : A

Γ ` case a b c : A

Γ ` a : N

Γ ` suc a : N

Γ,A ` c : A

Γ ` fix c : A Γ ` Ω : N

Fig. 1. Typing rules for PCF

Substitution. A substitution is a sequence of terms, written Γ ` 〈an−1, . . . , a0〉 :
An−1, . . . , A0 if for all 0 ≤ i ≤ n− 1 we have Γ ` ai : Ai. For |Γ | = n we define
abbreviations idΓ = 〈n− 1, . . . , 0〉, pΓ,A = 〈n, . . . , 1〉 and qΓ,A = 0. We have
Γ ` idΓ : Γ and Γ,A ` pΓ,A : Γ . We will often just write id,p, and q.

(case a b c)[γ] = case a[γ] b[γ] c[〈γ ◦ p, q〉] (suc a)[γ] = suc (a[γ]) 0[γ] = 0
(app f a)[γ] = app (f [γ]) (a[γ]) (fix c)[γ] = fix (c[〈γ ◦ p, q〉]) Ω[γ] = Ω

(λ f)[γ] = λ (f [〈γ ◦ p, q〉])

Fig. 2. Substitution on term constructors

We define the action a[γ] of a substitution ∆ ` γ : Γ on a term Γ ` a : A by
induction on a, with i[〈an−1, . . . , a0〉] = ai for variables and following the rules
of Figure 2 for term constructors. The composition of substitutions is defined by
〈an−1, . . . , a0〉 ◦ γ = 〈an−1[γ], . . . , a0[γ]〉. When composing substitutions we will
sometimes omit the operator ◦ and just use juxtaposition. By abuse of notation,
we write 〈γ, a〉 for the sequence obtained by adding a at the end of γ.

c →η1 λ (app (c[p]) q)
app (λa) b →β1 a[〈id, b〉] a →η2 case a 0 (suc q)

case 0 b c →β2 b case (case a b f) b′ f ′ →γ1 case a (case b b′ f)
case (suc a) b c →β3 c[〈id, a〉] (case f (b′[p])

fix f →δ f [〈id, fix f〉] (f ′[〈pp, q〉]))
Ω →Ω Ω app (case a b f) c →γ2 case a (app b c)(app f (c[p]))

Fig. 3. Reduction rules for PCF

Reduction. We equip PCF with the (context closure of the) reduction rules in
Figure 3. The rules are typed : a reduction applies when both sides typecheck.
We write ≈ for convertibility, i.e. the contextual equivalence closure of these
relations. The two columns of Figure 3 will be treated quite differently in our
development. The left hand side contains the computation rules which are used
for evaluating a closed term of ground type. The right hand side contains η-
expansion and commutating conversions, which are additional rules needed in
Section 3.4 for transforming an arbitrary term to its PCF Böhm tree.

We will also need head reduction. For that, define head environments as:

H[] ::= [] | case H[] b c | app H[] b | λ H[]

Head reduction →h is H[→α] for α ∈ {β1, β2, β3, δ, Ω} a computation rule.
Head reduction is deterministic: for each term, at most one head reduction ap-
plies. A term a is a head normal form if it is →h-normal. If a→∗h a′ where a′

is →h-normal, then a′ is the head normal form of a.

Non-dependent cwfs. Usually a model of PCF is a cartesian closed category with
extra structure. We prefer to use a notion of model which separates contexts and
types, and thus more closely matches the structure of our syntax. For that we use
categories with families (cwfs) [12]. Cwfs provide a notion of model of dependent
type theory which is both close to the syntax, and completely algebraic: it can
be presented as a generalized algebraic theory in the sense of Cartmell [7].

Since we do not have dependent types we use non-dependent cwfs, that is
cwfs where the set of types Type(Γ) does not depend on the context Γ .

Definition 1. A non-dependent cwf consists of a set of types Type, plus:

– A base category C. Its objects represent contexts and its morphisms represent
substitutions. We write ∆ ` γ : Γ for a context morphism from ∆ to Γ . The
identity is written Γ ` idΓ : Γ and composition is written γ ◦ δ, or just γδ.

– A functor T : Cop → SetType. For each context Γ and type A this gives
a set T (Γ)(A), written Γ ` A, of terms of type A in context Γ . We write
Γ ` a : A for a ∈ Γ ` A. For γ : ∆ → Γ a morphism in C, then T (γ)(A) :
Γ ` A→ ∆ ` A provides a substitution operation, written ∆ ` a[γ] : A.

– A terminal object [] of C which represents the empty context and a terminal
morphism 〈〉 : ∆→ [] which represents the empty substitution.

– A context comprehension which to an object Γ in C and a type A ∈ Type
associates an object Γ ·A of C, a morphism pΓ,A : Γ ·A→ Γ of C and a term
Γ ·A ` qΓ,A : A such that the following universal property holds: for each
object ∆ in C, morphism γ : ∆→ Γ , and term a : ∆ ` A, there is a unique
morphism θ = 〈γ, a〉 : ∆→ Γ ·A, such that pΓ,A ◦ θ = γ and qΓ,A[θ] = a.

Democratic [8] non-dependent cwfs are equivalent to categories with finite prod-
ucts, but mimic more closely the structure of syntax. To describe the intended
models of PCF we equip non-dependent cwfs with more structure, as follows.

Definition 2. A non-dependent cwf supports PCF, or is a pcf-cwf, iff it is
closed under the types and term constructors of Figure 1 (other than variable)
and validates the equations and reduction rules of Figures 2 and 3, which have
been chosen to make formal sense in an arbitrary non-dependent cwf as well as in
the syntax of PCF. (A de Bruijn variable n in PCF is interpreted as an iterated
projection q[pn] and all other syntactic constructs have a direct interpretation.)

2.2 Innocent strategies for PCF

We start with a simple operational presentation of the pcf-cwf of innocent well-
bracketed strategies playing on (arenas for) PCF types.

N → N → N
q OQ

q PQ
0 OA

q PQ
0 OA

0 PA

Fig. 4. A play on N→ N→ N

Game semantics formalize the intuition
that a program is a strategy, and that execu-
tion is a play of this strategy against its ex-
ecution environment according to rules deter-
mined by the type. For instance, a dialogue of
type N → N → N could be that of Figure 4.
Moves are either Questions (Q) or Answers (A)
by either Player (P) or Opponent (O). Ques-
tions correspond to variable calls, and Answers
to evaluation to terminating calls. The lines
between moves are justification pointers: they

convey information about thread indexing – here they are redundant, but be-
come necessary on higher types. The diagram above should be read as follows:
Opponent asks for the output of a function f : N → N → N. This function f
(Player) proceeds to interrogate its first argument. This argument is part of the
execution environment of f , so it is played by Opponent – if it evaluates to 0,
then f evaluates its second argument. If it also evaluates to 0, then f answers
0. A strategy is a collection of such interactions, informing the full behaviour of
a program under execution.

The dialogue above, considered as a branch of a strategy, can also be repre-
sented syntactically by the term ` λ (λ (case 1 (case 0 0 Ω) Ω)) : N→ N→ N,
where the occurrences of Ω indicate parts of the term for which the dialogue
above gives no information. In general a dialogue such as the above where (1)
Opponent moves are justified by their immediate predecessor and (2) every An-
swer is justified by the last unanswered Question, can always be represented
syntactically as a partial term – such dialogues are usually called well-bracketed
P-views. In our example, the dialogue is a branch of the strategy for left-plus
that first evaluates its first argument (and copies lazily each successor), then
the second. The strategy for left-plus contains countably many dialogues. As a
typical example, we show the dialogue for the computation of 2 + 2 in Figure 5.

N → N → N
q OQ

q PQ

S OA
S PA
q OQ

q PQ

S OA
S PA

q OQ
q PQ

0 OA
q PQ

S OA
S PA
q OQ

q PQ

S OA
S PA

q OQ
q PQ

0 OA
0 PA

Fig. 5. left-plus

Representing these plays syntactically and pasting
them together, one obtains the infinitary term ` plus :
N→ N→ N defined by

plus = λ (λ (case 1 cc (suc plus1)))

cc = case 0 0 (suc cc)

plusn = case 0 (casen 0 (suc cc)) (suc plusn+1)

Here cc stands for copycat, the back-and-forth copy-
ing performed by the strategy when evaluating its second
argument. Note that the de Bruijn indices grow. Indeed
the second argument of case is an abstraction which binds
a new variable, so the address of the second argument of
f corresponds to larger and larger integers. Alternatively
one can say that each Opponent Answer S in the plays
provide a possible justifier that has to be crossed before
reaching the second argument of f . We call the infinitary
term above the PCF Böhm tree of left-plus.

The ideas above can easily be extended to represent
syntactically (as an infinitary term) any innocent well-
bracketed strategy, i.e. set of well-bracketed P-views on
first-order PCF types N→ . . .→ N→ N. In general how-
ever, types of PCF have the form An−1 → . . .→ A0 → N,
where each Ai has itself the form Ai,pi−1 → . . .→ Ai,0 →
N. In that case the discussion above still applies to the re-
striction of a strategy to its “first-order sub-type”, which
provides the backbone of a PCF Böhm tree. However,

Player also needs to specify its behaviour should Opponent interrogate any of the
arguments Ai,j of a Player Question at the root of Ai. For each such Opponent
Question, following (co-)inductively the same reasoning, a strategy for Player
would inform a new strategy playing on An−1 → . . . → A0 → Ai,j that can
be set as an argument to the variable call matching the Player Question under
consideration. This presentation of a strategy is called its PCF Böhm tree.

PCF Böhm trees. We now describe the terms obtained by this process. There
are two kinds. On the one hand we define the neutral PCF Böhm trees which
specify one Player Question (a variable call) along with the Player sub-strategies
for the arguments of this call. On the other hand we define PCF Böhm trees wrap
neutral PCF Böhm trees in a case statement, specifying the Player sub-strategies
to play if Opponent answers 0 or S. We write Γ `Ne e : A if e is a finite neutral
Böhm tree and Γ `Bt t : A if t is a finite PCF Böhm trees of type A in context
Γ . They are defined as follows:

An−1, . . . , Ai, . . . , A0 `Ne i : Ai

Γ `Ne e : A→ B Γ `Bt t : A

Γ `Ne app e t : B

Γ,A `Bt t : B

Γ `Bt λ t : A→ B

Γ `Bt a : N

Γ `Bt suc a : N

Γ `Ne e : N Γ `Bt t : N Γ,N `Bt t
′ : N

Γ `Bt case e t t′ : N Γ `Bt Ω : N Γ `Bt 0 : N

Fig. 6. Typing rules for finite PCF Böhm trees

These two sets are partially ordered by (the contextual closure of) Ω ≤ a for
all a, and their infinitary counterparts are defined as ideals (non-empty down-
ward directed sets) for this order [21] – we will often keep this ideal completion
implicit. From now on all PCF Böhm trees are considered infinitary,

The representation process outlined above yields a PCF Böhm tree in this
formal sense. Moreover, this PCF Böhm tree is an infinitary PCF term, so can
be sent back to a strategy using (by continuity) the usual game-theoretic inter-
pretation of terms. This operation is inverse to the reification process described
above, yielding an isomorphism between PCF Böhm trees and innocent strate-
gies. In fact the correspondence is so direct that in the remainder of this paper we
will identify them, and simply consider PCF Böhm trees as our representation
of innocent strategies.

This correspondence is nothing new – it is one of the fundamental properties
of the game model leading to definability: see eg Theorem 5.1 in [11]. It is easy
to adapt this to lazy PCF. It is implicit in McCusker’s definability process for
a language with lazy recursive types (see Proposition 5.8 in [18]). We have not
spelled out this connection more formally, since it would take too much space to
introduce the required game-theoretic machinery.

2.3 Computing operations on strategies by nbe

To conclude this section we present (one aspect of) our result: that we can com-
pute operations on innocent well-bracketed strategies, regarded as PCF Böhm
trees, by nbe. As an example, a Haskell program that, given two infinite PCF
Böhm trees as input, produces lazily the application of one to the other. All other
operations of pcf-cwfs can be defined in an analogous way. In the remaining sec-
tions we will then show that application, and all the other pcf-cwf operations,

satisfy the expected equations, and that we get a pcf-cwf PCFInn of PCF-Böhm
trees (or innocent, well-bracketed strategies).

The Haskell datatype for representing PCF Böhm trees and types of PCF is:

data Tm = ZeroTm | SuccTm Tm | LamTm Tm | CaseTm Tm Tm Tm

| VarTm Int | AppTm Tm Tm

data Ty = Nat | Arr Ty Ty

It should be clear to the reader how inhabitants of Tm include representatives
for PCF Böhm trees, hence for innocent strategies. The first step is to interpret
PCF Böhm trees in a semantic domain D, which is a hoas version of Tm:

data D = ZeroD | SuccD D | LamD (D -> D) | CaseD D D (D -> D)

| VarD Int | AppD D D

We then introduce two semantic operations appD :: D -> D -> D for ap-
plication, and caseD :: D -> D -> (D -> D) -> D for case construction.

appD (LamD f) d’ = f d’

appD (CaseD e d f) d’ = CaseD e (appD d d’) (\x -> appD (f x) d’)

appD (VarD n) d’ = AppD (VarD n) d’

appD (AppD e d) d’ = AppD (AppD e d) d’

caseD ZeroD e’ f’ = e’

caseD (SuccD d) e’ f’ = f’ d

caseD (CaseD e d f) e’ f’ = CaseD e (caseD d e’ f’)

(\x -> caseD (f x) e’ f’)

caseD (AppD e d) e’ f’ = CaseD (AppD e d) e’ f’

caseD (VarD i) e’ f’ = CaseD (VarD i) e’ f’

We can interpret a PCF Böhm tree in the semantic domain D by the function
eval :: Tm -> [D] -> D. It takes a term and interprets it in a given environ-
ment, encoded as a list of elements of the domain.

eval ZeroTm env = ZeroD

eval (SuccTm t) env = SuccD (eval t env)

eval (LamTm t) env = LamD (\x -> eval t (x:env))

eval (CaseTm t1 t2 t3) env = caseD (eval t1 env) (eval t2 env)

(\x -> eval t3 (x:env))

eval (VarTm i) env = env !! i

eval (AppTm t1 t2) env = appD (eval t1 env) (eval t2 env)

An element of the semantic domain can be read back to a term using the
function readbackD :: Int -> D -> Tm, defined as follows.

readbackD n ZeroD = ZeroTm

readbackD n (SuccD d) = SuccTm (readbackD n d)

readbackD n (LamD f) = LamTm (readbackD (n+1) (f (VarD n)))

readbackD n (CaseD e d f) = CaseTm (readbackD n e) (readbackD n d)

(readbackD (n+1) (f (VarD n)))

readbackD n (VarD i) = VarTm (n-i-1)

readbackD n (AppD e d) = AppTm (readbackD n e) (readbackD n d)

Finally, we obtain readback :: Int -> ([D] -> D) -> Tm as

readback n f = readbackD n (f [VarD (n-i-1) | i <- [0..(n-1)]])

The application of a PCF Böhm tree (innocent strategy) Γ `Bt t : A → B
to Γ `Bt t

′ : A with |Γ | = n can now be computed lazily as app n t t’, where
app :: Int -> Tm -> Tm -> Tm is defined by

app n t t’ = readback n (\x -> appD (eval t x) (eval t’ x))

We will in the following sections prove that this simple definition computes
the claimed result. We can define functions for all other pcf-cwf combinators in
a similar way, and prove that they satisfy the pcf-cwf-laws. In this way we get a
pcf-cwf PCFInn which is an alternative nbe-based presentation of the innocent
strategies model of PCF – these will come as a by-product of a nbe procedure
producing the innocent strategy for a term.

3 The domain interpretation

To prove the correctness of the nbe program we use its denotational semantics
in Scott domains. We first show that the interpretation function is sound w.r.t.
syntactic conversion and computationally adequate. Then we show that the η-
expanded interpretation of a term is equal to that of its PCF Böhm tree.

3.1 A semantic domain

D and its combinators. The Haskell datatype D can be interpreted as a Scott
domain D which is the solution of the domain equation given by the constructors:

LamD : (D→ D)→ D SucD : D→ D 0D : D
AppD : D→ D→ D CaseD : D→ D→ (D→ D)→ D VarD : N→ D

We write ΩD for the bottom element. The two semantic operations appD : D→
D → D and caseD : D → D → (D → D) → D are defined as their Haskell
counterparts in Section 2.3.

Interpretation of PCF. Let Tm be the set of elements of the raw syntax of PCF.
If E is a set, [E] denotes the set of lists of elements of E. As for substitutions, we
write 〈〉 for the empty list. If ρ ∈ [D] and d ∈ D, we write ρ :: d for the addition
of d at the end of ρ3 Finally, ρ(i) is the i-th element of ρ starting from the right
and from 0, if it exists, and ΩD otherwise.

The interpretation of PCF is defined as a function J−K : Tm→ [D]→ D:

[[fix f]] ρ =
⊔
n∈N(λd. [[f]] (ρ :: d))n(ΩD) [[n]] ρ = ρ(n)

[[app s t]] ρ = appD ([[s]] ρ) ([[t]] ρ) [[suc a]] ρ = SucD ([[a]] ρ)
[[λ t]] ρ = LamD (λx.[[t]] (ρ :: x)) [[Ω]] ρ = ΩD

[[case a b c]] ρ = caseD ([[a]] ρ) ([[b]] ρ) (λx. [[c]] (ρ :: x)) [[0]] ρ = 0D

3 This notational difference from the Haskell program ensures that the order of envi-
ronments matches that of the context.

It is extended to substitutions γ = 〈an−1, . . . , a0〉 by [[γ]] ρ =
〈[[an−1]] ρ, . . . , [[a0]] ρ〉.

3.2 Soundness for conversion

Here, we prove that the interpretation described above is sound with respect to
conversion in PCF. Reduction rules of PCF come in three kinds: the computation
rules (β1, β2, β3, δ, Ω), the commutation rules (γ1, γ2) and the η-expansion rules
(η1, η2). Soundness w.r.t. computation rules follows from standard (and simple)
verifications, and we verify only the commutation and η-expansion rules.

Commutation rules. The interpretation of PCF validates γ1 and γ2.

Lemma 1. For all d1, d2, d3 ∈ D and f, f1, f2 ∈ D→ D, we have:

appD (caseD d1 d2 f) d3 = caseD d1 (appD d2 d3) (λx. appD (f x) d3)

caseD (caseD d1 d2 f1) d3 f2 = caseD d1 (caseD d2 d3 f2) (λx. caseD (f1 x) d3 f2)

Proof. We apply Pitts’ co-induction principle [19] for proving inequalities in re-
cursively defined domains. The proof proceeds by defining a relationR containing
the identity relation on D and all pairs (for d1, d2, d3 ∈ D and f ∈ D→ D):

(appD (caseD d1 d2 f) d3, caseD d1 (appD d2 d3) (λx. appD (f x) d3))

Then, R is a bisimulation. For d1 = ΩD,VarD i,AppD d
′
1 d
′
2,LamD f

′, 0D or
SucD d

′, both sides evaluate to the same, so the bisimulation property is trivial.
For d1 = CaseD d

′
1 d
′
2 f
′, by direct calculations both sides start with CaseD,

followed by arguments related by R. By Pitts’ result [19] the equality follows.

η-expansion rules. Note that these cannot be true in general since the interpre-
tation ignores type information. So we define a semantic version of η-expansion:

ηN d = caseD d 0D (λx. ηN x) ηA→B d = LamD (λx. ηB appD d (ηA x))

It extends to environments by η[] ρ = [], ηΓ,A [] = (ηΓ []) :: ΩD and ηΓ,A (ρ :: d) =
(ηΓ ρ) :: (ηA d). For f : [D]→ D we define ηΓ`A f = λρ. ηA (f (ηΓ ρ)).

From semantic η-expansion we get a typed notion of equality up to η-
expansion in the domain: for a type A and elements d, d′ ∈ D we write d =A d

′

iff ηA d = ηA d
′. This generalizes to f =Γ`A f

′ in the obvious way. We now prove
that syntactic η-expansion is validated up to semantic η-expansion.

It is easy to see that for Γ ` b : A→ B we have JbK =Γ`A→B Jλ (app b[p] 0)K
and also to verify the η-rule for N. However, reduction rules are closed under
context, so we need to check that typed equality is a congruence.

This relies on the fact that the interpretation of terms cannot distinguish an
input from its η-expansion. To prove that we start by defining a realizability
predicate on D, by d N for all d ∈ D, and d A → B iff for all d′ A, (1)
appD d d

′ =B appD d (ηA d
′) and (2) appD d d

′ B. This predicate generalizes

to contexts (written ρ Γ) in the obvious way. We observe by induction on A
that η-expanded elements of D are realizers: for all d ∈ D, ηA d A. But the
interpretation of terms, despite not being η-expanded, also satisfy it. Indeed we
prove, by induction on typing judgments, the following adequacy lemma.

Lemma 2. For Γ ` a : A, ρΓ , then (1) JaK ρ =A JaK (ηΓ ρ) and (2) JaK ρA.

It is then immediate that the interpretation of term constructors preserves typed
equality. All conversion rules hold up to typed equality in D, which is a congru-
ence w.r.t. the interpretation of terms. Putting it all together we conclude:

Proposition 1 (Soundness). For Γ ` a, a′ : A with a ≈ a′, JaK =Γ`A Ja′K.

3.3 Computational adequacy

As a step towards our main result, we prove computational adequacy:

Proposition 2. If Γ ` a : A and JaK 6=Γ`A ΩD then a has a head normal form.

First, we reduce the problem to closed terms by noting two properties:

– Firstly, Γ,A ` b : B has a head normal form iff λ b has,
– Secondly, JbK =Γ,A`B ΩD iff Jλ bK =Γ`A→B ΩD, as can be checked by a

simple calculation.

So we abstract all free variables of a term and reason only on closed terms.
We now aim to prove it for closed terms. The proof has two steps: (1) we

prove it for closed terms of ground type using logical relations, and (2) we deduce
it for closed terms of higher-order types. To obtain (2) from (1) we will need to
temporarily enrich the syntax with an error constant ∗. This ∗ has all types –
we write Γ `∗ a : A for typing judgments in the extended syntax. We also add
two head reductions app ∗ a→h ∗ and case ∗ a b c→h ∗.

We also need to give an interpretation of ∗ in D. At this point it is tempting
to enrich the domain D with a constructor for ∗. Fortunately we can avoid that;
indeed the reader can check that setting J∗K ρ = CaseDΩDΩD (λx.ΩD) = ∗D,
the interpretation validates the two reduction rules above. Note that the term ∗
is only an auxiliary device used in this section: we will never attempt to apply
nbe on a term with error, so this coincidence will be harmless.

Ground type. We first define our logical relations.

Definition 3. We define a relation ∼nN between closed terms `∗ a : N and
elements of D by induction on n. First a ∼0

N d always. Then, a ∼n+1
N d iff either

d = ΩD, or a→∗h 0 and d = 0D, or a→∗h ∗ and d = ∗D, or finally, if a→∗h suc a′

and d = SucD d
′ and a′ ∼nN d′. We then define a ∼N d iff for all n ∈ N, a ∼nN d.

Finally, b ∼A→B d iff for any a ∼A e, app b a ∼B appD d e.

This relation is closed under backward head reduction, and satisfies the con-
tinuity property that for any ω-chain (di)i∈N, if a ∼A di for all i then a ∼A tidi.
The fundamental lemma of logical relations follows by induction on a.

Lemma 3. For any term Γ `∗ a : A, for any δ ∼Γ ρ, we have a[δ] ∼A JaK ρ.

By definition of ∼A, computational adequacy follows for closed terms of type N.

Higher-order types. Suppose ` a : An−1 → . . . → A0 → N = A satisfies JaK 6=A

ΩD. We need to show that a has a head normal form, but our previous analysis
only applies to terms of ground type. By hypothesis we know that for JaK there
are some arguments dn−1, . . . , d0 making JaK non-bottom. However, in order to
apply our earlier result for ground type, we need to find syntactic counterparts
to dn−1, . . . , d0 – and there is no reason why those would exist. So instead we
replace the dis with ∗D, which does have a syntactic counterpart.

The core argument is that replacing arguments of JaK with ∗D only increases
chances of convergence. To show that we introduce:

Definition 4. We define .nN⊆ D2 by induction on n. Let d1 .0
N d2 ⇔ > and

d1 .
n+1
N d2 ⇔

 If d1 = d2 = 0D
If d1 = SucD d

′
1, d2 = SucD d

′
2 and d′1 .

n
N d′2

If d1 = ΩD or d2 ≥ ∗D

We set d1 .N d2 iff for all n ∈ N, d1 .nN d2. We lift this to all types by stating
that d1 .A→B d2 iff for all d′1 .A d

′
2, appD d1 d

′
1 .B appD d2 d

′
2.

This generalizes to a relation on environments ρ1 .Γ ρ2, but unlike what the
notation suggests, .A is not an ordering: it is neither reflexive, nor transitive,
nor antisymmetric. However, for all A and d ∈ D we have ΩD .A d .A ∗D.

The following fundamental lemma is proved by induction on a.

Lemma 4. For any term Γ `∗ a : A, for any ρ1 .Γ ρ2, JaK ρ1 .A JaK ρ2.

Putting the ingredients above together, we prove the following lemma.

Lemma 5. For `∗ a : A, d .A JaK and d 6=A ΩD, a has a head normal form.

Proof. For N, assume there is d .N JaK such that d 6=N ΩD, so d 6= ΩD. It follows
by definition of .N that either JaK = ∗D, or d and JaK respectively start both
with 0D or both with SucD. But by Lemma 3 we have a ∼N JaK, so by definition
of logical relations, a has a head normal form.

For A → B, take `∗ b : A → B and assume there is d .A→B JbK such that
d 6=A→B ΩD. So there is d′ ∈ D such that appD d (ηA d

′) 6=B ΩD. But we have
observed above that ηA d

′ .A ∗D. Therefore, by definition of .A→B , we have:

appD d (ηA d
′) .B appD JbK ∗D = Japp b ∗K

By induction hypothesis, app b ∗ has a head normal form. But head reduction
is deterministic, and any potentially infinite head reduction chain on b would
transport to app b ∗, so b has a head normal form.

Finally, it remains to deduce computational adequacy for closed terms. But
for arbitrary `∗ a : A such that JaK 6=A ΩD, by Lemma 4 we have JaK .A JaK,
so we are in the range of Lemma 5 – therefore, a has a head normal form.

3.4 PCF Böhm trees defined by repeated head reduction

In the next section we show how the PCF Böhm tree of a term can be computed
by nbe. We also show that the result of this computation coincides with the
traditional way of defining a PCF Böhm tree as obtained by repeated head
reduction. This definition relies on the following lemma.

Lemma 6. The system {→γ1 ,→γ2} of commutations is strongly normalizing.

Proof. Local confluence follows from a direct analysis of the (two) critical pairs,
and one gets a decreasing measure by defining |a| = 1 on all leaves of the syntax
tree, |case a b f | = 2|a|+ max(|b|, |f |) and |app a b| = 2|a|+ |b| and | − | behaves
additively on all other constructors.

The PCF Böhm tree of a term. The PCF Böhm tree BT(a) of a term Γ ` a : A
is defined as follows. If A = N and a has no head normal form then BT(a) = Ω.
Otherwise we convert a to head normal form and then to →γ1,γ2 -normal form
a′ by Lemma 6 which is still a head normal form. The only possible cases are:

– BT(a) = 0 if a′ = 0.
– BT(a) = suc BT(a′′) if a′ = suc a′′

– BT(a) = case (app i
−−−−→
BT(aj)) 0 (suc BT(0)) if a′ = app i−→aj

– BT(a) = case (app i
−−−−→
BT(aj)) BT(b) BT(c) if a′ = case (app i−→aj) b c.

If A = B → C then BT(a) = λBT(app (a[p]) 0). (BT(a) could be more explicitly
defined as an ideal of finite approximations, see e.g. [14] for details.)

Together with the earlier results, we get the main result of this section.

Proposition 3. If Γ ` a : A then Γ `Bt BT(a) : A and ηΓ`A JaK = JBT(a)K.

Proof. As we aim to prove the equality of two elements of D we use again Pitts’
method [19] and define the following relation

R = {(JBT(a)K (ηΓ ρ), ηA (JaK (ηΓ ρ))) | Γ ` a : A & ρ ∈ [D]}

and show that it is a bisimulation. Proposition 1 ensures that the conversion
steps needed to transform a term to its PCF Böhm tree are sound in the model,
Proposition 2 ensures that both sides are ΩD at the same time.

This ends the core of the technical development. The same proof scheme can
be used to show that the game interpretation of Section 2.2 validates conversion
to PCF Böhm trees. Details can be obtained by adapting McCusker’s proof [18].

4 Game semantics of PCF based on nbe

Normalization by evaluation. We are now ready to show the correctness of an
nbe algorithm which computes innocent strategies for infinitary terms. Recall
that in Section 2.2 we defined PCF Böhm trees as ideals of finite PCF Böhm

trees. The same construction on arbitrary PCF terms yields a notion of infinitary
term on which BT and J−K automatically extends, along with Proposition 3.

The readback function Rn : ([D]→ D)→ Tm is the semantic counterpart of
the Haskell readback function in Section 2.3. The following is proved on finitary
terms by a direct induction and extends to PCF Böhm trees by continuity.

Lemma 7. If Γ `Bt t : A is a PCF Böhm tree with |Γ | = n, then Rn JtK = t.

We now define an nbe algorithm which maps a PCF term to its PCF Böhm
tree, and use this lemma together with Proposition 3 to show its correctness:

Theorem 1. Let Γ ` a : A be an (infinitary) PCF term. If nbe(a) =
Rn (ηΓ`AJaK), where |Γ | = n, then nbe(a) = BT(a).

The pcf-cwf of PCF Böhm trees. We conclude this paper by showing how to
recover the Hyland-Ong game model of PCF, up to isomorphism of pcf-cwfs. If
d ∈ D, say that d has (semantic) type A iff ηA d = d. Likewise a function
f : [D] → D has type Γ ` A iff ηΓ`A f = f , and a function γ : [D] → [D] has
type Γ ` ∆ iff it is obtained by tupling functions of the appropriate types. This
generalizes to a pcf-cwf D having PCF contexts as objects and functions (resp.
elements) of the appropriate type as morphisms (resp. terms).

As a pcf-cwf, D supports the interpretation of PCF. But the plain domain
interpretation JaK (of Section 3) of a PCF Böhm tree Γ `Bt a : A automatically
has semantic type Γ ` A, and so is a term in the sense of D. Furthermore, this
map from PCF Böhm trees to D is injective by Theorem 1. Finally, the image of
PCF Böhm trees in D is closed under all pcf-cwf operations: each of these can be
replicated in the infinitary PCF syntax then normalized using nbe, yielding by
Theorem 1 and Proposition 3 a PCF Böhm tree whose interpretation matches
the result of the corresponding operation in D. So, the interpretation of PCF
Böhm trees forms a sub-pcf-cwf of D, called PCFInn, satisfying:

Theorem 2. PCFInn is isomorphic to the pcf-cwf of PCF contexts/types, and
innocent well-bracketed strategies between the corresponding arenas.

If we unfold this definition we get the Haskell program for application in Sec-
tion 2.3 and similar programs for composition and the other pcf-cwf operations.
The pcf-cwf laws for these programs, such as associativity of composition, β,
and η, follow from the corresponding laws for their domain interpretation in D.

Acknowledgments. The first author acknowledges the support of French ANR
Project RAPIDO, ANR-14-CE25-0007.

References

1. Andreas Abel. Normalization by Evaluation: Dependent Types and Impredicativ-
ity. Institut für Informatik, Ludwig-Maximilians-Universität München, May 2013.
Habilitation thesis.

2. Andreas Abel, Klaus Aehlig, and Peter Dybjer. Normalization by evaluation for
Martin-Löf type theory with one universe. In ”23rd Conference on the Mathe-
matical Foundations of Programming Semantics, MFPS XXIII, Electronic Notes
in Theoretical Computer Science, pages 17–40. Elsevier, 2007.

3. Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction
for PCF. Inf. Comput., 163(2):409–470, 2000.

4. Klaus Aehlig and Felix Joachimski. Operational aspects of untyped normalisation
by evaluation. Mathematical Structures in Computer Science, 14(4), 2004.

5. Roberto Amadio and Pierre-Louis Curien. Domains and lambda-calculi. Num-
ber 46. Cambridge University Press, 1998.

6. Ulrich Berger and Helmut Schwichtenberg. An inverse to the evaluation functional
for typed λ-calculus. In Proceedings of the 6th Annual IEEE Symposium on Logic
in Computer Science, Amsterdam, pages 203–211, July 1991.

7. John Cartmell. Generalized algebraic theories and contextual categories. Annals
of Pure and Applied Logic, 32:209–243, 1986.

8. Pierre Clairambault and Peter Dybjer. The biequivalence of locally cartesian closed
categories and Martin-Löf type theories. Mathematical Structures in Computer
Science, 24(5), 2013.

9. Pierre Clairambault and Andrzej S. Murawski. Böhm trees as higher-order recur-
sive schemes. In IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2013, December 12-14, 2013, Guwa-
hati, India, pages 91–102, 2013.

10. Pierre-Louis Curien. Abstract Böhm trees. Mathematical Structures in Computer
Science, 8(6):559–591, 1998.

11. Pierre-Louis Curien. Notes on game semantics. From the author’s web page, 2006.
12. Peter Dybjer. Internal type theory. In Stefano Berardi and Mario Coppo, edi-

tors, Types for Proofs and Programs, International Workshop TYPES’95, Torino,
Italy, June 5-8, 1995, Selected Papers, volume 1158 of Lecture Notes in Computer
Science, pages 120–134. Springer, 1995.

13. Peter Dybjer. Program testing and the meaning explanations of intuitionistic
type theory. In Epistemology versus Ontology - Essays on the Philosophy and
Foundations of Mathematics in Honour of Per Martin-Löf, pages 215–241. 2012.

14. Peter Dybjer and Denis Kuperberg. Formal neighbourhoods, combinatory
Böhm trees, and untyped normalization by evaluation. Ann. Pure Appl. Logic,
163(2):122–131, 2012.

15. Andrzej Filinski and Henning Korsholm Rohde. Denotational aspects of untyped
normalization by evaluation. Theor. Inf. and App., 39(3):423–453, 2005.

16. Russell Harmer, Martin Hyland, and Paul-André Melliès. Categorical combinators
for innocent strategies. In 22nd IEEE Symposium on Logic in Computer Science,
Wroclaw, Poland, Proceedings, pages 379–388. IEEE Computer Society, 2007.

17. J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for PCF: I, II, and III.
Inf. Comput., 163(2):285–408, 2000.

18. Guy McCusker. Games and full abstraction for FPC. Inf. Comput., 160(1-2):1–61,
2000.

19. Andrew M. Pitts. A co-induction principle for recursively defined domains. Theor.
Comput. Sci., 124(2):195–219, 1994.

20. Gordon D. Plotkin. LCF considered as a programming language. Theor. Comput.
Sci., 5(3):223–255, 1977.

21. Gordon D. Plotkin. Post-graduate lecture notes in advanced domain theory (in-
corporating the ”Pisa Notes”). Dept. of Computer Science, Univ. of Edinburgh,
1981.

