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Numerical reconstruction of electromagnetic inclusions

in three dimensions

Gang Bao∗, Junshan Lin†, and Séraphin M. Mefire‡

Abstract

This paper is concerned with the reconstruction of electromagnetic inclusions in
a three-dimensional bounded domain by boundary measurements. An accurate and
stable reconstruction method is presented to solve the associated inverse problem.
The approach consists of two main steps: (1). At low frequency, a MUltiple SIgnal
Classification (MUSIC) algorithm is used to obtain the locations of inclusions, which
serve as an initial guess for reconstructions at higher frequencies; (2). A continuation
method based on multiple frequency data is then applied to recover the shapes of
inclusions accurately. Numerical examples are provided to illustrate the effectiveness
of the approach.

Keywords. inverse problems, Maxwell equations, shape optimization

MS Codes. 65N21, 65N30, 78A25

1 Introduction

Electromagnetic wave has found significant applications in civil and military engineering.
There has been long interest and extensive study on inverse electromagnetic scattering theory
in different contexts, see for example [3, 17, 19]. In this paper, we consider the reconstruction
of inhomogeneities embedded in a background medium by electromagnetic measurements on
the boundary of the object. The problem arises naturally in applications such as medical
imaging, non-destructive testing of materials, geophysics, etc.

Let ε and µ be the electric permittivity and magnetic permeability of the medium re-
spectively in a bounded domain Ω ⊂ R

3. Denote the permittivity and permeability of the
vacuum as ε0 and µ0. Then ε and µ can be rewritten as ε = εrε0 and µ = µrµ0, where
εr and µr are the relative permittivity and permeability respectively. In this work, we are
interested in the case when the permittivity εr is piecewise constant inside the domain Ω. To
be more precise, let Dj (j = 1, 2, · · · , j0) be the disconnected inclusions inside the domain
Ω such that Di ∩ Dj = ∅ if i 6= j, and D = ∪j0

j=1Dj be the union of inclusions. Then the
relative permittivity takes the following form:

εr(x) =

{

ε1 if x ∈ D,
ε2 if x ∈ Ω\D,
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Lorraine, 54506 Vandœuvre-lès-Nancy Cedex, France. Email: seraphin.mefire@univ-lorraine.fr.

1



where ε1 and ε2 are permittivities for inhomogeneities and background medium respectively.
Throughout the paper, we also restrict out attention to the nonmagnetic medium by assum-
ing that µr ≡ 1 in Ω.

For a time harmonic electromagnetic wave (with e−iωt dependence), the electric field E
and magnetic field H satisfy the Maxwell’s equations in the bounded domain Ω:

{

∇×E = iωµ0H,
∇×H = −iωεrε0E,

where ω is the operating frequency of the electromagnetic wave. By taking the curl of the
first equation, and substituting into the second equation, the equation for the electric field
E becomes

∇×∇×E − k2εrE = 0 in Ω. (1.1)

Here k = ω
√
ε0µ0 denotes the wavenumber. Let ν be the outward unit normal on the

boundary ∂Ω of the domain. Assume that some electric current is applied on the boundary,
then the following boundary condition for the electric field is prescribed:

E × ν = g on ∂Ω. (1.2)

From boundary measurements of the magnetic field H × ν, or equivalently ∇× E × ν,
the inverse problem is to reconstruct the inclusions Dj , j = 1, ..., j0, or their boundaries
∂Dj . For clarity of exposition, let us denote the boundaries as Γ := ∪j0

j=1∂Dj . The problem
considered here has piecewise constant medium, where the reconstruction of the boundaries
of inclusions is of interest. The readers are referred to [7] for a related inverse medium
scattering problem in two dimensions, and [8, 9, 10] for the reconstruction of a continuous
medium by electromagnetic measurements in three dimensions.

The goal of this paper is to study a two-stage method to reconstruct the inclusions in an
accurate and stable way. In the first stage, we employ a MUltiple SIgnal Classification (MU-
SIC) algorithm at low frequency to obtain the location of each inclusion Dj (j = 1, 2, · · · , j0).
The locations then serve as an initial guess for the reconstruction process at higher frequen-
cies. The MUSIC approach is based upon an asymptotic expansion of the magnetic field H
on the boundary and a perturbation formula at low frequency. Such a perturbation formula
is initiated by Ammari et al for the inverse conductivity problem [4], and is further devel-
oped in [5] for the three-dimensional Maxwell’s equations. From the perturbation formula,
a MUSIC algorithm is proposed and studied in details in [6] to locate the electromagnetic
inclusions.

In the second stage, in order to obtain the boundaries of inclusions, the nonlinear in-
verse problem is then recasted as a shape optimization problem of solving D such that the
resulting magnetic field matches the boundary measurement. We propose to use multiple fre-
quency data to solve this nonlinear optimization problem. Indeed, recent studies for related
inverse scattering problems suggest that a recursive linearization (continuation) approach
with multiple frequency data overcomes the difficulty of reaching some local minimum, and
is promising to lead the solution to the global minimum of the cost functional [8, 9, 11, 12, 16].
In this paper, we extend the continuation approach for the considered nonlinear optimiza-
tion problem when multiple frequency data are available. The optimization scheme uses the
locations of inclusions obtained in the first stage as an initial guess, i.e., by guessing each
Dj as a sphere with a small radius centered at the obtained location zj . Then the scheme
marches from low to high frequencies. At a fixed frequency, using the solution obtained at
the previous frequency as an initial guess, a steepest descent direction V for the defined cost
functional is derived on the surface Γ, and a level set approach is employed to simulate the
dynamic evolution of the surface with given vector field V .
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The rest of the paper is organized as follows. Section 2 begins with the perturbation
formula and the MUSIC algorithm at low frequency to locate the inclusions. In Section 3,
the reconstruction by the continuation approach with multiple frequency data is proposed.
We also discuss the steepest descent direction at a fixed frequency for the cost functional
and the dynamic evolution of the surface with such a direction by the level set method.
Several numerical examples are presented in Section 4 to demonstrate the effectiveness of
the method, and the paper is concluded with some general remarks in Section 5.

2 A MUSIC algorithm at low frequency

Assume that the typical size of each inclusion Dj (j = 1, 2, · · · , j0) is ρ. Moreover, Dj is
represented by zj+ρUj, where zj denotes its location, and Uj is a bounded domain containing
the origin and has smooth boundary. The perturbation formula is based on the assumption
that

{

d0 ≤ |zj − zl| ∀ j 6= l,
d0 ≤ dist(zj , ∂Ω) ∀ j ,

for some positive constant d0. In addition, the wavenumber k is such that the natural weak
formulation of the Maxwell equations for the homogeneous medium

{

∇×∇× E0 − k2E0 = 0 in Ω,
E0 × ν = g on ∂Ω,

(2.1)

has a unique solution E0. Let W be any smooth solution of the Maxwell equation

∇×∇×W − k2W = 0 in Ω̄,

then there exists a constant ρ0 that for 0 < ρ < ρ0, the following asymptotic formula holds
(see [4]):

∫

∂Ω

∇×E × ν ·Wds−
∫

∂Ω

∇×W × ν · (ν × (E × ν))ds

= ρ3k2

j0
∑

j=1

(

ε2
ε1

− 1

)(

Mj(
ε2
ε1
)E0(zj)

)

·W (zj) +O(ρ4), (2.2)

with E the unique weak solution of the boundary value problem (1.1) - (1.2).
Here the constant ρ0 depends on the shapes Uj , Ω, permittivity values ε1 and ε2, the

wavenumber k and d0, but is otherwise independent of g,W , and of the points zj , j = 1, ..., j0.
Also, Mj is the polarization tensor (see [3] for detailed properties), where each entry is given
by

mj
pq

(

ε2
ε1

)

=
ε1
ε2

∫

Uj

∂φp

∂xq
dx, 1 ≤ p, q ≤ 3,

with the scalar potential φp satisfying



























∆φp = 0 in R
3\Uj ,

∆φp = 0 in Uj ,
φ+
p − φ−

p = 0 on ∂Uj ,

ε2
ε1

(

∂φp

∂ν

)+

−
(

∂φp

∂ν

)−

= 0 on ∂Uj ,

φp(x)− xp → 0 as |x| → ∞,
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where the outward unit normal to ∂(zj + ρUj), the boundary of zj + ρUj , is also denoted by
ν, and the superscripts +, − indicate the limiting values as ∂(zj + ρUj) is approached from
outside zj + ρUj , and from inside zj + ρUj . Also, the coordinates of x ∈ R

3 are represented
by xq, 1 ≤ q ≤ 3.

Now we introduce the MUSIC algorithm based on the asymptotic formula (2.2). The
method is essentially an approach to characterize the range of an operator and is closely
related to the linear sampling method [18, 22]. For simplicity of presentation, we assume
that Ω is a unit sphere. For p = 1, 2, · · · , m, let

E0,p(x) = θ̂⊥p e
ikθ̂p·x,

where θ̂p is the incidence direction, and θ̂⊥p is the polarization direction. It is clear that E0,p

is the solution of the Maxwell’s equation for the homogeneous medium (2.1) with current

gp(x) = θ̂⊥p e
ikθ̂p·x × ν

on the boundary ∂Ω.
Let Ep be the solution of the Maxwell equation (1.1) with the applied current g = gp.

Then for each test vector function

Wq(x) = θ̂⊥q e
ikθ̂q·x, q = 1, 2, · · · , m,

the left-hand side of the asymptotic formula (2.2), which we denote as Apq, can be evaluated
with vector fields gp, ∇×Ep × ν and Wq as follows:

Apq =

∫

∂Ω

∇×Ep × ν ·Wqds−
∫

∂Ω

∇×Wq × ν · (ν × gp)ds. (2.3)

With such particular choices of vector fields gp and Wq, the right-hand side of (2.2) becomes

ρ3k2

j0
∑

j=1

(

ε2
ε1

− 1

)(

Mj

(

ε2
ε1

)

θ̂⊥p

)

· θ̂⊥q eik(θ̂p+θ̂q)·zj +O(ρ4).

Let A be the m × m matrix with each entry given by (2.3), which can be evaluated
in practice with given data. If the high order terms in the asymptotic formula (2.2) are
neglected, it follows that

Apq = ρ3k2

j0
∑

j=1

(

ε2
ε1

− 1

)(

Mj

(

ε2
ε1

)

θ̂⊥p

)

· θ̂⊥q eik(θ̂p+θ̂q)·zj .

Let x0 ∈ R
3 be some constant vector such that x0 · θ̂⊥p 6= 0 for each p. For each x ∈ Ω, define

the vector
v(x) = [x0 · θ̂⊥1 eikθ̂1·x, x0 · θ̂⊥2 eikθ̂2·x, · · · , x0 · θ̂⊥meikθ̂m·x]. (2.4)

Referring to [1], it can be shown that there exists some integer m0 that for m ≥ m0, the
following claim is true:

v(x) ∈ Range(AA∗) if and only if x ∈ {z1, z2, · · · , zj0}.
The singular-value decomposition of A allows for localization of inclusions. In fact, the

significant singular-values of A determine the number of detectable inclusions. Typically,
there are j0 detectable inclusions when there exist 3j0 singular-values of A that are not close
to 0. The corresponding left singular-vectors of A denoted by v1, v2, · · · , v3j0 , allow us to

locate these inclusions. Let V = [v1, v2, · · · , v3j0 ], then V V
T
is the projection onto the signal

space of A. Thus the projection onto the null space is
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P = I − V V
T
,

where I is the m×m identity matrix, with m > 3j0. The locations of inclusions can now be
identified with the function

f(x) =
1

||Pv(x)||2
, (2.5)

wherein the vector v(x) is given by (2.4), and ‖ . ‖2 is the usual L2 norm applied here to a
vector of m components. Indeed, from the above claim, x ∈ {z1, z2, · · · , zj0} if and only if
Pv(x) = 0. Therefore, if we plot the function f(x) for each x ∈ Ω, then the points with
high peaks represent the locations of inclusions. The obtained locations serve as an initial
guess for the shape reconstruction by optimization at higher frequencies, which is discussed
in detail in next section.

3 Reconstruction of inclusions at higher frequencies

3.1 The continuation approach with multiple frequency data

Suppose that multiple frequency measurements { Hkn×ν | n = 1, 2, · · · , N } of the tangential
trace of the magnetic field are available on the boundary for a set of wavenumbers { kn | n =
1, 2, · · · , N }, wherein kn > km if n > m. Assume that zj , j = 1, · · · , j0, are the locations of
inclusions obtained by the MUSIC algorithm at k = k1, then the shape reconstruction starts
with an initial guess where each inclusion Dj is a sphere centered at zj with a small radius.

To recover the shapes of inclusions at higher frequencies, we propose a continuation ap-
proach that marches from low to high wavenumbers. At each fixed wavenumber k = kn
(n > 1), the inverse problem is recasted as a shape optimization problem. In addition, the
solution at lower wavenumber k = kn−1 is used as an initial guess, and a steepest descent
method is applied to solve the optimization problem. More precisely, the continuation ap-
proach can be summarized as follows:

FOR n = 2, 3, 4, · · · , N
Let k = kn,
Use the reconstruction at k = kn−1 as an initial guess,
Solve the optimization problem at k = kn by the steepest descent method.

END

It is expected that with such a continuation process, the main features of the surface are
recovered at low frequencies and the small-scale features are captured at higher frequencies.
On the other hand, the approach leads to a convergent reconstruction without falling into
some local minimum of the cost functional.

Next we focus on the reconstruction approach at each fixed wavenumber. In particular,
the steepest descent direction for the cost functional and its calculation by an adjoint ap-
proach are discussed. The evolution of the inclusion surface by the chosen steepest descent
direction is simulated by the level set approach, which is also briefly reviewed for the purpose
of completeness.

3.2 Cost functional and descent directions at fixed frequency

At fixed wavenumer k, we recast the inverse problem of recovering the boundaries of inho-
mogeneities as a shape optimization problem. For a given permittivity εr, define the forward

5



map
M : εr → ∇× E × ν|∂Ω, (3.1)

where E is the solution of (1.1) with εr. Denote the measurement of the tangential trace
of the magnetic field on the boundary ∂Ω by Hmeas. Here we scale the measurement by a
factor of iωµ0. Hence H

meas = ∇×Et×ν|∂Ω when no noise is present and Et is the solution
of (1.1) with true permittivity. The residual on the boundary is given by

R(εr) = M(εr)−Hmeas,

and the corresponding least-squares cost functional is

F(εr) =
1

2
||M(εr)−Hmeas||2(L2(∂Ω))3 . (3.2)

Given a vector field V on Γ such that V (x) ∈ R
3 for each point x ∈ Γ, we define the

surface Γδ as the perturbation of Γ in the direction V (x) with a step length δ:

Γδ := {x+ δ V | x ∈ Γ}.

Let δεr be the change of permittivity due to the perturbation. Then it can be shown that
for any test function u ∈ L2(Ω), the inner product

(δεr, u) :=

∫

Ω

δεr(x)ū(x) dx =

∫

symdiff(D,Dδ)

δεr(x)ū(x) dx.

Here ū represents the conjugate of u, D andDδ are the corresponding inclusions sets bounded
by the surfaces Γ and Γδ respectively, and the symmetric difference of two sets D and Dδ is
given by

symdiff(D,Dδ) = (D ∪Dδ)\(D ∩Dδ).

In view of the fact that the permittivity values for inhomogeneities and background medium
are ε1 and ε2 respectively, then for an infinitesimal δ, the above inner product can be sim-
plified as

(δεr, u) = δ

∫

Γ

(ε1 − ε2)(V · ν)ū(x) dx, (3.3)

where ν is the outward unit normal on Γ.
Let εδr (= εr + δεr) be the permittivity associated with the perturbed interface Γδ. The

cost functional F(εr) admits the following expansion:

F(εr + δεr) = F(εr) + ℜ ( (M′)∗(M(εr)−Hmeas), δεr) +O(||δεr||2), (3.4)

where (M′)∗ is the adjoint of the Fréchet derivative of the forward mapping M, and ℜ
denotes the real part of a complex number. By substituting (3.3) into (3.4) and neglecting
the high order terms, it follows that

F(εr + δεr) ≈ F(εr) + δ ℜ
∫

Γ

(M′)∗(M(εr)−Hmeas)(ε1 − ε2)(V · ν) ds.

Therefore,

F ′(εr) = lim
δ→0

F(εr + δεr)− F(εr)

δ
= ℜ

∫

Γ

(M′)∗(M(εr)−Hmeas)(ε1 − ε2)(V · ν) ds.

6



We observe that the vector field V such that

V · ν = −ℜ [ (M′)∗(M(εr)−Hmeas)(ε1 − ε2) ]

is a steepest descent direction, and the cost functional F(εδr) < F(εr) if δ ∈ (0, t0] for some
small positive constant t0. Note that the tangential component of V (x) does not contribute
to the deformation of the shape Γ. We choose the vector field directed to the normal direction
on the interface Γ in the following way:

V = −ℜ [ (M′)∗(M(εr)−Hmeas)(ε1 − ε2) ] ν. (3.5)

To calculate the adjoint of the Fréchet derivative (M′)∗, we employ the adjoint state ap-
proach, which is stated in the following Theorem.

Theorem 3.1 Let E be the solution of (1.1)-(1.2), and Φ be the solution of the following
boundary value problem:

{

∇×∇× Φ− k2ε̄rΦ = 0 in Ω,
ν × (Φ× ν) = M(εr)−Hmeas on ∂Ω.

Then (M′)∗(M(εr)−Hmeas) = −k2Ē · Φ.
By Theorem 3.1, the steepest descent direction V (x) defined by (3.5) can be calculated via
the following formula:

V = k2 ℜ [ (Ē · Φ)(ε1 − ε2) ] ν, (3.6)

where E and Φ are the solutions of the forward and adjoint problems respectively.

Proof of Theorem 3.1 Let δεr be a small perturbation of permittivity. Then the linear
term of the perturbation in the magnetic field is M′δε = ∇×δE×ν, where the perturbation
δE satisfy the following boundary value problem:

{

∇×∇× δE − k2εrδE = k2δεE in Ω,
δE × ν = 0 on ∂Ω.

(3.7)

By using the relation ∇ · ((∇× δE)× Φ̄) = ∇× (∇× δE) · Φ̄− (∇× δE) · (∇× Φ̄), and the
Green’s formula,

< M′δε,Φ >∂Ω =

∫

∂Ω

(∇× δE)× ν · Φ̄ ds

=

∫

Ω

−∇× (∇× δE) · Φ̄ + (∇× δE) · (∇× Φ̄) dx

=

∫

Ω

(−k2εrδE − k2δεE) · Φ̄ + (∇× δE) · (∇× Φ̄) dx,

where we have used the first equation of (3.7) in the last equality. Using the Green’s formula
one more time, it follows that

< M′δε,Φ >∂Ω=

∫

Ω

(−k2εrδE − k2δεE) · Φ̄ + δE · ∇ × (∇× Φ̄)dx+

∫

∂Ω

(∇× Φ̄)× δE · νds.

Since ∇×∇× Φ− k2ε̄rΦ = 0 and δE × ν = 0, the above formula can be simplified as

< M′δε,Φ >∂Ω=

∫

Ω

δε (−k2)Ē · Φdx. (3.8)

On the other hand, note that M′δε is perpendicular to the normal direction ν, hence

< M′δε,M(εr)−Hmeas >∂Ω=< M′δε,Φ >∂Ω . (3.9)

The proof is complete by combining (3.8) and (3.9).
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3.3 Regularization strategy

In the presence of noisy measurements, suitable regularization strategy has to be employed to
achieve a stable solution. We regularize by penalizing the area of the surface, i.e., by adding
a term α

∫

Γ
1 ds to the least-squares cost functional (3.2), where α > 0 is the regularization

parameter. Such a regularization method has been used widely in image processing to shorten
the total curve length of the interfaces, see for example [25]. It is closely related to the total
variation (TV) regularization method [15]. We also refer to [21] for an overview of other
regularization techniques for inverse problems.

The regularization term α
∫

Γ
1 ds used to penalize the area of the surface leads to an

additional term in the steepest descent direction for the cost functional. Indeed, by a direct
calculation as in [29, 20], it can be shown that

lim
δ→0

(

1

δ

∫

Γδ

1 ds−
∫

Γ

1 ds

)

=

∫

Γ

κ (V · ν) ds, (3.10)

where κ is the mean curvature of Γ given by κ = ∇ · ν. Therefore, combining (3.6) and
(3.10), the steepest descent direction for the cost functional with the regularization term
becomes

V = k2 ℜ [ (Ē · Φ)(ε1 − ε2) ] ν − ακν. (3.11)

3.4 Shape evolution by level set functions

With the steepest descent direction for the cost functional F(εr) specified by (3.11), we
employ the level set approach to simulate the dynamic evolution of the interface Γ. The level
set method has been successfully applied to inverse problems involving shape reconstructions,
see [13, 14, 15, 20, 28] and references therein for detailed discussions. For completeness, we
briefly review the method and its application for the dynamic evolution of the interface Γ
with chosen velocity V .

Introduce an artificial time variable t. Let Γt be the evolution of the inclusions boundary
with velocity V , and Dt be the domain bounded by Γt. Define the level set function ϕ :
R

3 × (0,∞) → R such that

ϕ(x, t) =

{

< 0, x ∈ Dt

> 0, x ∈ Ω\Dt.

The zero level set of ϕ(x, t) represents the interface Γt at time t. The topological change of
the interface can be handled automatically with the level set function ϕ, and its dynamic
evolution is captured by solving the following Hamilton-Jacobi equation:

∂ϕ(x, t)

∂t
+ V (x, t) · ∇ϕ(x, t) = 0. (3.12)

In the above equation, V (x, t) is the velocity of the interface evolution given by (3.11). The
level set equation may be reformulated as

∂ϕ(x, t)

∂t
+ v(x, t)|∇ϕ(x, t)| = ακ(x, t)|∇ϕ(x, t)|, (3.13)

if we notice that the outward unit normal ν =
∇ϕ

|∇ϕ| . Here, the scalar function

v(x, t) = k2 ℜ [ (Ē · Φ)(ε1 − ε2) ]. (3.14)
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Typically, in order to solve (3.13), the velocity v(x, t) needs to extended to the entire domain.
This can be accomplished by evaluating (3.14) in the whole domain Ω.

To discretize the level set equation, the Euler method may be applied in the time direc-
tion. This gives rise to

ϕn+1(x)− ϕn(x)

∆t
+ vn(x)|∇ϕn(x)| = ακn(x)|∇ϕn(x)|,

where ∆t is the time step length. Whereas in the space direction, the first-order accurate
upwind scheme, or ENO, WENO schemes with higher-order spatial accuracy may be applied
for the convection term vn(x)|∇ϕn(x)|, and the center difference scheme can be used for the
diffusion term ακn|∇ϕn(x)|. We refer the reader to [27] that addresses this important topic
in detail.

Note that only the zero level set of ϕ, which determines the interface Γ, is critical, while
the value of ϕ itself is not that important. In general, the interface is more accurately
detected if ϕ is a signed distance function. That is

ϕ(x, t) = d(x,Dt)− d(x,Ω\Dt).

The distance between x and a closed set D is defined as

d(x,D) = miny∈D |x− y|.
The signed distance function ϕ satisfies the equation

|∇ϕ| = 1.

Typically, after the evolution of the interface by solving the Hamilton-Jacobi for a few time
steps, ϕ is not a signed distance function any more. Usually a reinitialization approach for
the level set function is applied periodically such that ϕ becomes a signed distance function.
For more details about the construction of the signed distance function, we refer to the
Chapter 7 of [27].

4 Numerical examples

Several numerical examples are presented in this section to illustrate the efficiency and
robustness of the proposed method. In all examples, we assume that the relative permittivity
values of inhomogeneities and background medium are ε1 = 2.5 and ε2 = 2.0, respectively.
For simplicity, the domain Ω is a unit ball centered at origin in the examples. However,
we note that the proposed algorithm is suitable for general domains with piecewise smooth
boundaries. To simulate the forward model (1.1)-(1.2) and to obtain the solution for the
adjoint problem defined in Theorem 3.1, we employ the second-order edge element method
[23, 24, 26].

In all examples, it is assumed that a 5% uniformly distributed noise is added to the
simulation data. We also set a uniform frequency spacing in the continuation algorithm
such that kn+1 − kn = 0.3 for n = 2, 3, · · · , N − 1. In addition, the relative residual on the
boundary for the obtained reconstruction is defined by

r =
||M(εr)−Hmeas||(L2(∂Ω))3

||Hmeas||(L2(∂Ω))3
,

where M is the forward map given in (3.1).
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Example 1 We consider a bean-type inclusion D shown in Figure 1 (left). The surface of
the inclusion is described by the equation

x̄2
1

R2
+

(x̄2 − α1R cos(πx̄1/R))2

R2(1− α2 cos(πx̄1/R))
+

x̄2
3

R2(1− α3 cos(πx̄1/R))
= 1, (4.1)

with x̄1 = x1 − c1, x̄2 = x2 − c2, x̄3 = x3 − c3.
In fact, in the above equation, (c1, c2, c3) represents the location of D, and 2R denotes

the largest dimension of the object. Here we set c1 = 0.2, c2 = 0.1, c3 = 0.05, and R = 0.4.
The parameters α1, α2 and α3 are chosen such that α1 = 0.15, α2 = 0.3, and α3 = 0.2.

The location of the inclusion is obtained by the MUSIC algorithm at lowest frequency
k1 = 1.0. It is obvious that with chosen frequency, the non-dimensionalized parameter kρ < 1
in (2.2), thus the asymptotic expansion is valid. The identification function 1/||Pv(x)||2 is
evaluated in the whole domain Ω. Figure 1 (right) shows the surface plot of 1/||Pv(x)||2 =
650, which represents the location of the inclusion D. The function values 1/||Pv(x)||2 on
the cross-sectional planes x1 = c1, x2 = c2 and x3 = c3 are also displayed in Figure 2. It is
observed that the identification function obtains high peaks near (c1, c2, c3).

To reconstruct the shape of the inclusionD, the continuation approach is employed, where
the wavenumber starts at k2 = 1.2 and stops at kN = 5.7. As mentioned at the beginning of
this section, a uniform frequency spacing is used such that kn+1−kn = 0.3 for n ≥ 2. Figure
3 plots the relative residual during the iteration process when the wavenumber k = 2.4, 3.0,
and 4.5, respectively. In order to demonstrate the convergence the continuation approach
at higher frequencies, the evolution of the reconstruction process at different wavenumbers
is displayed in Figure 4. It is seen that the inclusion is successfully reconstructed at the
largest wavenumber k = 5.7. To be more precise, we plot the curves of true inclusion and
numerical reconstruction on the cross-sectional planes x3 = −0.2, 0.05 and 0.35 in Figure 5.
The boundary of D is accurately obtained even though the noise is present.

Example 2 Assume that there are two bean-type inclusions D1 and D2 as shown in Figure
6 (left), where the surface of each is described by the equation (4.1). Let c1 = c3 = 0,
c̃2 = −0.4, and ĉ2 = 0.4. The coordinates (c1, c̃2, c3) and (c1, ĉ2, c3) represent the locations
of D1 and D2, i.e., in the equation (4.1), x̄1 = x1 − c1, x̄2 = x2 − c̃2, x̄3 = x3 − c3 and
x̄1 = x1 − c1, x̄2 = x2 − ĉ2, x̄3 = x3 − c3 for D1 and D2 respectively.

The locations of D1 and D2 are obtained by the MUSIC algorithm at lowest frequency
k1 = 1.0. We display the surface plot of 1/||Pv(x)||2 = 250 in Figure 6 (right), where it is
seen that two inclusions are successfully identified. Such a resolution beyond the Rayleigh
limit has also been reported in [2]. For clearness, the function values 1/||Pv(x)||2 on the
cross-sectional planes x1 = c1, x2 = c̃2, x2 = ĉ2 and x3 = c3 are displayed in Figure 7. It is
observed that the function values display high peaks near (c1, c̃2, c3) and (c1, ĉ2, c3).

Figure 8 plots the relative residual during the iteration process at specified wavenumbers,
and Figure 9 demonstrates the evolution of reconstruction process. To investigate the accu-
racy of the proposed approach, the curves of true inclusions and numerical reconstructions
on the cross-sectional planes x3 = −0.15, 0 and 0.15 are plotted for comparison (see Figure
10).

Example 3 In this example, we consider the case where there are three inclusions in-
side Ω as shown in Figure 11 (left). The inhomogeneities consist of two ellipsoids D1

and D2 centered at (c1,1, c1,2, c1,3) and (c2,1, c2,2, c2,3) respectively, and a ball D3 centered at
(c3,1, c3,2, c3,3), where (c1,1, c1,2, c1,3) = (0.3,−0.35, 0.3), (c2,1, c2,2, c2,3) = (−0.35,−0.4,−0.2),
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and (c3,1, c3,2, c3,3) = (−0.15, 0.35, 0.1). In addition, D1 and D2 have the same size, where
the semi-axes lengths are 0.32, 0.22, and 0.22. The radius of the inclusion D3 is 0.25.

At lowest frequency k1 = 1.0, the identification function 1/||Pv(x)||2 is evaluated in the
whole domain Ω to obtain the locations of D1, D2 and D3. Figure 11 (right) is surface plot
of 1/||Pv(x)||2 = 400. We display the function values 1/||Pv(x)||2 on the cross-sectional
planes x1 = ci,1, x2 = ci,2 and x3 = ci,3 (i = 1, 2, 3) in Figure 12. From the figure, it is seen
that the identification function obtains high peaks near the centers of inclusions.

The continuation approach is applied to reconstruct these inclusions, where the relative
residual on the boundary during the iteration process for k = 1.5, 2.1 and 3.6 is plotted in
Figure 13. The shapes of numerical reconstructions at different wavenumbers are shown in
Figure 14, which confirms the convergence of the algorithm. The boundaries of D1, D2 and
D3 are accurately obtained at the highest wavenumber k = 5.7, as can be observed from the
plots on the cross-sectional planes x3 = −0.2, 0.1 and 0.3 (see Figure 15).

5 Discussions

We have studied a two-stage reconstruction method to solve the inverse problem for the
three-dimensional Maxwell’s equations. The locations of inhomogeneities are obtained by
the MUSIC algorithm at low frequency. Based on knowledge of their locations, the shapes are
recovered by a continuation approach with multiple frequency data. The proposed method
is accurate and stable, as demonstrated by the numerical examples. One of the challenges
along this research direction is to develop fast solvers for the Maxwell’s equation at high
frequencies. Indeed, the linear system resulting from the discretization by edge element
methods becomes more ill-conditioned as frequency increases. More efficient preconditioners
need to be developed to accelerate the linear solver. The fast boundary integral equation
method may also be designed to solve the Maxwell’s equations in a more efficient way.

Figure 1: True inclusion (left) and its localization by the MUSIC algorithm (right).
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(a) (b)

(c)

Figure 2: Values of 1/||Pv(x)||2 on the cross-sectional planes. (a): x1 = c1; (b): x2 = c2; (c): x3 = c3.
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Figure 3: The relative residual during the iteration process for k = 2.4, 3.0 and 4.5, respectively.
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Figure 4: Evolution of the reconstruction at k = 1.2, 1.8, 3.0, 4.2, 4.8, 5.7 (left to right, top to bottom).
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Figure 5: Reconstruction on the cross-sectional planes x3 = −0.2 (left), x3 = 0.05 (middle) and x3 = 0.35 (right). The solid
line represents the boundary of true inclusion, and the dotted line is the boundary of reconstruction.
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Figure 6: True inclusions (left) and localization by the MUSIC algorithm (right).

(a) (b)

(c) (d)

Figure 7: Values of 1/||Pv(x)||2 on the cross-sectional planes. (a): x1 = c1; (b): x2 = c̃2; (c): x2 = ĉ2; (d): x3 = c3.
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Figure 8: The relative residual during the iteration process for k = 1.5, 2.1 and 4.2, respectively.
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Figure 9: Evolution of the reconstruction at k = 1.2, 1.8, 3.0, 4.2, 4.8, 5.7 (left to right, top to bottom).
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Figure 10: Reconstruction on the cross-sectional planes x3 = −0.15 (left), x3 = 0 (middle) and x3 = 0.15 (right). The solid
line represents the boundary of true inclusion, and the dotted line is the boundary of reconstruction.
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Figure 11: True inclusions (left) and localization by the MUSIC algorithm (right).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12: Values of 1/||Pv(x)||2 on the cross-sectional planes. (a): x1 = c1,1; (b): x2 = c1,2; (c): x3 = c1,3; (d): x1 = c2,1;
(e): x2 = c2,2; (f): x3 = c2,3; (g): x1 = c3,1; (h): x2 = c3,2; (i): x3 = c3,3.
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Figure 13: The relative residual during the iteration process for k = 1.5, 2.1 and 3.6, respectively.

Figure 14: Evolution of the reconstruction at k = 1.2, 2.4, 4.2, 5.7 (left to right, top to bottom).
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Figure 15: Reconstruction on the cross-sectional planes x3 = −0.2 (left), x3 = 0.1 (middle) and x3 = 0.3 (right). The solid line
represents the boundary of true inclusion, and the dotted line is the boundary of reconstruction.
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