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Abstract

We introduce two throughput metrics referred to as flow- and time-sampled through-
puts. The former gives the throughput statistics of an arbitrary flow while the lat-
ter weights these throughput statistics by the flow durations. Under fair sharing
assumptions, the latter is shown to coincide with the steady-state instantaneous
throughput weighted by the number of flows, which provides a useful means to mea-
sure and estimate it. We give some generic properties satisfied by both metrics and
illustrate their difference on a few examples.

Key words: Traffic modeling, Throughput performance metric

1 Introduction

Throughput is a key performance indicator for Internet access. Users perceive
the quality of their Internet access through the time necessary to download
and upload various files. Providers need throughput measurements to control
quality of service and to take appropriate decisions about equipment upgrades.
They also need simple analytical results that relate user throughput to the
degree of network congestion in order to determine target traffic loads and
to assess the efficiency of various control schemes like routing, scheduling and
buffer management.
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Although throughput is a very common performance metric, it is actually not
immediately obvious how to measure and estimate it. One of the difficulties
comes from the random nature of traffic. Throughput is most often the re-
sult of the statistical multiplexing of data flows that share the same network
resources. These flows arrive at random and leave the network at the end of
the corresponding document transfer. They adapt elastically to congestion,
typically under the control of TCP [18]. Thus throughput is inherently ran-
dom, determined by the complex interaction of a dynamic set of elastic flows
through the congestion control algorithms.

Another difficulty is related to the well-known observer’s paradox. The sim-
plest way to measure the throughput achieved by users during a file download
is to actually download this file, which changes the network state. Similarly,
calculating user throughput by means of a traffic model requires the study of
the transient behaviour of the system, given the presence of the considered file
transfer. In both cases, it would be much more convenient to derive through-
put estimates from the steady state of the network, either measured through
passive monitoring tools or calculated using an appropriate traffic model.

In this paper, we introduce two throughput metrics referred to as flow- and
time-sampled throughputs. The former gives the throughput statistics of an
arbitrary flow. It turns out to be hard to evaluate analytically even for the
simplest traffic models. This is why it is most often approximated by the
steady-state instantaneous throughput [4,13,16]. We shall see that this ap-
proximation is in fact far from accurate. The latter weights the throughput
statistics by the flow durations. A key result of the paper is that, under fair
sharing assumptions, this throughput metric coincides with the steady-state
instantaneous throughput weighted by the number of flows. This yields ex-
plicit, insensitive expressions for a large class of traffic models [2,5,9,12,15].

We highlight the fact that both throughput metrics are random variables
that represent the whole throughput distribution. This is particularly relevant
for adaptive streaming flows that typically require a minimum throughput.
Though we mainly focus on elastic traffic, the results may be used as a con-
servative approximation for a more realistic scenario where both elastic and
adaptive streaming flows are multiplexed [6]. It is also worth noting that many
elastic flows in fact correspond to streamed audio and video files with long
playback delays (a few seconds, say). It is clear that the mean throughput is
not a good metric for assessing the quality of such flows. Asymptotic results on
flow duration and throughput, see e.g. [3,7,11], are also not sufficient for this
purpose. What is really needed is either the throughput distribution during
the flow, as considered in the present paper, or some bounds or approxima-
tions on the flow duration conditionally to the flow size, as described in [8] for
instance.
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We describe the traffic model in the next section. Sections 3 and 4 are devoted
to the flow- and time-sampled throughputs, respectively. These throughput
metrics are compared with the steady-state instantaneous throughput in Sec-
tion 5. The results are illustrated by a few examples in Section 6. Section 7
concludes the paper.

2 Traffic model

Consider a tagged flow of potentially infinite size starting at time 0. We view
this flow as a fluid stream and denote by ϕ(t) its instantaneous throughput at
time t. This stochastic process is typically not stationary due to the impact of
the tagged flow on the system state, which may be viewed as a manifestation
of the observer’s paradox. We assume it reaches a steady state characterized
by some random variable ϕ∞ equal to the weak limit of ϕ(t) when t tends to
infinity. We also assume that the process ϕ(t) takes positive values in some
discrete, bounded set X , is regular, right-continuous with left-hand limits, and
ergodic in the sense that:

∀x ∈ X , lim
T→∞

1

T

T
∫

0

I{ϕ(t)=x}dt = Pr(ϕ∞ = x) a.s. (1)

We denote by ϕ0 = ϕ(0) the throughput of a virtual flow of null size.

If the tagged flow is of size s, its duration D(s) is the random variable defined
by the equality:

s =

D(s)
∫

0

ϕ(t)dt.

We have the following simple result.

Proposition 1 The throughputs of flows of infinitely small and infinitely large
sizes are respectively given by:

lim
s→0

s

D(s)
= ϕ0 a.s. (2)

and

lim
s→∞

s

D(s)
= E[ϕ∞] a.s. (3)
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Proof. Let θ be the minimum time t > 0 such that ϕ(t) ̸= ϕ(0). We have
ϕ(t) = ϕ0 for all t < θ so that

D(s) =
s

ϕ0
if s < ϕ0θ.

We deduce (2) from the fact that ϕ0θ > 0 a.s.

Now, since X is bounded, we have:

lim
s→∞

D(s) = ∞ a.s. (4)

so that (3) follows by ergodicity. ✷

In the following, we denote by S a random flow size and by D = D(S) the
corresponding flow duration:

S =

D
∫

0

ϕ(t)dt.

3 Flow-sampled throughput

3.1 Definition

Assume the tagged flow has random size S. For all x ∈ X , consider the mean
fraction of time the tagged flow has throughput x:

E

⎡

⎣

1

D

D
∫

0

I{ϕ(t)=x}dt

⎤

⎦ . (5)

This defines a distribution on X . We refer to the corresponding random vari-
able Xflow as the flow-sampled throughput.

The definition extends to any given flow size s > 0. The corresponding random
variable Xflow(s) satisfies for all x ∈ X :

Pr(Xflow(s) = x) = E

⎡

⎢

⎣

1

D(s)

D(s)
∫

0

I{ϕ(t)=x}dt

⎤

⎥

⎦
. (6)
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3.2 Properties

The mean flow-sampled throughput, denoted by γflow, is given by:

γflow = E[Xflow],

=
∑

x∈X

xE

⎡

⎣

1

D

D
∫

0

I{ϕ(t)=x}dt

⎤

⎦ ,

= E

⎡

⎣

1

D

D
∫

0

(

∑

x∈X

xI{ϕ(t)=x}

)

dt

⎤

⎦ ,

= E

⎡

⎣

1

D

D
∫

0

ϕ(t)dt

⎤

⎦ ,

= E
[

S

D

]

. (7)

Similarly, we get the mean flow-sampled throughput of a flow of size s:

γflow(s) = E[Xflow(s)] = E

[

s

D(s)

]

. (8)

We have the following result for the limiting cases of flows of infinitely small
and infinitely large sizes:

Proposition 2 The flow-sampled throughput Xflow(s) tends in distribution to
ϕ0 when s tends to 0 and to ϕ∞ when s tends to ∞.

Proof. Recall that:

Pr(Xflow(s) = x) = E

⎡

⎢

⎣

1

D(s)

D(s)
∫

0

I{ϕ(t)=x}dt

⎤

⎥

⎦
.

As in the proof of Proposition 1, we denote by θ be the minimum time t > 0
such that ϕ(t) ̸= ϕ(0). We have:

1

D(s)

D(s)
∫

0

I{ϕ(t)=x}dt = I{ϕ0=x} if s < ϕ0θ.

Since ϕ0θ > 0 a.s., we deduce:

lim
s→0

1

D(s)

D(s)
∫

0

I{ϕ(t)=x}dt = I{ϕ0=x} a.s.
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and
lim
s→0

Pr(Xflow(s) = x) = Pr(ϕ0 = x).

The other limit follows by ergodicity, using (1) and (4):

lim
s→∞

1

D(s)

D(s)
∫

0

I{ϕ(t)=x}dt = Pr(ϕ∞ = x) a.s.

✷

4 Time-sampled throughput

4.1 Definition

Assume the tagged flow has random size S. For all x ∈ X , consider the ratio
of the mean duration at throughput x to the mean flow duration:

E

⎡

⎣

D
∫

0

I{ϕ(t)=x}dt

⎤

⎦

E[D]
. (9)

This defines a distribution on X provided the mean flow duration is finite.
We refer to the corresponding random variable Xtime as the time-sampled

throughput.

The definition extends to any given flow size s > 0. The corresponding random
variable Xtime(s) satisfies for all x ∈ X :

Pr(Xtime(s) = x) =

E

⎡

⎢

⎣

D(s)
∫

0

I{ϕ(t)=x}dt

⎤

⎥

⎦

E[D(s)]
. (10)

To illustrate the difference with the other throughput metric, consider K flows
of size s, respective durations d1, . . . , dK and fractions of time at throughput
x f1, . . . , fK . For the flow-sampled throughput metric, the probability that a
flow of size s has throughput x is simply estimated as the empirical mean:

1

K

K
∑

k=1

fk.
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For the time-sampled throughput metric, it is estimated as the empirical mean
weighted by the flow durations:

K
∑

k=1

dkfk

K
∑

k=1

dk

.

This corresponds to the fraction of time flows have throughput x. Note that,
provided the K samples are i.i.d., the previous two expressions tend to (6)
and (10), respectively, as K grows to infinity.

4.2 Properties

The mean time-sampled throughput, denoted by γtime, is given by:

γtime = E[Xtime],

=
∑

x∈X

x
1

E[D]
E

⎡

⎣

D
∫

0

I{ϕ(t)=x}dt

⎤

⎦ ,

=
1

E[D]
E

⎡

⎣

D
∫

0

(

∑

x∈X

xI{ϕ(t)=x}

)

dt

⎤

⎦ ,

=
1

E[D]
E

⎡

⎣

D
∫

0

ϕ(t)dt

⎤

⎦ ,

=
E[S]

E[D]
. (11)

Similarly, we get the mean time-sampled throughput of a flow of size s:

γtime(s) = E[Xtime(s)] =
s

E[D(s)]
. (12)

Again, to illustrate the difference with the other throughput metric, consider
K flows of size s and respective durations d1, . . . , dK . The mean flow-sampled
throughput is simply estimated as the empirical mean:

1

K

K
∑

k=1

s

dk

,
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while the mean time-sampled throughput is estimated as the empirical mean
weighted by the flow durations:

∑K
k=1 dk

s
dk

∑K
k=1 dk

=
s

1
K

∑K
k=1 dk

.

Provided the K samples are i.i.d., these expressions tend to (8) and (12),
respectively, as K tends to infinity. They correspond to the arithmetic and
harmonic empirical means, respectively.

We have the following result:

Proposition 3 For all flow sizes, the mean time-sampled throughput is less
than the mean flow-sampled throughput:

∀s > 0, γtime(s) ≤ γflow(s).

Proof. The proof follows from the convex inequality:

E[D(s)]E

[

1

D(s)

]

≥ 1.

✷

For the limiting cases of flows of infinitely small and infinitely large sizes, we
get:

Proposition 4 The time-sampled throughput Xtime(s) tends in distribution
to ϕ∞ when s tends to ∞. Moreover,

lim
s→0

Pr(Xtime(s) = x) =
Pr(ϕ0 = x)

xE[1/ϕ0]
.

Proof. Recall that:

Pr(Xtime(s) = x) =

E

⎡

⎢

⎣

D(s)
∫

0

I{ϕ(t)=x}dt

⎤

⎥

⎦

E[D(s)]
.

By ergodicity, it follows from (1), (3) and (4) that:

lim
s→∞

1

s

D(s)
∫

0

I{ϕ(t)=x}dt =
Pr(ϕ∞ = x)

E[ϕ∞]
a.s.

8



and

lim
s→∞

E[D(s)]

s
=

1

E[ϕ∞]
,

so that

lim
s→∞

1

E[D(s)]

D(s)
∫

0

I{ϕ(t)=x}dt = Pr(ϕ∞ = x) a.s.

For the other limit, we use again the fact that ϕ(t) = ϕ0 for all t < θ so that

1

D(s)

D(s)
∫

0

I{ϕ(t)=x}dt = I{ϕ0=x} if s < ϕ0θ.

Using (2), we deduce:

lim
s→0

1

s

D(s)
∫

0

I{ϕ(t)=x}dt =
1

x
I{ϕ0=x} a.s.

and

lim
s→0

D(s)

s
=

1

ϕ0
a.s.

so that

lim
s→0

E

⎡

⎢

⎣

D(s)
∫

0

I{ϕ(t)=x}dt

⎤

⎥

⎦

E[D(s)]
=

Pr(ϕ0 = x)

xE[1/ϕ0]
.

✷

5 Steady-state instantaneous throughput

The stochastic process ϕ(t) involves the transient behaviour of the system
and is therefore very hard to characterize even for the simplest traffic models.
It is tempting to derive flow- and time-sampled throughput statistics from
the steady-state behaviour of the system, as observed in practice by means of
passive monitoring.

We here consider a stream of tagged flows arriving at rate λ. As above, we
denote by S their random size and by D their random duration. Let n be
the number of active tagged flows in steady state. We assume a perfectly
fair sharing among these flows and denote by ϕ their common instantaneous
throughput, defined when n ≥ 1.
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5.1 Conditional distribution

The steady-state instantaneous throughput, denoted by Y , is commonly used
as an approximation for the flow-sampled throughput [13,16]. Since it is de-
fined if and only if n ≥ 1, its distribution is the conditional distribution:

∀x ∈ X , Pr(Y = x) = Pr(ϕ = x|n ≥ 1).

This throughput metric turns out to be biased: it depends on the proportion
of tagged flows in the overall traffic stream. As shown in the example of §6.2
below, it is a loose approximation for the flow-sampled throughput when this
proportion is equal to 1 and it coincides with the time-sampled throughput
when this proportion tends to 0, which is in fact a simple consequence of the
following more general result.

5.2 Weighted distribution

It turns out that the time-sampled throughput has the same distribution as
the steady-state instantaneous throughput ϕ weighted by the number n of
tagged flows. This weighting reflects the fact that congestion events impact
the throughput metric in proportion to the number of active flows.

Proposition 5 The time-sampled throughput satisfies:

∀x ∈ X , Pr(Xtime = x) =
E[nI{ϕ=x}]

E[n]
.

Proof. The result is a simple consequence of Little’s law [1]. We have:

E[n] = λE[D].

Moreover, considering those time periods where ϕ = x, we get

E[n|ϕ = x] =
λ

Pr(ϕ = x)
E

⎡

⎣

D
∫

0

I{ϕ(t)=x}dt

⎤

⎦ ,

so that:

E[nI{ϕ=x}] = λE

⎡

⎣

D
∫

0

I{ϕ(t)=x}dt

⎤

⎦ . (13)

✷
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In view of Proposition 5, we have:

γtime = E[Xtime] =
E[nϕ]

E[n]
. (14)

Using (13), we get:

E[nϕ] = E

[

n
∑

x∈X

xI{ϕ=x}

]

,

=
∑

x∈X

xλE

⎡

⎣

D
∫

0

I{ϕ(t)=x}dt

⎤

⎦ ,

= λE

⎡

⎣

D
∫

0

ϕ(t)dt

⎤

⎦ ,

= λE[S],

which corresponds to the traffic intensity generated by tagged flows (in bit/s).
We deduce the following expression for the mean time-sampled throughput:

γtime =
λE[S]

E[n]
. (15)

Note that this expression in fact directly follows from (11) and Little’s law.

6 Examples

We now apply previous results to a few key examples. In the following, we
simply refer to flows of infinitely small and infinitely large sizes as small and
large flows, respectively.

6.1 Fair sharing

Consider a unit capacity link. Flows arrive as a Poisson process of intensity
λ and have i.i.d. sizes characterized by the random variable S. Sharing is
assumed to be perfectly fair so that the instantaneous throughput ϕ of each
flow is equal to 1/n in the presence of n flows, with n ≥ 1. In particular, the
throughput takes values in the discrete set X = {1, 1/2, 1/3, . . .}.
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The corresponding queueing system is the processor-sharing queue. Provided
the traffic intensity ρ = λE[S] is less than 1, the queue is stable and has the
stationary distribution:

π(n) = ρn(1 − ρ),

independently of the flow size distribution beyond the mean [17]. In the pres-
ence of a permanent flow, the stationary distribution of the number n of other
flows becomes:

π′(n) = (n + 1)ρn(1 − ρ)2.

The result is again insensitive to the flow size distribution beyond the mean.
We deduce the following expressions for the throughput of a virtual flow of
null size and for the throughput of a permanent flow of infinite size, where
x = 1/m, m ≥ 1, denotes any element of X :

Pr(ϕ0 = x) = π(m − 1) = ρm−1(1 − ρ),

Pr(ϕ∞ = x) = π′(m − 1) = mρm−1(1 − ρ)2.

In particular, we have:

E[ϕ0] = −
ln(1 − ρ)

ρ
(1 − ρ) and E[ϕ∞] = E[1/ϕ0]−1 = 1 − ρ. (16)

Mean throughput

It turns out that the mean flow-sampled throughput has no simple expression,
even in the simplest case of an exponential flow size distribution. We only have
explicit expressions in the limiting cases of small flows and large flows. In view
of Proposition 2 and (16),

lim
s→0

γflow(s) = −
ln(1 − ρ)

ρ
(1 − ρ) and lim

s→∞
γflow(s) = 1 − ρ. (17)

The mean time-sampled throughput, on the other hand, follows from (15):

γtime =
ρ

E[n]
= 1 − ρ. (18)

In view of Proposition 4 and (16), this is also the mean time-sampled through-
put for small flows and large flows. The expression is in fact valid for all flow
sizes. This follows from (12) and the fact that the mean sojourn time of a cus-
tomer in a processor-sharing queue is proportional to its service requirement
[14].

Figure 1 below compares both throughput metrics for an exponential flow size
distribution of unit mean with ρ = 0.8. The mean flow-sampled throughput
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and the mean time-sampled throughput are estimated using 10,000,000 simu-
lation points (only 10,000 of them are shown on the graph). We observe that,
whereas the time-sampled throughput is equal to 0.2 independently of the flow
size, as expected, the mean flow-sampled throughput decreases from around
0.4 to 0.2, as predicted by (17), when the flow size grows from 0 to ∞.

 0

 0.2

 0.4

 0.6
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 1

 0  2  4  6  8  10

Th
ro

ug
hp

ut

Flow size

Flow sampling
Time sampling

Fig. 1. Mean flow- and time-sampled throughputs (load ρ = 0.8).

Throughput distribution

There is again no explicit expression for the flow-sampled throughput distribu-
tion except in the limiting cases of small flows and large flows, cf. Proposition
2. For the time-sampled throughput distribution, it follows from Proposition
5 that for all x = 1/m, m ≥ 1:

Pr(Xtime = x) =
mπ(m)

E[n]
= mρm−1(1 − ρ)2.

This is also the time-sampled throughput distribution for small flows and large
flows, cf. Proposition 4. Again, this expression is in fact valid for all flow sizes,
as explained in §6.2 below.

The throughput distribution of small flows is shown in Figure 2 for the same
scenario as that of Figure 1. Note that the difference between both throughput
metrics is significant. In particular, the probability that the throughput is
maximum is equal to 1 − ρ (here 0.2) for the flow-sampled throughput and
only (1 − ρ)2 (here 0.04) for the time-sampled throughput.
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Fig. 2. Flow- and time-sampled throughput distributions of small flows (load
ρ = 0.8).

6.2 Sampling bias

We now illustrate the sampling bias associated with the steady-state instan-
taneous throughput Y defined in §5.1. We consider the model of §6.1 with a
proportion p of flows tagged at random. We refer to those flows as class-1 flows
and to the other flows as class-2 flows. Denoting by ρ1 = pρ and ρ2 = (1− p)ρ
the corresponding traffic intensities, the stationary distribution of the number
of flows of each class is given by:

π(n1, n2) =

(

n1 + n2

n1

)

ρn1

1 ρn2

2 (1 − ρ).

We deduce the mean steady-state instantaneous throughput as evaluated through
class 1:

γ1 = E[ϕ|n1 ≥ 1] =

∑

n1≥1,n2

π(n1, n2)

n1 + n2
∑

n1≥1,n2

π(n1, n2)
= −

ln

(

1 −
ρ1

1 − ρ2

)

ρ1

1 − ρ2

(1 − ρ).

In view of (17) and (18), this coincides with the mean flow-sampled throughput
of small flows for p = 1 and with the mean time-sampled throughput for p → 0.

The bias vanishes when the probability measure is weighted by the number of
flows. In view of (14), the mean time-sampled class-1 throughput is given by:

γtime
1 =

E[n1ϕ]

E[n1]
=

∑

n1≥1,n2

n1π(n1, n2)

n1 + n2
∑

n1≥1,n2

n1π(n1, n2)
= 1 − ρ.
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Similarly, for all x = 1/m, m ≥ 1:

Pr(Xtime
1 = x) =

E[n1I{ϕ=x}]

E[n1]
=

∑

n1+n2=m

n1π(n1, n2)

∑

n1≥1,n2

n1π(n1, n2)
= mρm−1(1 − ρ)2.

This expression is independent of the choice of class 1. Tagging all flows whose
size is in the interval (s − δ, s + δ), for all s > 0 and δ > 0, we conclude by
letting δ tend to 0 that the time-sampled throughput of a flow of size s is
independent of s.

6.3 Rate limits

In many practical cases, flows do not have full access to the link capacity
but are imposed a rate limit. In the simple case of a common rate limit c,
the instantaneous throughput ϕ of each flow is equal to min(c, 1/n) in the
presence of n flows, with n ≥ 1. The stationary distribution becomes:

π(n) =
ρ

nc
π(n − 1) if nc ≤ 1, π(n) = ρπ(n − 1) otherwise.

In the presence of a permanent flow, we obtain:

π′(n) =
ρ

nc
π′(n − 1) if (n + 1)c ≤ 1, π′(n) =

n + 1

n
ρπ′(n − 1) otherwise.

We deduce the distributions of ϕ0 and ϕ∞ as above. We verify that the time-
sampled throughput distribution is again the same for all flow sizes. Figures
3 and 4 below are the analogues of Figures 1 and 2 for a rate limit c =
0.1. Though the difference between both throughput metrics is much lower
than without rate limit, it is still significant for short flows. For instance, the
probability that short flows get the maximum throughput is equal to 0.59
under flow sampling and 0.49 under time sampling. As a comparison, the
probability that the steady-state instantaneous throughput Y is maximum is
equal to 0.67.

These results extend to more general models with different access rates and
several resources shared according to balanced fairness [5]. The underlying
queuing system is a Kelly-Whittle network. The same properties then hold:
the time-sampled throughput distribution is insensitive to the flow size distri-
bution beyond the mean and independent of the considered flow size.
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Fig. 3. Mean flow- and time-sampled throughputs (load ρ = 0.8, rate limit c = 0.1).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.02  0.04  0.06  0.08  0.1

C
om

pl
em

en
ta

ry
 c

df

Throughput

Flow sampling
Time sampling

Fig. 4. Flow- and time-sampled throughput distributions of small flows (load ρ = 0.8,
rate limit c = 0.1).

6.4 Unfair sharing

Finally, consider a unit capacity link under unfair sharing. Specifically, we
consider two flow classes such that the throughput of a class-1 flow is equal to
w1/w2 times that of a concurrent class-2 flow, for some weights w1, w2. The
corresponding model is the discriminatory processor-sharing queue [10].

There is no simple expression for the steady state distribution, even for an
exponential flow size distribution. Figures 5 and 6 below are the analogues of
Figures 1 and 2 for a weight ratio w1/w2 = 10. Note that both the flow-sampled
throughput and the time-sampled throughput now depend on the considered
flow size. The difference between both throughput metrics is significant.
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Fig. 5. Mean flow- and time-sampled throughputs of low priority flows (load
ρ = 0.8).
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Fig. 6. Flow- and time-sampled throughput distributions of small, low priority flows
(load ρ = 0.8).

7 Conclusion

We have introduced two metrics for throughput performance evaluation, we
refer to as flow- and time-sampled throughputs. The former gives the through-
put statistics of an arbitrary flow while the latter weights these throughput
statistics by the flow durations. We have seen that, under fair sharing as-
sumptions, the time-sampled throughput may be simply interpreted as the
steady-state instantaneous throughput weighted by the number of flows. The
weighting reflects the fact that congestion events impact the throughput met-
ric in proportion to the number of active flows. In the absence of weighting,
the steady-state instantaneous throughput metric is biased and provides only
a loose approximation of the flow-sampled throughput.
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