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Introduction

In information theory, measures of information can be obtained from the probability distribution of some events contained in a sample set of possible events. These measures are the entropies.

In 1948 [START_REF] Shannon | A Mathematical Theory of Communication[END_REF], Claude Shannon defined the entropy H (Greek letter Eta), of a discrete random variable X, as the expected value of the information content: H(X)
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In this expression, I is the information content of X, the probability of i-event is i p and b is the base of the used logarithm. Common values of the base are 2, Euler's number e, and 10. Besides Shannon entropy, several other entropies are used in information theory; here we will consider the generalized entropies of Tsallis and Kaniadakis (also known as κ-entropy) entropies [START_REF] Borda | Fundamentals in Information Theory and Coding[END_REF][START_REF] Tsallis | Possible Generalization of Boltzmann-Gibbs Statistics[END_REF][START_REF] Kaniadakis | Statistical Mechanics in the Context of Special Relativity[END_REF]. We will show relations between them. We will also propose a rigorous discussion of the conditional Kaniadakis entropy, deduced from these relations.

The entropies

In the following formulas we can see how the abovementioned entropies (Shannon, Tsallis and Kaniadakis) are defined, with a corresponding choice of measurement units equal to 1:
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In ( 2),(3) we have entropic indices q and κ , and:
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Let us consider the joint entropy H(A,B) of two independent subsystems A,B. We have:
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Note that for the generalized additivity of κ -entropy, we need another function containing probabilities (see [START_REF] Sparavigna | On the Generalized Additivity of Kaniadakis Entropy[END_REF] and references therein).

Basic relations between K and T

Let us consider κ -entropy K. We have that:
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In (7) we used the Tsallis entropies:
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In fact, we have:
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Eq.( 7) is a simpler form of an expression given in [START_REF] Kaniadakis | Non-linear kinetics underlying generalized statistics[END_REF][START_REF] Santos | Generalized quantum entropies[END_REF]. However, besides this relation, because of the generalized additivity possessed by the Kaniadakis entropy, we need also another relation, concerning function ℑ . It is:
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In fact:
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κ In ( 7) and ( 8), we have the Kaniadakis functions expressed by the Tsallis entropy. However, we can also write T expressed by means of Kaniadakis entropy.
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And then:
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We can have also:
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. We have again Eq.10.

Generalized additivity

Let us consider two subsystems A and B. We can find a relation between the joint Tsallis and Kaniadakis entropies. Using [START_REF] Abe | Nonadditive Conditional Entropy and its Significance for Local Realism[END_REF], we obtain: 
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  When the subsystems are independent, for Tsallis entropy we have Eq.5, and then: DOI: 10.18483/ijSci.866

To continue, we can assume:

This relation was proposed in [START_REF] Scarfone | Thermodynamic equilibrium and its stability for microcanonical systems described by the Sharma-Taneja-Mittal entropy[END_REF], but it is clear that it can obtained from (13):

, we must have (14) to fulfil (13).

Conditional entropy

In a previous paper [START_REF] Sparavigna | Mutual Information and Nonadditive Entropies: A Method for Kaniadakis Entropy[END_REF] we proposed, in the framework of a discussion on mutual entropy, an expression for the conditional Kaniadakis entropy. If the entropic index has a low value, the formula we find in [START_REF] Sparavigna | Mutual Information and Nonadditive Entropies: A Method for Kaniadakis Entropy[END_REF] can be considered an approximation of the expression that we are here deducing. Let us start from the conditional Tsallis entropy [START_REF] Abe | Nonadditive Conditional Entropy and its Significance for Local Realism[END_REF]:

. From now on, we do not write the indices of Kaniadakis functions. However, remember that they exist and have value (1-q). Let us use [START_REF] Abe | Nonadditive Conditional Entropy and its Significance for Local Realism[END_REF], written for joint and conditional entropies:

We have:

From this equation we find:

We can divide (18) in two equations:

Let us note that ( 19) and ( 20) are generalizing ( 6) and ( 14). In both ( 19),(20) we have conditional functions

. Then, the rigorous expression of Kaniadakis conditional entropy is:

In the case we are using the entropic index with a low value, this expression is approximated by:

The discussion in [START_REF] Sparavigna | Mutual Information and Nonadditive Entropies: A Method for Kaniadakis Entropy[END_REF] can be proposed again using (21). For instance, if we consider the mutual entropy (without renormalization): and then the mutual information is zero. Moreover, when we have a small value of the entropic index, function ℑ is equal to 1.