
HAL Id: hal-01286291
https://hal.science/hal-01286291

Submitted on 27 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Low overhead loop-free routing in wireless sensor
networks

H. J. Audeoud, M. Krol, Martin Heusse, Andrzej Duda

To cite this version:
H. J. Audeoud, M. Krol, Martin Heusse, Andrzej Duda. Low overhead loop-free routing in wire-
less sensor networks. 11th International Conference on Wireless and Mobile Computing, Network-
ing and Communications (WiMob), Oct 2015, Abu Dhabi, United Arab Emirates. pp.443-451,
�10.1109/WiMOB.2015.7347996�. �hal-01286291�

https://hal.science/hal-01286291
https://hal.archives-ouvertes.fr

Low Overhead Loop-Free Routing in Wireless
Sensor Networks

Henry-Joseph Audéoud, Michał Król, Martin Heusse, and Andrzej Duda
Grenoble Alps University, Grenoble Institute of Technology,

CNRS Grenoble Informatics Laboratory,
38000 Grenoble, France.

Email: {firstname.lastname}@imag.fr

Abstract—We consider the crucial problem of routing in
wireless sensor networks. Routing protocols need to deal with
topology changes while keeping the routing overhead low,
especially the number of broadcasts, to save energy. In this
paper, we consider the problem of building and adapting
default routes for convergecast and host routes for downward
traffic. We first propose a local repair scheme that allows
arbitrarily long periods for rebuilding the tree/DODAG of
default routes. Second, we design a scheme for preventing
packet forwarding along routing loops, which may occur in
the combination of broken host routes and default routes.
We achieve this goal without adding an additional header
to packets. The two schemes along with on-demand host
route construction provides a complete routing solution that
addresses many of the shortcomings of RPL. We validate the
proposed schemes with Cooja emulations and an experimental
evaluation on a real-world sensor network testbed.

I. INTRODUCTION

Routing in multi-hop wireless sensor networks is crucial
for maintaining connectivity and, at the same time, it is a
complex task because of specific characteristics of this type
of networks. The quality of wireless links is highly variable,
nodes may go down, new nodes may join the network, and
nodes may change their location. So, the routing protocol
needs to guarantee that if the topology is modified, the
routing structure is properly adapted without creating loops.
Moreover, it has to introduce minimal overhead and take
into account the contraints of the available energy

In RPL, the Routing Protocol for Low-power and Lossy
networks [1], each node selects a preferred parent to form
a Collection Tree (CT) [2] rooted at the sensor network
sink. Nodes also keep the information about several parent
nodes to change when the current preferred parent is down,
so RPL in fact builds a more complex routing structure—
a DODAG (Destination Oriented Directed Acyclic Graph).
The collection tree or DODAG supports MP2P—multipoint-
to-point or convergecast traffic pattern with a default route to
the sink going through the preferred parent node. In addition
to convergecast, nodes also need to support downward traffic
from the sink to all or some sensor nodes, e.g. typical
CoAP application traffic generates packets to query sensor
nodes. RPL proactively creates host routes in the network

for downward traffic by installing an entry in the routing
table for each node. Nevertheless, RPL has no mechanism to
rebuild a route toward a specific node, other than having all
nodes in the network resend a packet to declare themselves,
thus at a high cost in terms of packet transmissions. The
routing structure also supports P2P traffic between any pair
of nodes. Packets that go from a sensor to another one may
either follow the default route up towards the sink and then
down to the destination, or, alternatively, the routing protocol
can create and maintain direct host routes.

A particular property of RPL is that it needs to add a
specific data structure to every forwarded IP packet, which
increases the overhead of each packet transmission. Such
addition of information to each packet header is seldom
required in Internet protocols and often results in adding
an additional IPv6 header, which makes things even worse.

LOADng is another Lightweight On-Demand Ad-Hoc
Distance vector routing protocol [3] dedicated to wireless
sensor networks. LOADng considers a network as flat and
not organized in a tree or DODAG structure. It creates
all routes reactively only when needed. A topology change
remains unnoticed unless it impacts a currently active route.
The LOADng messages are minimal with little overhead,
nevertheless; LOADng may spend much energy on finding
routes.

LRP, the Lightweight Routing Protocol [4], [5] combines
the collection tree or DODAG topology of RPL and the
reactive route establishment of LOADng. We adopt LRP as
the base for further enhancements proposed in this paper. In
particular, we consider the problem of building and adapting
default routes for convergecast and host routes for downward
traffic. We first propose a local repair scheme that allows
arbitrarily long periods for rebuilding the tree/DODAG of
default routes. Second, we design a scheme for preventing
packet forwarding along routing loops, which can always
happen in the combinations of broken host routes the
tree/DODAG of default routes. We achieve this goal without
adding an additional header to packets.

We start with the description of the protocol for DODAG
creation (Section II) and repair (Section III). Then, we
consider the route validation mechanism to guarantee that

LRP is loop free (Section IV). We describe simulation tests
to demonstrate the validity of the proposed schemes (Section
VI). Finally, Section VII briefly describes the related work
and Section VIII concludes the paper.

II. BACKGROUND ON ROUTING PRINCIPLES

We start with a brief recall on the principles of the
DODAG construction in RPL and the mechanisms brought
by LRP.

A. DODAG Construction—Default Routes

In RPL and LRP, nodes construct a DODAG structure
of default routes for convergecast traffic from nodes to the
sink. The protocols use distributed Bellman-Ford algorithm
based on the propagation DODAG Information Object (DIO)
messages in the whole network. A node advertises a route
to the DODAG root (the sink or the edge router) by
broadcasting a DIO to the nodes in its vicinity1.

We call successors of a node all nodes that provide it
with a route to the root. Predecessors of a node are all nodes
to which it provides a route to the root.

A node has to compare routes received in a DIO message.
A route comes with three information elements:

• DODAG identifier: the IP address of the DODAG
root that allows identification of the DODAG to
which belongs a given route. It is not modified by
nodes other than the root. A node must learn it from
its successors through a DIO message.

• DODAG sequence number: set by the root that in-
crements it to recreate the DODAG from scratch—
this operation is called a global repair. If the
DODAG identifiers differ, the sequence number is
not taken into account.

• metric: provides the cost of the route to the root in
the form (type, value). If the types differ, the metric
is not taken into account. The metric broadcast by
a node must be strictly greater than all the metrics
broadcast by its successors.

The information allows defining a partial order of the
received routes. The sequence number takes precedence over
the metric: the best path is the one with the greatest DODAG
sequence number and, if equal, the smallest metric.

To avoid loops, nodes must always obey the following
rule2: a node must not move away from the root. A node
must not select a given node as its successor if this selection
would offer a route worse than the previously offered one.

If the DODAG identifiers differ in two routes, a node
may prefer one DODAG to another or it may compare the
metrics. The choice depends on use cases. The use of metric

1For remarks on broadcasting, see Section V-B.
2Always means even if a node restarts (cf. Section V-A).

types also depends on use cases. The metric type can for
example be the hop count, the Expected Transmission Count
(ETX), or the Received Signal Strength Indication (RSSI).

The LRP protocol uses sequence numbers as in
LOADng [3]: First, the root maintains the DODAG se-
quence number. It increments in case of a global repair,
similarly to RPL. Secondly the node sequence numbers
increment upon the creation of RREP, RREQ, or BRK
message. If a node only forwards such a message, it does
not modify the sequence number.

Nodes periodically broadcast DIO messages to take into
account potential topology modifications. As the interval
between two consecutive DIOs may be long (RPL expo-
nentially increases the interval with trickle), a node can
probe its neighborhood by sending a DODAG Information
Solicitation (DIS) message [1]. DIS solicits a transmission
of a DIO from neighbor nodes. All receiving nodes reply
with a unicast DIO message. DIS messages decrease the
time for joining the network.

B. Downward Traffic—Host Routes

The downward traffic is also called point-to-multipoint
traffic. It goes from the border router (the sink) to any
node inside the network. This kind of traffic needs the
establishment of host routes at nodes. We can establish
host routes in a reactive way, on demand when they are
needed, using the same approach as LOADng [3], but we
can optimize the search process to establish host routes by
taking advantage of the existing DODAG routing structure to
efficiently flood route requests in the network. We can also
build host routes in a proactive way like in RPL, depending
on use cases.

Figure 1 presents the principles of the establishement of
host routes [5]. We explain them below with more details.

1) Route Requests: The root searches for downward
routes by flooding3 a RREQ message (Route Request) in
the network. The root uses its internal sequence number
and its address to fill the RREQ message (not the DODAG
sequence number, which is used to create and maintain the
DODAG itself). There is no need to track the origin of
RREQ messages (the LOADng “reverse route”), because the
sender is always the root.

2) Route Replies: When a node receives a RREQ mes-
sage destined to one of its addresses, it replies by sending
a RREP message (Route Reply). The internal sequence
number of the node is used to fill the RREP sequence
number. The source address holds the address requested in
the RREQ message and the destination address is the address
of the root. The metric value is initialized to 0.

A RREP message must not be send or forwarded to a
node not used as a successor. When forwarding a RREP
message, a node creates a host route in its routing table (like
the LOADng “forward route”). The destination of this route

3For remarks on flooding, see Section V-B.

A
B

Sink

1. A sends
packet to B

Default route

Default route

(a)

A
B

2. RREQ

2. RREQ

2. Sink generates RREQ

Sink

(b)

A
B 3. Reply with RREP

4. After receiving the RREP,
the packet is forwarded to B

Sink

(c)

A
B

5. A sends another
packet to B

Default route

Default route
Route found

Route found

Route found

Sink

(d)

Figure 1: Routing scheme: (a) Packet sent to node B takes the default route up to the Sink; (b) Sink generates a RREQ
packet flooded throughout the network; (c) Node B replies with RREP and the packet goes over the created route; (d) Any
other packet follows the shortest route. [5]

is the source address of the RREP message. The next hop
used for this route is the neighbor from which the RREP has
been received. A RREP message deprecates all routes with
the same source address and a smaller sequence number.

3) Spontaneous Route Replies: A node may sponta-
neously send a RREP to any of its successors. In this case,
the destination address must be either the root or the link-
local IP address of the successor. Sending a RREP message
to its successor allows a node to be accepted by the datapath
validation mechanism (cf. Section IV). When receiving a
RREP message intended for its link-local IP address, a node
must store the described route, but it does not forward the
message.

C. Point-to-Point Traffic

A LRP network supports point-to-point traffic without
any specific mechanism besides the described operation for
upward and downward traffic. Nodes use the default route
until the packet reaches a host route to the destination. If no
host route exists for the destination, the packet goes upward
to the root that generates a RREQ message to find the host
route.

III. ROUTING ENHANCEMENT: LOOP-FREE DODAG
REPAIR

LRP creates a DODAG structure based on default routes
for convergecast upward traffic and takes advantage of the
structure to efficiently establish host routes. In this section,
we describe the main contribution of the paper: the DODAG
repair that guarantees the absence of loops.

A. DODAG Repair

As the network topology may change, we propose two
schemes to repair a DODAG.

1) Global Repair: LRP provides a global repair mecha-
nism that can only be initiated by the root. The mechanism
entirely recreates the DODAG. To initiate the global repair,
the root increases the DODAG sequence number and broad-
casts a DIO. The new sequence number will propagate to all

the nodes in the network that renew the choice of the best
routes in the new DODAG.

Initiating a global repair may not be an optimal solution
in many circumstances. First, a global repair may imply
increased energy consumption by requiring a new network-
wide broadcast. Second, it may disturb a portion of the
network that was already operational and optimal. Third,
it cannot be initiated by any node, but only by the root.

2) Local Repair: The local repair mechanism, or Link
Reversal mechanism (LR) provides a solution that does not
involve all the nodes in the network and it can be initiated
by any node. A node should perform a local repair (later
called the detached node) when it cannot re-associate itself
with the DODAG (we call the node a detached node in
this case), because all its successors are unreachable and all
remaining neighbor nodes cannot be chosen as successors
without moving away from the sink (the rule for loop free
routes). The LR mechanism tries to reverse some links
between the detached node and its predecessors to use them
as successors without creating loops in the DODAG.

The detached node creates and broadcasts a BRK mes-
sage containing the detached node address and its internal
sequence number (cf. Figure 2a). Nodes process BRK in the
following way (cf. Figure 2b):

• If BRK comes from a successor, the node is in the
detached sub-DODAG so it has to rebroadcast BRK.

• If BRK does not come from a successor, the mes-
sage is compared to the content of a cache: if
it already contains a message from the detached
node with a route better than the one in BRK, the
BRK message is dropped (the comparison of routes
takes into account DODAG identifier and sequence
number as well as metrics as described above).
Otherwise, the BRK came from a successor, the
node increments the metric in BRK according to
the link cost between the node and the previous
sender of BRK. Then, the node forwards BRK to its
successor (thus, on the shortest route to the root).
The node stores the address of the BRK sender.

(a) (b) (c)

Figure 2: Example of a DODAG local repair when the link A-B breaks. (a) After the link break, B broadcasts a BRK
message. (b) BRK message is forwarded to the root. (c) The root answers with an UPD message. The links between
B and {E,F} are reversed.

It may happen that a node receives BRK from a node
that is not its successor, although it is in the sub-DODAG
of the detached node. It is not an issue, as its successors
have cached the BRK message and will not forward it
further. However, if it subsequently receives a BRK from
a successor, it must broadcast and store it in the cache even
if it already transmitted it to its successors.

When the root receives BRK, it replies with a UPD
message forwarded on the route stored by the passage of
BRK messages in the opposite direction until it reaches the
detached node. UPD has the same role as DIO: transmit
the DODAG sequence number and the metric to the nodes
in the network, but UPD is addressed to a specific node
and not to all nodes as DIO (DIO is a broadcast and UPD
is a unicast). The UPD message carries the new DODAG
sequence number and it overrides the route information used
in the route cost computation from the previously received
DIO messages. However, nodes use the information received
in the last DIO message when broadcasting a DIO message
and not the information received in the UPD message, which
avoids disturbing the nodes not involved in the repair with
the new sequence number.

As the UPD message contains a higher repair sequence
number than any sequence number sent before, all receiving
nodes will accept the sending node as their successor, which
does not create loops in the DODAG. Indeed, at the moment
a node re-sends the UPD, it has already updated its position
in the DODAG with the new sequence number, so it does
not use the receiving nodes as successors anymore.

We can see in Figure 2c that the link between nodes B
and E is reversed: at the beginning, B was a successor of E
and in the end, E is a successor of B. The operation is well
founded: B cannot provide access to the DODAG root to E
any more, so it needs to use it to reach the root.

This operation limits the number of changes in the net-
work but does not rebuild a shortest path tree: for instance,
D keeps B as its default route next hop. The benefits of this

method is that the flooding is limited to the detached subtree
and only unicast packets flow in the rest of the network.
Other protocols use this kind of unicast round trip to the
sought destination to rebuild a lost route: TPGF [6] uses one
packet to walk through the detached sub-tree until it finds
a way out and comes back. In Babel [7], sequence number
request may travel all the way to the target and trigger an
update.

IV. DATAPATH VALIDATION

In a LRP network, host and default routes coexist. When
the routing tables are not consistent, this coexistence may
create a routing loop. Figure 3 gives examples of routing
loops:

• Figure 3a presents the simplest example: we assume
that node A has lost the route to node B. Any packet
destined to B coming from the edge router ER (the
root) is in the loop between ER and A.

• Figure 3b gives another example in which more than
two nodes are involved. We assume that node C has
recently changed its successor from B to A. The
route from ER to D through B and C is active. If
node C looses its route to D, a loop is created for
this destination between ER, B, C, and A.

As it is difficult to keep a distributed system consistent,
we will not try to keep the LRP network consistent, but
rather, thanks to its reactive operation, we will guarantee that
an inconsistent situation is detected and is repaired before
causing problems.

A. Loop Detection

Let x be a route entry matching a given destination at
a node. x contains the destination (a prefix and its length,
plen), the next hop, the sequence number (seq), and a
metric (m). Then, we can define an order ≺ on any two

(a) (b)

Figure 3: Examples of routing loops.

route entries x and y in the network:

x ≺ y ⇔ x.plen > y.plen ∨
x.plen = y.plen ∧ (x.seq > y.seq ∨
x.seq = y.seq ∧ x.m < y.m)

In a nutshell, x ≺ y if x is more specific, newer, or
shorter than y, in this order of priority.

Using the order, we enforce that packets do not loop
in the network as long as the routing entries that packets
match along their route are strictly decreasing. Thus, the
routing entries create a gradient on the nodes leading to the
destination node. One of the difficulties is to make sure that
packets never “use” a default route after matching a host
route at some node.

B A xy

Figure 4: Using routing entry x at A to route a packet coming
from B that followed entry y

We consider the case of a packet matching a routing
table entry x at node A, coming from node B where it was
forwarded according to routing entry y (see Figure 4). We
denote by xd, yd, the default routes at A and B.

a) When matching a host route at A:

• If the packet comes from a predecessor node, it
was forwarded using a default route, which is a
more general routing table entry, so x ≺ yd (this
is the point at which the packet is now going down
towards the destination after going up the tree).

• Otherwise, if B is closer to the sink (xd � yd),
the packet is following a host route. If B points
to A for this destination, it means that A sent a
RREP to B in the past and thus, x ≺ y. Even if,
in the meantime, A got another RREP that was not
(yet) sent to B, the new routing table entry in A x+

verifies x+ ≺ x ≺ y.

b) When matching the default route at A:

• It is the responsibility of B to send packets to
successor node A only using the default route entry.
So, when B selected A as successor, we impose that
B had to remove all host routes in which A is a
next hop (Rule 1).

• When A uses route xd, it needs to check that the
previous hop is effectively a predecessor. So, A
verifies that it has received a RREP from B in the
past (Rule 2), which guarantees that then xd ≺ yd.
If B subsequently moves closer to the sink, it will
send packets to A only if it gets a RREP from A,
so A is not using any more its default route.

In general, for a destination outside of the sensor network,
only default routes will match, there is no need for any
additional check.

B. Predecessor Advertisement

When a node restarts, we impose that it keeps track of
its own sequence number all the time to be able to override
previous RREPs. Not complying to this principle only puts
a node at risk to be unreachable until it catches up its former
sequence number.

Another requirement—to keep track of the metric, the
sink address, and the associated sequence number is also
important: if a node reboots and re-attaches to one of its
(indirect) predecessors, a loop is created, and the conditions
in the section above are not sufficient to keep the packets
from looping around.

To do away with this requirement, we require that nodes
check the sequence number of the sender when receiving
packets from an unknown node: if A re-attaches further
down after a reboot and gets a packet from B (that uses
a route dating from an instant before A restarted), this
predecessor is unknown. It will send a DVE (Datapath
Validation Error) message to B. The DVE contains the
default routing entry of A (sequence number, sink, metric)
so B can compare it with its local entry, and detach from A
in this case.

Conversely, if everything is in order, B advertises itself
as a predecessor to A with a DVA (Datapath Validation Ad-
vertisement) message. This message may be sent proactively
after selecting a successor (i.e. parent) to avoid the DVE—
DVA handshake.

C. Routing Loop Erasure

When a node (say node A) detects a loop, it has to erase
it. A sends back a DVE message to the neighbor from which
the looping packet came from (say node B). There are two
cases:

• Either B receives the DVE from its successor (de-
picted in Figure 5a), which means that A does not

(a) (b)

Figure 5: Sending DVE after the detection of a routing
loop. (a) Node B is not known as a predecessor by node A,
B identifies itself with a DVA message. (b) Node B used an
obsolete host route, no more known by A, so the route is
erased.

know that B is its predecessor. B must answer with
a DVA message.

• Or B receives the DVE from another node (depicted
in Figure 5b) which means that B used an obsolete
host route that A removed. The route must be
deleted and not be used again. B deletes this host
route and forwards the RERR message to its own
successor to avoid using this host route anymore.
The RERR message will be forwarded from one
node to its successor to delete the host route.

V. IMPLEMENTATION NOTES

A. Writing Informations on Non-Volatile Memory

To ensure network consistency, some information must
not be lost by a node: first, its current position is the DODAG
(the sink address DODAG, the DODAG sequence number,
and the current distance to the sink), and second, the internal
sequence number of the node. The information must not be
lost if a node reboots, so we consider storing it in a non-
volatile memory.

B. Flood and Broadcast Operation

LRP needs to broadcast (at the link-local scope) and
flood (to all nodes in the network) some messages, but it
does not define a specific method to perform these opera-
tions. The best method to use depends on a given medium
access layer, which is let to the implementation.

Flooding a message does not mean that all nodes should
send the message, but rather that all nodes must receive
the message. The DIO, RREQ, and BRK messages are
retransmitted by neighbors, which may generate collisions.
The broadcast operation must pay attention to collisions if
the MAC layer does not provide mechanisms to mitigate
their impact.

Some nodes may be configured not to forward the
packets of other nodes, which may be useful if a node
has little residual energy. In this case, they do not have to
broadcast DIO, RREQ, and BRK messages. Nevertheless,

Client nodes

Figure 6: Placement of the nodes during the simulation.
A whole subtree moves to a different location after 100s,
breaking the routes to and from the clients.

the node must be able to send RREP messages and reply to
RREQ and RERR messages.

C. Neighbor Unreachability Detection

The local repair scheme described in Section III starts
when the last successor is declared unreachable. LRP does
not define a specific method to perform a Neighbor Un-
reachability Detection (NUD). If the medium access layer
is not able to detect unreachability of a neighbor, the
implementation must provide a way to detect it (e.g., by
implementing the IPv6 NUD algorithm). The reaction time
of the NUD algorithm must be small compared to the global
repair frequency (described in Section III-A1).

VI. EXPERIMENTATIONS

To validate LRP, we have implemented it on Contiki
OS [8]. To compare LRP with RPL, we have used the
ContikiRPL implementation [9] provided with Contiki. We
have used the Cooja emulation tool [10] to validate the
protocol functionalities. We have also run LRP on real motes
on the IoT-lab testbed [11]. We present below the results of
experimentations.

A. Emulation in Cooja

We compare the routing packet emission rates between
RPL and LRP in a 10 minutes long emulation in Cooja.
Figure 6 presents the placement of nodes: 35 nodes are
arbitrarily placed around the sink and start to operate at
t = 0. Some client nodes, placed on a subtree structure, send
traffic to the sink (upward traffic) that replies by sending
back another packet (downward traffic). After 1’40s, the
subtree with the client nodes moves from one place to
another, which generates a link break. Figure 7 shows the
packet emissions during this emulation.

At the beginning, LRP nodes build a DODAG with
DIO messages and they proactively establish host routes
by transmitting RREP messages. 30 seconds after, the first
packets are transmitted. Some of them trigger a reactive host
route establishment through RREQ and RREP messages.
Indeed, some host routes have not been completely built,

1 LRP-DIO

1 LRP-BRK

1 LRP-UPD

2
4

Pa
ck

et
 e

m
iss

io
n

sp
ee

d
(p

ac
ke

ts
/s)

LRP-RREQ

2
4 LRP-RREP

2
4 LRP-RERR

2
4 RPL-DIO

0 1 2 3 4 5 6 7 8 9 10
Time (min)

2
4 RPL-DAO

Figure 7: Comparison between the rates of routing packets
generated by RPL and LRP in the scenario of Figure 6. 6
graphs at the top correspond to LRP messages, 2 graphs at
the bottom to RPL messages. The comparison shows that
LRP is quiet most of the time, contrary to RPL. A local
repair takes place around the third minute. (Note that scales
are not the same between upper 3 and lower 5 graphs).

because of collisions of RREP messages (all nodes start at
the same time).

RPL uses the trickle algorithm [12] to broadcast DIO
messages. According to the algorithm, messages are trans-
mitted all the time, more frequently at the start and then with
more and more delay between repetitions. DAO messages
are broadcast at the beginning to establish host routes for
downward traffic. They are also emitted continuously to
maintain routes, because the sink has no method to solicit
the creation of host routes.

Comparing RPL and LRP, it is plain that LRP is much
more “quiet” than RPL. RPL needs to constantly broadcast
DIO and DAO messages, while LRP benefit from the local
repair (no need for constant DIO emissions) and from
reactive host route establishment (no need for constant
RREP/DAO emissions) mechanisms. RPL is always active
contrary to LRP that is only active when maintenance is
needed.

We can also observe the local repair done by LRP that
occurs because of the subtree movement at time 1’40s.
The link break is only detected at 3’ by the Neighbor
Unreachability Detection algorithm (NUD). At this time, the
nodes send BRK and UPD messages according to the local
repair mechanism. However, just after 3’, host routes are
not yet repaired, because the used NUD algorithm is only
active when there is some traffic on the link. Hence, we
have to wait until 4’ to obtain the situation in which the

10
50

Broadcasted packets

DIO Broadcast

10
50 BRK Broadcast

10
50 RREQ

10
50

Pa
ck

et
 e

m
is

si
on

 s
pe

ed
 (p

ac
ke

ts
/s

)

DIS

10
50

Unicasted packets

DIO Unicast

10
50 BRK Unicast

10
50 UPD

0 5 10 15 20 25 30 35 40 45 50 55
Time (min)

10
50 RREP

Figure 8: LRP on IoT-lab — Number of routing packets
generated per time slices of 30s. A global repair takes place
after 30mn.

obsolete host routes are deleted thanks to RERR messages,
and rebuild reactively thanks to RREQ and RREP messages.

The effect of the subtree displacement is not visible
under RPL, because of the constant emission of DIO and
DAO messages that automatically repair the default and host
routes.

B. Experimentation on IoT-lab

To validate the performance of the proposed schemes in
real world conditions, we have run experiments on M3 nodes
[13] of the IoT-lab testbed, using 1 server and 34 clients,
all placed in a 3D grid. The server is also the sink and it
replies to packets sent by each client every 15s. The traffic
of routing messages appears in Figure 8. We use the hop
count metric, which, in fact, gives surprisingly satisfactory
results and causes much less overhead then ETX at the start.

This experiment illustrates well several aspects of the
behavior of LRP. First, nodes re-broadcast only once after
a DIO reception that “improves” the node position, whereas
RPL would keep on sending indefinitely, following the
trickle algorithm. So, we witness no background DIO traffic,
whereas DIS are of utter importance, since it is only the
un-associated nodes that actively probe. Here, DIS packets
appear regularly, they correspond to one node that is out
of range of the rest of the network. Unicast DIOs follow

the reception of DIS messages. Second, after approximately
11mn (and also after 36mn), a node looses its next hop and
broadcasts a BRK (after attempting to repair by sending a
couple of DIS). This broadcast is followed by unicast BRKs
that reach the sink. It triggers the transmission of UPD
packets after which, the tree is repaired. Third, spontaneous
RREP are transmitted upon attachment to a new successor,
so there are few RREQ transmissions.

Finally, at t = 30mn, a scheduled global repair takes
place, and DIOs flood the network. Here, LRP does not use
any mechanism to reduce flooding overhead (such as trickle),
DIS and DIO broadcasts are simply (re)transmitted with a
random delay to avoid collisions. This period of 30mn is
purely for illustration purposes and it could be much larger
depending on the use case.

It is interesting to take a closer look at the reason why
BRK packets appear in this experiment. It happens, once per
global repair in this case, that node N receives a DIO from
successor S that advertises a good metric, although it is not
effectively usable, due to a high loss probability, for instance.
Then, N will eventually discard S, but it needs to move
further down the tree to reconnect. A local repair allows
this move with minimal overhead. In RPL, this problem may
be solved by using, for instance, the ETX metric initialized
at a high value, although this leads to prefer well-known
next-hop nodes compared to untested alternative neighbors.
Also, using a non-zero DAGMaxRankIncrease authorizes a
limited movement away from the sink, although at the cost of
transient loops. The point here is that a quick low overhead
local repair mechanism changes the criteria for the choice
of a metric.

VII. RELATED WORK

The MANET community has focused more on building
and maintaining host routes in a flat network than injecting
prefixes, although OLSR [14] allows to publish HNAs (Host
and Network Associations). The tacit hypothesis is that host
routes and prefixes are disjoint.

The Babel routing protocol [7] considers the case of
routing loops due to the default route subsuming a route
to a host that has vanished. In Babel, the idea is to mark
unreachable and maintain the old route long enough for the
stale routing entries to expire. This approach imposes to keep
track of past routing events, which increases the amount of
information nodes have to keep in persistent memory banks.
Moreover, reducing routing traffic leads to using relatively
long route timeouts, which makes matters worse. Finally,
as we consider a network in which the routing information
is localized to the path above each destination, if a sensor
changes location, it does not necessarily update its former
predecessors; so it becomes unreachable from them.

The Temporally-Ordered Routing Algorithm
(TORA) [15] has a route maintenance mechanism,
which can repair a link failure. Nodes are organized in
a directed acyclic graph oriented to a destination. The

idea is to detect when a node has no more routes to a
destination—it is a dead end for this destination. To solve
this problem, the node must use the nodes belonging
to its subtree. The routes that leads to this dead end
must be reverted, until another valid route is found. This
approach needs synchronization between two nodes, as
they must both revert a route. A packet loss leads to a
de-synchronization and results in routing loops, which may
be a problem in wireless sensor networks with high loss
rates.

A. RPL Datapath Validation

In RPL [1], routing loops are not possible because
every data packet bears a RPL option header containing the
direction of the packet (bit O) and the rank of the sender.
In this way, every packet sent contributes to checking the
topology—this mechanism is inherited (like trickle) from
the Collection Tree Protocol (CTP) [2]. Unfortunately, this
property comes at a rather high price: for the packets
originated from outside of the sensor network or for the
packets destined to outside, it becomes mandatory to tunnel
them so to add an outer IPv6 header. In this way, in case a
routing problem is detected for inward traffic, the ER gets
the ICMP notification. Strong packet header compression is
mandatory to regain a satisfactory efficiency with such over-
head. Interestingly, the piggybacking of routing information
on each packet was never questioned during the elaboration
of RPL.

VIII. CONCLUSION

LRP is a routing protocol dedicated to wireless sensor
networks. It is based on a DODAG structure that allows it
to easily forward upward traffic to the sink. The DODAG
structure can efficiently adapt itself to a changing topology,
thanks to a local repair algorithm and a reactive route
establishment. LRP is loop free guaranteed by the datapath
validation algorithm that allows the protocol to check the
distributed routing information consistency while routing
data packets.

We have validated the proposed schemes with Cooja
emulations and an experimental evaluation on a real-world
sensor network testbed. The preliminary results show that
LRP has less overhead than RPL, thanks to the local repair
mechanism.

The perspectives are numerous:

• The utility of the local repair must be considered.
Indeed, it depends on the density of the network, the
propagation method, and the mobility of the nodes.
For example, in a high-density network, a local
repair may generate significant traffic with little
benefits. Thus, we need to find an optimal trade-
off between the reliability and the traffic overhead
generated by the repair.

• There are numerous metrics: hop count, RSSI, ETX
or many other metric may be used. However, some

of them are more suitable than the others, depending
on the network and on the parameters that have to
be optimized.

• Flooding operation may also be optimized. For
example, the BRK and RREQ messages can be
processed thanks to a expanding ring search. De-
pending on the situation, a connected dominating set
or a Layer 2 forwarding schemes [16] can also be
used to minimize the number of broadcasts needed
to flood the whole network. Also, other flooding
algorithms may be considered such as trickle [12]
or multipoint relays [17].

ACKNOWLEDGMENT

This work was partially supported by the French National
Research Agency (ANR) project IRIS under contract ANR-
11-INFR-016 and by the LabEx PERSYVAL-Lab (ANR-11-
LABX-0025-01) .

REFERENCES

[1] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. Vasseur, and R. Alexander, “RPL: IPv6 Routing
Protocol for Low-Power and Lossy Networks,” RFC 6550 (Proposed
Standard), Mar. 2012.

[2] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss,
and Philip Levis, “Collection tree protocol,” in Proceedings of the 7th
ACM Conference on Embedded Networked Sensor Systems. ACM,
2009, pp. 1–14.

[3] T. Clausen, A. Colin de Verdiere, J. Yi, A. Niktash, Y. Igarashi,
H. Satoh, U. Herberg, C. Lavenu, T. Lys, and J. Dean, “The
Lightweight On-demand Ad hoc Distance-vector Routing Protocol
- Next Generation (LOADng),” Work in Progress draft-clausen-lln-
loadng-12, IETF, October 2014.

[4] Chi-Anh La, Martin Heusse, and Andrzej Duda Grenoble, “Link
reversal and reactive routing in low power and lossy networks,” in
Personal Indoor and Mobile Radio Communications (PIMRC), 2013
IEEE 24th International Symposium on. IEEE, 2013, pp. 3386–3390.

[5] Liviu-Octavian Varga, Gabriele Romaniello, Mališa Vučinić, Michel
Favre, Andrei Banciu, Roberto Guizzetti, Christophe Planat, Pascal
Urard, Martin Heusse, Franck Rousseau, Olivier Alphand, Étienne
Dublé, and Andrzej Duda, “GreenNet: an Energy Harvesting IP-
enabled Wireless Sensor Network,” IEEE Internet of Things Journal,
2015.

[6] Lei Shu, Yan Zhang, LaurenceT. Yang, Yu Wang, Manfred
Hauswirth, and Naixue Xiong, “Tpgf: geographic routing in wireless
multimedia sensor networks,” Telecommunication Systems, vol. 44,
no. 1-2, pp. 79–95, 2010.

[7] J Chroboczek, “The Babel Routing Protocol,” RFC 6126, IETF,
April 2011.

[8] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a Lightweight and
Flexible Operating System for Tiny Networked Sensors,” in Proc.
of IEEE LCN, nov. 2004.

[9] Nicolas Tsiftes, Joakim Eriksson, and Adam Dunkels, “Low-power
wireless ipv6 routing with contikirpl,” in Proceedings of the 9th
ACM/IEEE International Conference on Information Processing in
Sensor Networks. ACM, 2010, pp. 406–407.

[10] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-
level sensor network simulation with COOJA,” in Local Computer
Networks, Proceedings 2006 31st IEEE Conference on, nov. 2006,
pp. 641 –648.

[11] Eric Fleury, Nathalie Mitton, Thomas Noel, Cédric Adjih, Valeria
Loscri, Anna Maria Vegni, Riccardo Petrolo, Valeria Loscri, Nathalie
Mitton, Gianluca Aloi, et al., “FIT IoT-LAB: The largest iot open
experimental testbed,” ERCIM News, , no. 101, pp. 14, 2015.

[12] Philip Levis, T Clausen, J Hui, O Gnawali, and J Ko, “The trickle
algorithm,” RFC 6206, Mar. 2011.

[13] M3 Open Node motes, ,” https://www.iot-lab.info/hardware/m3/.
[14] T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol

(OLSR),” RFC 3626, IETF, October 2003.
[15] V. Park and S Corson, “Temporally-Ordered Routing Algorithm

(TORA) Version 1 Functional Specification,” Work in Progress draft-
ietf-manet-tora-spec-04, IETF, July 2001.

[16] Chi-Anh La, Liviu-Octavian Varga, Martin Heusse, and Andrzej
Duda, “Energy-efficient multi-hop broadcasting in low power and
lossy networks,” in Proceedings of the 17th ACM International
Conference on Modeling, Analysis and Simulation of Wireless and
Mobile Systems, New York, NY, USA, 2014, MSWiM ’14, pp. 41–
50, ACM.

[17] T. Clausen and U. Herberg, “Comparative study of RPL-enabled
optimized broadcast in wireless sensor networks,” in Intelligent
Sensors, Sensor Networks and Information Processing (ISSNIP),
2010 Sixth International Conference on, Dec 2010, pp. 7–12.

