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A Robust, Rapidly Convergent Method That Solves the Water

Distribution Equations For Pressure-Dependent Models

Sylvan Elhay1 Olivier Piller2 Jochen Deuerlein3 Angus R. Simpson4

Abstract

In the past, pressure dependent models (PDM) have suffered from convergence difficulties. In
this paper conditions are established for the existence and uniqueness of solutions to the PDM
problem posed as two optimization problems, one based on weighted least squares (WLS) and the
other based on the co-content function. A damping scheme based on Goldstein’s algorithm is used
and has been found to be both reliable and robust. A critical contribution of this paper is that
the Goldstein theorem conditions guarantee convergence of our new method. The new methods
have been applied to a set of eight challenging case study networks, the largest of which has
nearly 20,000 pipes and 18,000 nodes, and are shown to have convergence behaviour that mirrors
that of the Global Gradient Algorithm on demand dependent model problems. A line search
scheme based on the WLS optimization problem is proposed as the preferred option because of its
smaller computational cost. Additionally, various consumption functions, including the Regularized
Wagner function, are considered and four starting value schemes for the heads are proposed and
compared. The wide range of challenging case study problems which the new methods quickly solve
suggests that the methods proposed in this paper are likely to be suitable for a wide range of PDM
problems.

Keywords: pressure dependent models, consumption functions, water distribution systems, co-
content, least squares residuals, Goldstein algorithm

INTRODUCTION

Water engineers are frequently required to find the hydraulic steady-state pipe flows and nodal
heads of a water distribution system (WDS) model by solving a set of non-linear equations. In practice,
the water demand components arise as a combination of various sources (such as showers, washing
machines, toilets and garden use). The Demand Dependent Model (DDM) requires the delivery of
the prescribed demands regardless of the available pressure or head. This requirement can lead to
solutions that are mathematically correct but not physically realizable. For example, if the pressure
at a node drops below a certain level, then the demand required at that node cannot be delivered.
These failures are characterized by a mismatch between the demand and the available pressure at a
node and they led to the development of the pressure dependent model (PDM). In PDMs there is a
pressure-outflow relationship (POR) which determines the flow or delivery at a node.

There is a wide variety of approaches that have been tested in the search for suitable PDMs and fast,
reliable methods to solve the resulting model equations. Early attempts to include pressure dependence
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in WDS analysis (Bhave 1981) modelled the dependence of flow on pressure by the (discontinuous)
Heaviside function: the set demand, d, is delivered if the pressure is greater than a prescribed service
pressure head, hs or it is zero if the available pressure head is below hs. Wagner et al. (1988), and later
Chandapillai (1991), avoided the discontinuities in Bhave’s model by proposing a continuously varying
model in which the flow delivery is proportional to the square root of the pressure. The choice of the
square root curve was based on a flow model that applies to a single, circular aperture. Both Bhave
(1981) and Tabesh (1998) proposed solving the PDM problem by using a two-step iterative procedure.
Here the problem is repeatedly (i) solved as a DDM model and then (ii) the demands are corrected
according to the DDM solution heads and a chosen PDM relationship. In another development, the
computer modelling package EPANET 2 (Rossman 2000) allowed users to model leakages with the
power equation by defining emitters at nodes. This introduced some degree of pressure-dependent
modelling by having the solver add artificial reservoirs, the elevations of which are used to calculate
the emitter outflows using the DDM solver.

The practical work on pressure dependent modelling up to this point was provided with a firm
theoretical underpinning when Deuerlein (2002) showed that for almost all of the relevant elements
of a WDS model (including PDM nodes) a strictly monotone subdifferential mapping between flow
and head loss can be identified, ensuring that the corresponding content and co-content functions are
strictly convex and thereby guaranteeing uniqueness of the solution. Existence of the solution was
established by showing that the feasible set, which is described by a system of linear equalities and
inequalities, is not empty.

Todini (2003) proposed a PDM technique that does not require the introduction of a POR. The
procedure uses three steps: (i) the DDM solution is determined, (ii) the pressure at any node with
DDM pressure less than the service pressure is fixed and the maximum demand compatible with this
constraint is calculated and (iii) the results of the second step are used to build a PDM solution which
is similar to the Heaviside function. The author provided an example for which this method finds a
solution while the EPANET emitters model approach for this problem fails.

The system of equations for the PDM problem can be formulated in a way which runs parallel
to the DDM problem formulation by including a POR element in the continuity equation. This fact
was observed by Cheung et al. (2005) and Wu et al. (2009). In an attempt to avoid using a POR,
Ang & Jowitt (2006) progressively introduced a set of artificial reservoirs into the network to initiate
nodal outflows. These outflows are adjusted to lie between zero and the design demand, d. Even
so, this heuristic method is very time-consuming and it is, in fact, equivalent to using the Heaviside
POR. Some authors (e.g. Lippai & Wright 2014) introduced artificial check valves and artificial flow
control valves to address reverse flows associated with artificial reservoirs. This approach has several
shortcomings, not least of which is the fact that it involves a change in the network topology and
typically increases the dimension of the problem. The consequent increase in computation time for
large networks constitutes a serious disadvantage (Wu et al. 2009). Giustolisi et al. (2008) (and
later Siew & Tanyimboh (2012) among others) recognized that adding a POR function introduced
convergence problems not seen in the Global Gradient Algorithm (GGA) of Todini & Pilati (1988)
applied to the DDM problem. In an attempt to avoid cycling, Giustolisi et al. (2008) used an over-
relaxation parameter to correct both pipe flow and nodal head iterates where the heuristic used the
L1 norm to choose a step length. Siew & Tanyimboh (2012) proposed a backtracking and line search
heuristic but they corrected only the heads and not the flows.

Giustolisi & Walski (2012) published a comprehensive study for the classification of demands in a
WDS. They identified four major groups of demands (human based, volume controlled, uncontrolled
orifices and leakage) and considered demand models, each type of which has its own special pressure-
demand relationship. In addition, they discussed the effect of steady-state assumptions (and extended
period simulations) for realistic stochastically pulsed demands and they introduced a pipe leakage
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model dependent on the average pipe pressure using a Fixed and Variable Area Discharge (FAVAD)
technique. More recently, Jun & Guoping (2013) proposed a solution technique which, in form at
least, comes from the approach of Bhave (1981): the PDM problem is attacked by repeatedly solving
the corresponding DDM problem with the GGA and adjusting the demands after each solution. They
implemented their method as an extension to EPANET and then used it to compare the effects, on
the solutions, of using each of four different consumption functions. However, Jun & Guoping (2013)
made no recommendations about which of the consumption functions should be used. Some authors
(Piller & van Zyl 2014) used the power equation or the FAVAD pressure-dependent leakage equation
at nodes with leakage to model the dependence of flow on pressure. Muranho et al. (2014) discussed
the package WaterNetGen in which the reference pressure head of each node is set as a user-defined
function. They reported that “the embedding of POR into the hydraulic solver creates some difficulties
for convergence”. The fact that there are so many different approaches to the PDM problem underlines
the fact that existing algorithms for the PDM problem have some important limitations.

In this paper, a model in which the continuity equation includes a POR component is solved by a
variation of the PDM counterpart of the GGA for the DDM problem. A Newton method is used in
which, at each iteration, a linear system is solved for the heads and then the flow rates are updated
using the equations for energy conservation. This method is sometimes referred to as the PDM ex-
tension of GGA. Some regularization of the POR function may be required to ensure the continuity
of its first derivatives. The documented poor convergence, or even divergence, of the undamped PDM
counterpart to the GGA for DDM problems is illustrated on a small network. It is shown that a new
(fourth) formulation of the PDM problem, the Weighted Least Squares (WLS) optimization formula-
tion, is equivalent to three known (equivalent) PDM formulations. The conditions for the existence
and uniqueness for the WLS formulation follow. Two of the four equivalent optimization problems,
the co-content (CC) and WLS versions, satisfy the conditions of a theorem due to Goldstein (1967)
and Gauss-Newton methods with Goldstein’s line search algorithm based on those two formulations
are then proposed. An important development is that using Goldstein’s algorithm on the CC and
WLS formulations of the optimization problems mathematically guarantees convergence.

The new methods are both robust and rapidly convergent. The effectiveness of the WLS and CC
methods are demonstrated on eight benchmark water distribution network problems, the largest of
which has almost 20,000 pipes and 18,000 nodes. The damped Gauss-Newton method with Goldstein’s
line search is shown to have convergence behavior that mirrors that of the GGA applied to DDM
problems. Two modelling choices associated with the PDM are also discussed in this paper: (i) the
POR or consumption function, (ii) the starting values that are needed when solving PDM problems.
A weighting scheme that is necessary to ensure numerical balance between heads and flows used in
the objective function is proposed and evaluated. A cubic polynomial consumption function, first
introduced by Fujiwara & Ganesharajah (1993), is considered and its effect is compared with that of
the Regularized Wagner consumption function of Piller & van Zyl (2014).

DEFINITIONS AND NOTATION

Consider a water distribution system (WDS) that has np pipes and nj nodes at which the heads
are unknown. Denote by q = (q1, q2, . . . , qnp)T ∈ Rnp the vector of unknown flows in the systems
and by h = (h1, h2, . . . , hnj )

T ∈ Rnj the unknown heads at the nodes in the system. Let nf ≥ 1
denote the number of reservoirs or fixed-head nodes in the system, let A1 denote the np × nj , full
rank, unknown-head node-arc incidence matrix, let A2 denote the node-arc incidence matrix for the
fixed-head nodes and let e` denote the water surface elevations of the fixed-head nodes. Furthermore,
denote by G(q) ∈ Rnp×np the diagonal matrix whose diagonal elements are such that the components,
δhj(qj), of the vector G(q)q are monotonic and of class C1 and which represent the pipe head losses
in the system (often modeled by the Hazen-Williams or Darcy-Weisbach formulae). Denote the vector
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of the desired demands at the nodes with unknown-head by d = (d1, d2, . . . , dnj )
T ∈ Rnj .

The PDM is constructed in such a way that the flow delivered at a node is determined by the
pressure head at that node. Denote by hm the minimum service head (which is the sum of the minimum
pressure head and the elevation head), and denote by hs the service head (which is the sum of the
service pressure head and the elevation head). Suppose that γ(h) is a bounded, smooth, monotonically
increasing function which maps the interval [hm, hs] → [0, d]. The consumption function, c(h), is a
function that maps the pressure head to delivery:

c(h) =

{ 0 if h ≤ hm
γ(h) if hm < h < hs
d if h ≥ hs

Thus, if the pressure at a node lies between hm and hs, then the flow, or delivery, at that node lies
somewhere between 0 and the set demand, d. Nodes at which the pressure head is hm or less have zero
flow and those at which the pressure head is hs or greater get full delivery, d. Unlike the DDM, the
PDM delivers only the flow that the solution pressure heads can provide, a feature that has spurred
considerable interest in modelling pressure dependence.

Denote by c(h) ∈ Rnj the vector whose elements are the consumption functions at the nj nodes
of the system. It is assumed in this study, and without loss of generality, that all nodes have the same
values of hm and hs and the same consumption curve, γ(h). Any nodes at which the delivery is zero
are said to be in failure mode. Nodes at which the delivery is between zero and d are said to be in
partial delivery mode and nodes which have full delivery are said to be in normal mode.

WDS PDM EQUATIONS

The steady-state flows and heads in a WDS with PDM are usually found as the zeros of the
nonlinear system of the np + nj equations

f(q,h) =

(
G(q)q −A1h− a
−AT

1 q − c(h)

)
= o, (1)

where a = A2e`. A natural way to approach the solution of (1) is to use a Newton iteration based on
the Jacobian of f ,

J(q,h) =

(
F (q) −A1

−AT
1 −E(h)

)
, (2)

where F (q) and E(h) are diagonal matrices which are such that (i) the terms on the diagonal of F (q)
are the q-derivatives of the corresponding terms in G(q)q and (ii) the terms on the diagonal of E are
the h-derivatives of the corresponding terms in c(h). It is assumed in what follows that the diagonal
terms of F and E are non-negative.

Denote the energy and continuity residuals of (1) by

ρe = G(q)q −A1h− a, ρc = −AT
1 q − c(h). (3)

The Newton iteration for (1) proceeds by taking given starting values q(0), h(0) and repeatedly com-
puting, for m = 0, 1, 2, . . ., the iterates q(m+1) and h(m+1) from(

F (q(m)) −A1

−AT
1 −E(h(m))

)(
q(m+1) − q(m)

h(m+1) − h(m)

)
= −

(
ρ
(m)
e

ρ
(m)
c

)
until, if the iteration converges, the relative difference between successive iterates is sufficiently small.
In what follows the Jacobian J (m) will be denoted simply by J where there is no ambiguity. The
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iterative scheme is then formally (but not computationally)(
q(m+1)

h(m+1)

)
=

(
q(m)

h(m)

)
− J−1f (m) (4)

provided J is invertible. Once the vector
(
c
(m+1)
q c

(m+1)
h

)T
is found as the solution of

J (m)

(
c
(m+1)
q

c
(m+1)
h

)
=

(
ρ
(m)
e

ρ
(m)
c

)
, (5)

the new iterates can be computed using (4). Now, the block equations for (5) are, simplifying the
notation again,

Fcq −A1ch = ρe (6)

and
−AT

1 cq −Ech = ρc. (7)

Multiplying (6) on the left by AT
1 F
−1 gives

AT
1 cq −AT

1 F
−1A1ch = AT

1 F
−1ρe (8)

and adding (8) to (7) gives (
E +AT

1 F
−1A1

)
ch = −

(
AT

1 F
−1ρe + ρc

)
. (9)

Once ch is determined from this equation, the term cq can be obtained from the following rearrange-
ment of (6):

cq = F−1(A1ch + ρe). (10)

Equations (9) and (10) are the PDM counterpart of the GGA method for the DDM problem.
The GGA has been widely used in the solution of the equations for DDM WDSs. For the most part

it solves the DDM problems very well provided there are no zero flows when the Hazen-Williams head
loss model is used or if the attainable accuracy (Dahlquist & Bjork 1974) for the problem does not
inhibit convergence. In the case of zero flows one can apply the regularizations of Elhay & Simpson
(2011), Piller (1995) or Carpentier et al. (1985). The problem of low attainable accuracy remains a
more significant challenge, probably addressable only with higher precision computing.

The GGA and the Cotree Flows Method (CTM) for the DDM problem are equivalent (?) in the
sense that they both solve exactly the same Newton iteration equations for the same WDS. In fact,
they produce exactly the same iterates for the same starting values. In a very real sense both methods
only have to solve for the heads and flows which satisfy the energy equations because in the GGA the
continuity equations are satisfied in every iteration after the first and in the CTM they are satisfied
at every iteration. This is because the continuity equations are independent of the heads in the DDM
problem. Now, the head loss formulae depend quadratically on the flow rate for the Darcy-Weisbach
model and almost quadratically for the Hazen-Williams model and so the region of convergence for the
Newton method applied to such a system is very large. This fact explains the very good convergence
properties associated with the GGA and the CTM or their variants. But the continuity equations
for the PDM problem depend on both the heads and flows. As a consequence, initial values for both
flows and heads must be found and these will, in general, not satisfy the PDM continuity or energy
equations. Moreover, the PDM continuity equations cannot be satisfied independently of the energy
equations as in the DDM case.

It is the experience of the authors and it has been reported elsewhere (see, for example, Siew &
Tanyimboh (2012)) that the Newton method defined by (9) and (10) for the PDM problem exhibits
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convergence difficulties. A small example illustrates these difficulties. The network shown in Fig. 1
has the parameters shown in Table 1. The demands shown in Table 1 were magnified by a factor
of five (as were the demands in all the networks reported in this paper) to make the problem into a
PDM, rather than DDM, problem. The Newton method of (9) and (10) was applied to this network
with each of the four starting value schemes described later in this paper. It failed to converge in 150
iterations after many repetitions of the starting schemes in which there is a pseudo-random element
or for one application of the deterministic starting scheme.

The behavior exhibited in this illustrative example is typical of the experience that the authors
encountered in applying the simple Newton method of (9) and (10) to problems of this type. By
contrast, a damped version of the Newton method in (9) and (10) was found to be very reliable and
fast, provided suitable step size control measures are used. The Goldstein (1967) step size selection
algorithm, which is discussed later, was found to provide very suitable damping for the Gauss-Newton
method for PDM problems. Indeed, all applications of the damped Gauss-Newton scheme with step
size selection based on the Goldstein algorithm converged rapidly (usually in about seven iterations
but always fewer than 14) for all repetitions of all four starting schemes on this small illustrative
network.

DAMPING SCHEMES AND THE EXISTENCE AND UNIQUENESS OF SOLUTIONS

In order to address the issue of damping, four optimization problems are introduced, each of which
leads to the system (1). The different formulations are useful because they lead to different metrics
for the line search strategies which are used to achieve convergence of the Newton method.

Four equivalent optimization problems

The first optimization problem is couched in terms of the determination of the set of unknown
flows. Denote by ej the jth column of an identity matrix of appropriate dimension.

Problem 1.1 Define the content function

C(q) =

np∑
i=1

∫ qi

0
δhi(u)du− aTq +

nj∑
j=1

∫ −eT
jA

T
1 q

0
c−1j (v)dv. (11)

Denote U = {q ∈ Rnp |o ≤ −AT
1 q ≤ d}. Find

min
q∈U

C(q).

The content and the co-content functions, which are co-energy, appear to have been first introduced
by Cherry (1951) and Millar (1951) to solve electrical network equations. They proved that solving
the network equations for power systems is equivalent to minimizing a co-energy function.

Using the identity (Parker 1955)∫ y

0
f−1(v)dv = yf−1(y)−

∫ f−1(y)

f−1(0)
f(w)dw (12)

the last term in (11) may be rewritten to give

min
q∈U

np∑
i=1

∫ qi

0
δhi(u)du− aTq −

(
c−1(−AT

1 q)
)T
AT

1 q −
nj∑
j=1

∫ c−1
j (−eT

jA
T
1 q)

(hm)j

cj(w)dw (13)
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The Lagrangian of this problem is, denoting by α ≥ 0 the Lagrange multiplier vector for the lower
bound constraint on AT

1 q and denoting by β ≥ 0 the Lagrange multiplier vector for its upper bound
constraint,

L(q,α,β) =

np∑
i=1

∫ qi

0

δhi(u)du− aTq −
(
c−1(−AT

1 q)
)T
AT

1 q −
nj∑
j=1

∫ c−1
j (−eT

j A
T
1 q)

(hm)j

cj(w)dw +αTAT
1 q − βT (AT

1 q + d).

(14)

Denote ζ by
ζ = c−1(−AT

1 q) + β −α.

But then (14) can be rewritten, showing its dependency on ζ, as

L(q, ζ,β) =

np∑
i=1

∫ qi

0
δhi(u)du− aTq − ζTAT

1 q − βTd−
nj∑
j=1

∫ c−1
j (−eT

jA
T
1 q)

(hm)j

cj(w)dw, (15)

whence, provided that the definition of c is extended so that cj = 0 , if hj ≤ (hm)j , and cj = dj if
hj ≥ (hs)j ,

L(q, ζ) =

np∑
i=1

∫ qi

0
δhi(u)du− aTq − ζTAT

1 q −
nj∑
j=1

∫ ζj

(hm)j

cj(w)dw (16)

and this leads to the equivalent problem of finding minqmaxζ L(q, ζ). Importantly, the gradient of

L is f(q, ζ) indicating that Eq. (1) is a necessary optimality condition and a saddle-point equation.
This suggests that ζ and h are identical and we can replace ζ by h to get

Problem 1.2 Find
min
q

max
h

L(q,h).

The Lagrangian or primal-dual problem is unconstrained.
The fact that δh is a monotonic, C1-differentiable function means that it is possible to express q

as a function of h, using the first block-equation of (1), as

q(h) = δh−1(A1h+ a) (17)

with δh−1 being the function inverse of the head loss model δh. It is possible, by analogy with the
approach of Collins et al. (1978), to arrive at a Co-content optimization formulation of the PDM
problem. Write

Z(h) = L(q(h),h) =

np∑
i=1

∫ qi(h)

δh−1(0)
δhi(u)du− aTq − hTAT

1 q −
nj∑
j=1

∫ hj

(hm)j

cj(w)dw (18)

and use (12) to get the following formulation for the dual function:

Z(h) = −
np∑
i=1

∫ eT
i (A1h+a)

δh−1(0)
δh−1i (u)du−

nj∑
j=1

∫ hj

(hm)j

cj(w)dw. (19)

The optimization problem associated with this formulation is then

Problem 1.3 Find
max
h

Z(h).
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Solving Problem 1.3 will be referred to as using the Co-Content (CC) approach.
The fourth optimization problem considered here uses the energy and continuity residuals of (3).

Denote by W ∈ R(np+nj)×(np+nj) a diagonal matrix of positive weights and define

θ(q,h) =
1

2

∥∥∥W 1
2f(q,h)

∥∥∥2
2

=
1

2
fTWf . (20)

The problem considered now is

Problem 1.4 Find
min
q,h

θ(q,h). (21)

Solving Problem 1.4 will be referred to as using the Weighted Least Squares (WLS) approach.

Existence and uniqueness of solutions

Piller et al. (2003) proved that the solutions to Problem 1.1, Problem 1.2 and Problem 1.3 exist
provided that the set U is not empty, is closed and that C(q) is continuous and norm-coercive. They
proved that there is a unique solution provided that U is convex and C is strictly convex. But, an
optimization which reduces the value of the objective function θ(q,h) of (20) to zero clearly solves
(1). Since the solutions to Problem 1.1, Problem 1.2 and Problem 1.3 are also the solutions to (1) then
it follows that the solution to Problem 1.4 always exists, is unique and is the same as the solutions of
Problem 1.1, Problem 1.2 and Problem 1.3.

The existence and uniqueness of the DDM solutions are not guaranteed for networks in which
unsourced subnetworks are disconnected from their main networks. Then (the equivalent of) U is
empty and there is no DDM solution if the subnetwork has any non-zero demands (see Deuerlein
et al. (2012) for more details). However, the PDM problem always has a solution because U is always
non-empty.

The existence and uniqueness of solutions to the PDM WDS problems under modest conditions
motivates the search for robust and reliable methods to find them. One of the main aims of this paper
is to demonstrate the effectiveness of two versions of the damped Gauss-Newton method on the PDM
WDS problem: the WLS and the CC approaches. The damping or step-size control algorithms are
based on the methods of Goldstein (1967) and are proven on a set of eight case study networks with
between 932 and 19,647 pipes and between 848 and 17,971 nodes. These case study networks were
previously used in Simpson et al. (2012) and ?.

The method of (4) can also be viewed as the Gauss-Newton method (Gratton et al. 2007) for the
WLS formulation given in Problem 1.4. This can be seen from the following argument. Recalling the
definitions of f(q,h) in (1), denoting ∇x = ( ∂

∂x1
, ∂∂x2 , . . . ,

∂
∂xn

) and noting that J in (2) is symmetric,

∇T
q,h
θ(q,h) = JWf (22)

and so the Hessian H ∈ R(np+nj)×(np+nj) for the objective function θ
(
q(m),h(m)

)
can be found as

H = ∇
q,h

(JWf)

= JWJ +Q

where Q involves the second-order terms. The term Q is ignored in the Gauss-Newton method and
so the resulting iteration scheme is(

q(m+1)

h(m+1)

)
=

(
q(m)

h(m)

)
− (JWJ)−1 JWf (m)

=

(
q(m)

h(m)

)
− J−1f (m). (23)
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and this is just (4). Importantly, the term Q involves the system residuals for least squares problems
and if the problem has zero residuals at the solution (as in the present case) then the quadratic
convergence of the full-Hessian Newton method obtains in the Gauss-Newton variation (Gratton et al.
2007).

DAMPED NEWTON METHOD FOR THE SYSTEM IN EQ. (1)

The damped Newton method for (4) is(
q(m+1)

h(m+1)

)
=

(
q(m)

h(m)

)
− σ(m+1)J−1f (m). (24)

for some choice of step-size, σ(m+1). Thus, when the terms, c
(m+1)
q , and c

(m+1)
h , of (9) and (10) have

been found, the new iterate can be computed as(
q(m+1)

h(m+1)

)
=

(
q(m)

h(m)

)
− σ(m+1)

(
c
(m+1)
q

c
(m+1)
h

)
. (25)

In the next section the step size selection algorithm of Goldstein (1967) is briefly described. Only the
WLS or CC optimization problem objective functions can be used in this approach because Problem
1.1 is a constrained problem and Problem 1.2 is a saddle-point problem.

The Goldstein criteria for step size selection in a minimization problem

Denote by −φ(m) = −φ(q(m),h(m)) the descent direction chosen for the m-th step and suppose
that the proposed step length is σ(m). It is assumed that ∇θ(m)φ(m) ≥ 0 since otherwise −φ does
not represent a descent direction. If ∇θ(m)φ(m) = 0 then the current point is an extremum or saddle
point and no further iteration is justified.

Let 0 < µ1 ≤ µ2 < 1 be chosen parameters. Define the (scalar) Goldstein index by

g
(
θ(q(m),h(m)), σ(m)

)
=
θ
(
q(m),h(m)

)
− θ

(
q̂(m+1), ĥ

(m+1)
)

σ(m)∇θ(m)φ(m)
(26)

where (
q̂(m+1)

ĥ
(m+1)

)
=

(
q(m)

h(m)

)
− σ(m)φ(m). (27)

If µ1 ≤ g ≤ µ2 then the step size σ(m) is accepted. If g > µ2 then the step length 3σ(m)/2 is proposed.
Otherwise, the step length σ(m)/2 is proposed.

Problem 1.1 is a constrained problem and Problem 1.2 is a saddle-point problem. Only the equiv-
alent minimization problems of Problem 1.3 and Problem 1.4 can be used in (26). Indeed, for the case
of Problem 1.4, the denominator of (26) is

σ(m)∇θ(m)φ(m) = σ(m)
(
JWf (m)

)T
J−1f (m) = σ(m)

(
f (m)

)T
Wf (m) = 2σ(m)θ(m)

and so (26) simplifies, for this case, to

g
(
θ(m), σ(m)

)
=
θ(m) − θ

(
q̂(m+1), ĥ

(m+1)
)

2σ(m)θ(m)
. (28)

It is important to note that Goldstein’s algorithm is not heuristic. If the conditions of Goldstein’s
theorem (Goldstein 1967) are met, then convergence is mathematically guaranteed. However, there
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are choices that can be made for some of the parameters in the algorithm and different choices of
these parameters may affect the speed of convergence. The important point is that the existence and
uniqueness of the solution for the WLS and CC formulations is proved and that therefore the conditions
of Goldstein’s theorem can be met, mathematically guaranteeing convergence for any choice of the
parameters within the range specified by the theorem. One advantage of using the WLS formulation
of the problem is that the objective function θ of (20) is, unlike the corresponding L1 function in
Giustolisi et al. (2008) differentiable, something that is required in order to satisfy the conditions of
the Goldstein Theorem.

Summary of the algorithm

The algorithm takes input starting values q(0),h(0) and an objective function, ψ which, in this
context, is either the weighted least squares function θ(q,h) of Problem 1.4 or −Z(h), the negative
of the co-content function of Problem 1.3.

(a) Compute φ(m) as the solution of Jφ(m) = −f (m) and compute ∇ψ(m)

(b) If ∇ψ(m)φ(m) = 0 then no descent possible, no further iteration is justified.

(i) set σ(m) = 0 and

(ii) set q(m+1) = q(m), and h(m+1) = h(m).

(iii) Exit.

(c) If ∇ψ(m)φ(m) > 0 then, set σ(m) = 1, choose 0 < µ1 ≤ µ2 < 1 and proceed as follows:

(i) Compute (
q̂(m+1)

ĥ
(m+1)

)
=

(
q(m)

h(m)

)
− σ(m)φ(m)

and the Goldstein index

g
(
ψ(m), σ(m)

)
=
ψ(m) −ψ

(
q̂(m+1), ĥ

(m+1)
)

σ(m)∇ψ(m)φ(m)

(ii) If µ1 ≤ g
(
ψ(m), σ(m)

)
≤ µ2 then set h(m+1) = ĥ

(m+1)
and, in the case of the WLS

formulation of the problem set q(m+1) = q̂(m+1), and then increment m and go to step (a).

(iii) ElseIf g
(
ψ(m), σ(m)

)
> µ2 then increase step length: set σ(m) = 3σ(m)/2 and go to step

(c)(i)

(iv) Else decrease step length: set σ(m) = σ(m)/2 and go to step (c)(i)

(d) If ∇ψ(m)φ(m) < 0 then −φ(m) represents an ascent, not descent, direction and this indicates an
error condition. Exit.

It is worth noting that when using the WLS formulation of the problem, both the heads and the flows
are updated at each step whereas in the CC formulation only the heads are updated. Before presenting
results which illustrate the effectiveness of the methods, some preliminary issues are addressed.

MODELLING CHOICES
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In moving from a DDM to a PDM there are two important model choices to be made: (i) the
consumption function model and (ii) the starting values to be used in the iteration. Some particular
choices for these models and the consequences of their use are discussed in the sections following.

The consumption function

The consumption function describes what is sometimes called the nodal hydraulic availability or
nodal delivery in a system (for a useful review of four consumption function models in the context of
reliability assessment and analysis see Jun & Guoping (2013)). The flow, q, at an aperture has usually
been modelled by a relationship in which the flow is proportional to a power n of the pressure head
h, q ∝ hn and where n has been variously estimated (van Zyl & Clayton 2007, Cheung et al. 2005) to
lie in the interval n ∈ [0.5, 2.79]. Tanyimboh & Templeman (2004) proposed a consumption function
whose form around hj = (hm)j more closely resembles the choice of exponent n = 2:

c
T

(hj) = dj
eα+βhj

1 + eα+βhj
, all hj ,

and where the parameters α and β can be derived empirically or, in the absence of empirical data,
with a formula provided by the authors. Yet another variation, which uses sinusoidal functions, was
proposed by Tucciarelli et al. (1999).

Wagner et al. (1988) proposed a consumption function whose form is based on the exponent choice
n = 0.5. Let hj denote the head at node j. Denote also

z(hj) =
hj − (hm)j

(hs)j − (hm)j
. (29)

The Wagner consumption function is defined by

c
W

(hj) =


0 if z(hj) ≤ 0
dj
√
z(hj) if 0 < z(hj) < 1

dj if z(hj) ≥ 1
(30)

where dj denotes the demand at the j-th node. The Wagner consumption function has a discontin-
uous derivative at hj = (hm)j and its value at hj = (hs)j is less than dj and these properties sometimes
have undesirable effects on the convergence behaviour of the iterative methods (see e.g. Ackley et al.
(2001), Giustolisi & Laucelli (2011) and Muranho et al. (2014)). Because of these effects, Piller et al.
(2003) proposed regularizing the function by smoothing it with a cubic interpolating polynomial which
matches function and derivative values either side of the points hj = (hm)j and hj = (hs)j . Thus, the
Regularized Wagner consumption function, denoted here by c

R
(h), is continuous and has a continuous

first derivative.
The choice of n = 0.5 in the design of the Wagner function is based on a model that applies to a

single, circular aperture and it describes the instantaneous flow for given pressure heads. The nodal
demands in a network model that is not an all-pipes model are frequently, in practice, derived by
measuring total water usage for a group of 50-100 houses over a period of some months and then
calculating an average daily use for the whole collection of houses represented by that single node.
Clearly, the delivery at empirically derived demands such as these are not faithfully modelled by c

W
(h).

Even where an all-pipes model is used, a formula based on the flow at a single outlet is unlikely to
faithfully model water consumption in a setting where showers, toilets, irrigation systems and taps
are all used.

A C1 cubic consumption function, c
C

(hj), was studied in the context of reliability analysis in
Fujiwara & Ganesharajah (1993), where it was first proposed, and in Fujiwara & Li (1998). It bears
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some resemblance to c
T

(hj) but, unlike c
T

(hj), attains the values 0 and dj at the left and right
endpoints of the interval and has zero derivatives at those two endpoints. This function is well
integrated into a PDM solver and it was used in this investigation. Its form and properties are now
briefly reviewed and its effect is examined in what follows.

Denote r(t) = t2(3 − 2t), t the independent variable. The cubic consumption function, c
C

(hj), is
defined by

c
C

(hj) =


0 if z(hj) ≤ 0,
djr(z(hj)) if 0 < z(hj) < 1,
dj if z(hj) ≥ 1,

z(hj) defined as in (29). The first derivative of r(t) is r′(t) = 6t(1 − t). Noting that z′(hj) =
1/((hs)j − (hm)j), the derivative of c

C
is

c′
C

(hj) =


0 if z(hj) ≤ 0,
djz(hj)

′r′(z(hj)) if 0 < z(hj) < 1,
0 if z(hj) ≥ 1.

The consumption functions c
R

(hj), cT (hj) and c
C

(hj) are shown in Fig. 2 along with a family of
curves which show consumption curves proportional to hn with various values of n ∈ [0.5, 2.79].

A natural question concerns what effect, if any, choosing two different consumption functions
would have on the the solution process and the solutions. In particular, would one of the consumption
functions require more computation than the other for the same problem? And would the solutions
so obtained differ by much between the two cases? These questions are addressed in a later section
by comparing the results of using the consumption functions c

R
(hj) and c

C
(hj). Some investigations

by other authors have used different consumption function models for different nodes. It is assumed
in this investigation that all nodes in the WDS have the same consumption function in order that the
comparison of the effects of the two consumption functions considered are made more apparent.

Starting values for the heads

The PDM problem requires values for both the initial flows, q(0), and heads, h(0). The following
schemes were investigated.

(a) All flow velocities equal, pseudo-random heads:

q(0) consistent with a velocity of 0.3048 m/s (= 1 ft/s) in each pipe and the heads chosen to be

(i) h
(0)
j = e+ (hm)j + ((hs)j − (hm)j)/5 + r, where r is the sampled value of a pseudo-random

variable uniformly distributed in [0, 1], or

(ii) hj = r where r is the sampled value of pseudo-random variable uniformly distributed in
[hm, hs], hm the minimum pressure head and hs the service pressure head.

(b) Initial flows and heads from the GGA solution of the DDM problem:

Here the DDM solution is used as the starting point for the PDM problem. Any negative head
in the solution is replaced by either the formula in (a)(i) or that in (a)(ii).

Another scheme, in which the initial flows q(0) are set to match a velocity of 0.3048 m/s (=1 ft/s)
and h(0) is found as the solution to AT

1A1h
(0) = AT

1 (Gq(0) − a) (which is easily derived from the
first block equation of (1)), was also trialed. The matrix AT

1A1 is guaranteed, by the full rank of A1,
to be invertible. This scheme proved to be unreliable. In fact, the schemes in (a)(i) and (a)(ii) were
found, by the authors, to provide the most reliably successful starting values. The scheme described
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in (b) was found to provide starting values that lead to convergence but not as often as the schemes
in (a)(i) and (a)(ii).

ILLUSTRATION OF THE WLS AND CC METHODS

In what follows, the results of applying the WLS and CC methods to eight case study networks
are reported in order to illustrate the viability of the methods on a variety of quite different, and
challenging, networks. Firstly, the case study networks are described and some implementation details
are given. Secondly, the convergence behaviours of the two methods are described and a comparison
is made of how that behaviour is affected by which of the consumption functions, c

C
(hj) and c

R
(hj),

is used. Thirdly, the differences between the solutions which result from using c
C

(hj) and c
R

(hj) are
reported.

Implementation and the details of the case studies

All the calculations reported in this paper were done using codes specially written for Matlab
2012b and 2013a (The Mathworks 2012, 2013) and which exploit the sparse matrix arithmetic facilities
available in that package. Matlab implements arithmetic that conforms to the IEEE Double Precision
Standard and so machine epsilon for all these calculations was 2.2× 10−16.

Columns 2, 3 and 4 of Table 2 show the numbers of pipes, np, the numbers of nodes, nj , and the
numbers of sources, nf , for the eight case study networks used for testing. All the networks use the
Darcy-Weisbach head loss model. These networks, apart from some necessary changes, are those used
previously in Simpson et al. (2012) and ?. Four of the networks used in this paper are available as
supplemental data. In all cases the demands of the network were magnified by multiplying them by a
factor of five to ensure that the problem was actually a PDM problem and not a DDM problem.

In all tests reported here the minimum pressure head and service pressure head were set to hm = 0
m and hs = 20 m, respectively. The iteration stopping test was∥∥∥h(m+1) − h(m)

∥∥∥
∞∥∥∥h(m+1)

∥∥∥
∞

≤ ε, and

∥∥q(m+1) − q(m)
∥∥
∞∥∥q(m+1)

∥∥
∞

≤ ε

with ε = 10−6. This tolerance was used here to confirm the quadratic convergence of Newton’s method
even though such a small tolerance is unlikely to be required in practical applications.

The starting scheme described in Section (a)(ii) was used for all the tests and the same seed was
used to start the pseudo-random number generators for all runs. The Goldstein index limits were set,
as a result of testing, to µ1 = 1/10 and µ2 = 1−µ1 in all the testing reported here. The Goldstein line
search for suitable damping requires the calculation, at each iteration, of the Goldstein index (26). For
the WLS scheme the expression in (26) reduces to (28) and so each subiteration during the line search

requires one calculation of the expression θ
(
q̂(m+1), ĥ

(m+1)
)

. This involves recomputing the right

hand side of (27) with the proposed value of σ(m) and then forming θ
(
q̂(m+1), ĥ

(m+1)
)

, a relatively

fast computation. Computing the Goldstein index for the CC line search requires the computation of
the expression in (18), part of which involves evaluating the inverse head loss function δh−1i of (17) to
get qi(h). This inversion is a simple matter if the head loss is modeled by the Hazen-Williams formula
but it is more challenging when the head loss is modeled by the Darcy-Weisbach formula which takes
quite different forms for laminar, transitional and turbulent Reynolds numbers. Given the difficulty
(or perhaps the impossibility) of finding closed-form expressions for the inverse function in that case,
this inversion was performed using the Matlab function fsolve in the calculations for this report.
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The integrals were evaluated using the Matlab function integral. The impact of these differences
between the WLS and CC line search, or subiteration, calculations is discussed later.

The residuals in the objective function for Problem 1.4 should be weighted to account for significant
differences in scale of the heads and flows data. Denote the inverse, diagonal, weighting matrix for
the energy residuals by M and the inverse, diagonal, weighting matrix for the continuity residuals by
N . Then,W = diag

{
M−1,N−1

}
. In this study the weights used were based on demands and fixed-

head node elevations: the energy residuals are each divided by the maximum head among the fixed-
head nodes and the continuity residuals are weighted by dividing all components by the maximum
demand (it is assumed that not all demands are zero). Thus, for this case M = (maxhf )2I and
N = (max di)

2I. This weighting scheme proved satisfactory but least squares schemes in which the
residuals were unweighted frequently led to convergence difficulties.

Convergence behaviour

Columns 5–12 of Table 2 show the numbers of iterations and subiterations, or line search steps,
that were required to solve the eight case study networks by both the WLS and CC methods and
for the two consumption functions c

C
(hj) and c

R
(hj). Both the WLS and CC schemes converged

in quite modest numbers of iterations with both consumption functions for all the networks. The
WLS scheme required many fewer iterations than the CC scheme and, in all but one case, required
many fewer subiterations than the CC scheme. The main iterations in both cases require comparable
computation but, as was pointed out earlier, there is some difference between the two methods in the
computation required for subiterations. On one hand, each subiteration of the WLS scheme requires
one evaluation of objective function θ of (20), a simple and rapid calculation. On the other hand, each
subiteration of the CC scheme requires one evaluation of objective function Z of (18). The second
integral in (18) is simple to compute explicitly for both of the consumption functions c

C
(hj) or c

R
(hj).

But the first integral in (18) involves the inversion of the function δ(hj) and, while this inversion for
the Hazen-Williams head loss model can be written in closed form, it requires significant computation
if the head loss is modelled by the Darcy-Weisbach formula.

The authors believe that WLS approach provides the preferred choice: it is easier to implement
and, although no carefully designed timings tests have been conducted to compare the WLS and CC
methods, it appears to be faster than the CC method. The difficulties associated with the CC line
search when head loss is modelled by the Darcy-Weisbach formula make the CC method less attractive.
In any case, both have been demonstrated to converge rapidly on a wide range of network types.

Consumption function effects

The choice of consumption function can, in some cases, have a noticeable effect on the solution
heads and flows of a PDM problem. Nodes in the network which have positive demand will be referred
to as demand nodes. Recall that demand nodes in a network for which the PDM solution has zero
delivery (c(hj) = 0) are said to be in failure mode, demand nodes for which the delivery falls between
the minimum and the service level (0 < c(hj) < d) are said to provide partial delivery and demand
nodes which deliver the full demand (c(hj) = d) are said to give full delivery. In what follows the
numbers of demand nodes in these three categories are reported for the PDM solutions of the eight
case study networks. The number of nodes for which the solution has negative pressures (i.e. for
which the delivery is zero) is also reported.

Node counts for failure, partial delivery and full delivery

Table 3 compares various aspects of the solutions for the two consumption functions c
R

(hj) and
c
C

(hj). Columns 2 and 3 show the total deliveries as percentages of the total initial demands. Column
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4 shows the numbers of demand nodes. Columns 5 and 6 show the numbers of demand nodes in failure
mode, Columns 7 and 8 show the numbers of demand nodes in partial delivery mode and Columns
9 and 10 show the numbers of demand nodes in full delivery mode. The last two columns show the
numbers of nodes in the solutions for which the pressure is below zero. Although in most cases the
numbers of demand nodes in the different modes are similar, there are some quite marked differences.
Networks N4, N5 and N7 show quite large numbers of nodes in failure mode when c

R
(hj) is used but

not when c
C

(hj) is used.

Head differences

Frequency distributions of the differences between the heads and flows of the two solutions obtained
using the two consumption functions with each network were produced in order to to better understand
the effect that the choice of consumption function can have on the solutions obtained. Fig. 3 shows the
frequency distributions of the differences in the heads (m) between the solutions for the Regularized
Wagner consumption function, c

R
(hj), and the cubic consumption function c

C
(hj) for Network N1.

Although most heads there are very similar, some 100 of the 848 heads in that case differ by as much
as 2 m. The variation in differences between solution heads for the two consumption functions across
the other case study networks is quite marked. Fig. 4 shows the corresponding frequency distributions
for the flows (L/s) and shows greater agreement between the two solutions than for the heads.

Another characterization of the differences between the solution heads and flows for the two con-
sumption functions c

R
(hj) and c

C
(hj) can be seen in Table 4. There, Columns 2 and 3 show the

intervals containing most of the differences of the heads and flows, respectively. Thus, for N4 almost
all the solution heads differ by more than 3 m but less than 5 m and the solution flows for N8 differ
by no more than 0.5 L/s. Columns 4 and 5 show, respectively, the means of head and absolute flow
differences. The scale of the differences between the solution heads for the two consumption functions
c
R

(hj) and c
C

(hj) suggests that more research is necessary to find and calibrate appropriate models
of consumption at demand nodes.

CONCLUSIONS

The Newton method PDM counterpart of the GGA for DDM problems is shown, by a small exam-
ple, to exhibit failure to converge if no damping is used. This behaviour has been reported elsewhere.
It has been shown that a new (fourth) formulation of the PDM problem, the WLS optimization formu-
lation, is equivalent to three known (equivalent) PDM problem formulations. The conditions for the
existence and uniqueness of the solution to the WLS formulation follow and two of the four equivalent
optimization problems, the CC and WLS versions, are used as the bases for Gauss-Newton methods
with Goldstein step selection. The damped method is proved, on a challenging set of eight case study
networks, to have convergence behaviour that mirrors that of the GGA on DDM problems. The line
search scheme based on the WLS optimization problem is shown to be significantly more economical
than that based on the CC optimization. Thus, the PDM counterpart to the GGA for DDM problems
is seen to be solvable robustly and rapidly provided the recommended modifications to the Newton
method are employed.

The cubic consumption function, c
C

(h), of Fujiwara & Ganesharajah (1993) is compared with
the Regularized Wagner function of (Piller et al. 2003), c

R
(h). In particular, the number of iterations

required for solution and the differences in heads and flows between solutions obtained were compared.
The steady-state solution heads for c

C
(h) differed from those for c

W
(h) by as much as 5 m for some

nodes. The reasons for these differences were not investigated and more work is needed in order to
better understand the effects that the consumption function choice has on the solutions.

Four starting value schemes for the heads in the system (unnecessary to initiate the DDM problem
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but necessary for the PDM problem) were proposed and compared. The two which use equal flow
velocities and pseudo-random heads were found to be very effective and another, based on using the
invertibility of the matrix AT

1A1 was found to be unreliable. The scheme based on the DDM solution
of the problem was found to be less reliable than the two best schemes but sometimes effective. The
WLS PDM solution method reliably finds the solution in roughly the same number of iterations as
are required to find a solution to the corresponding DDM problem for the same network. Given the
small number of iterations required by the new method, it would be hard to recommend a starting
scheme in which the number of iterations to find the starting values is the about same as the number
of iterations to find the PDM solution.

A residual weighting scheme based on maximum fixed-head elevation and maximum nodal demand
was proposed and the authors’ experiments suggest that the proposed scheme is quite suitable and
that unweighted schemes can present convergence difficulties. Furthermore, the wide range of delivery
fractions and PDM node fractions together with the small number of iterations required to solve these
challenging case study networks of quite different scales suggests that the methods proposed in this
paper are likely to be suitable for a wide range of PDM problems.

The robust solution algorithm introduced in this paper is able to deal with, amongst other condi-
tions, insufficient pressures and excessive demands. Networks N1, N2, N5 and N6 were derived from
real world networks by removing pumps and control devices. The extension of this work to systems
which have pumps and control devices would be a useful contribution to the field as would the inves-
tigation of this technique applied to extended period simulations and rigid water column modeling.
There is also a great need for improved mathematical methods that successfully deal with ill-posed
systems and other situations where existing modelling techniques reach the limits of their theoretical
bases. Thus, future work could aim to develop hydraulic models suitable for extreme operational
conditions (which can have a significant impact on the hydraulic performance of control devices and
pumping stations) or even extreme event situations like natural disasters, terrorist attacks or electrical
power blackouts. The stable and robust calculation of WDS hydraulics in such anomalous situations
is a basic requirement for all model-based decision systems. Existing simulation techniques cannot
handle these critical events adequately and often fail because of the lack of convergence.

Indeed, in the case where the hydraulic simulations run online, the robustness of the solver is
particularly important: the operational data are transferred from the supervisory control and data
acquisition system which automatically updates the states of valves, pumps, etc. and that data is fed
directly to an online solver. Network operations and catastrophic events sometimes cause parts of a
network to suffer from insufficient pressure or sometimes segment a network into components which
have inadequate connections to sources or perhaps have no connection at all to a source. In such a
case, the resulting system can be underdetermined and existing solvers often fail to converge, converge
to the wrong solutions or even worse, cease executing. This is not acceptable for practical online
simulation. Developing techniques to handle such conditions in PDM systems remains a challenge for
researchers in this field.

SUPPLEMENTAL DATA

The data for case study networks N1, N3, N4 and N7, which are modifications of networks in
the public domain, are available online in the ASCE Library (www.ascelibrary.org). The other four
networks considered in this paper are not available because of security concerns.
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TABLES

Pipes Nodes
ID From To L(m) D(mm) ε (mm) Elev (m) d (L/s)

1 1 2 1000 100 0.3 − −

2 1 4 400 300 0.3 10 50

3 2 3 400 200 0.3 10 30

4 2 5 100 300 0.3 19 20

5 3 6 500 200 0.3 10 30

6 4 5 700 300 0.3 5 0

7 4 7 700 200 0.3 9 80

8 5 6 400 300 0.3 5 90

9 5 8 400 250 0.3 0 90

10 6 9 100 300 0.3 − −

11 7 8 900 300 0.3 − −

12 8 9 500 300 0.3 − −

Table 1: Pipe and node data for the network shown in Fig. 1. The network has a single reservoir,
Node 1, with an water surface elevation of 100 m. The demands that are shown above were magnified
by a factor five to cause the problem to be a PDM, rather than DDM, problem.
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WLS CC
c
C

(h) c
R

(h) c
C

(h) c
R

(h)

ID np nj nf τi τsi τi τsi τi τsi τi τsi

N1 934 848 8 8 1 8 1 17 8 17 8

N2 1118 1039 2 10 1 9 0 16 15 15 13

N3 1976 1770 4 11 5 13 10 16 8 15 7

N4 2465 1890 3 11 5 15 10 15 13 17 12

N5 2508 2443 2 10 0 8 0 16 14 15 14

N6 8584 8392 2 10 7 9 5 17 14 15 13

N7 14830 12523 7 13 8 10 0 15 9 14 7

N8 19647 17971 15 9 0 10 0 16 11 15 11

Table 2: Number of pipes, np, nodes, nj , sources, nf , iterations, τi, and subiterations, τsi, required
to solve the eight case study networks by WLS and CC schemes for the two consumption functions
c
C

(h) and c
R

(h).

% Delivery d > 0 c(h) = 0 0 < c(h) < d c(h) = d p < 0
ID c

C
(h) c

R
(h) c

C
(h) c

R
(h) c

C
(h) c

R
(h) c

C
(h) c

R
(h) c

C
(h) c

R
(h)

N1 86.9 89.0 474 11 13 135 142 328 319 50 54

N2 52.5 65.7 661 34 38 503 507 124 116 42 47

N3 92.1 93.9 1770 34 34 221 227 1515 1509 34 34

N4 26.8 27.4 1609 21 347 1521 1211 67 51 21 380

N5 49.2 51.3 1241 35 195 1168 1023 38 23 80 421

N6 68.6 70.6 3173 37 48 2683 2733 453 392 122 145

N7 56.5 59.6 10552 74 457 9505 9313 973 782 85 534

N8 97.2 97.7 15332 0 0 3119 3206 12213 12126 1 1

Table 3: Comparison of the deliveries, numbers of demand nodes, nodes in failure mode, partial
delivery mode and full delivery mode, and nodes with negative pressure for the cubic consumption
function, c

C
(h), and the Regularized Wagner consumption function, c

R
(h).

[pdmjr3Figs-singl.tex: 18:46, January 19, 2016] Page 21



Author-produced version of the article published in J. Water Res. Plan. & Man., 2016, 142(2), p. 04015047-1- 04015047-12 The original publi-
cation is available at http://ascelibrary.org/doi/10.1061/%28ASCE%29WR.1943-5452.0000578 ¡http://ascelibrary.org/doi/10.1061/(ASCE)WR.1943-
5452.0000578¿ doi : 10.1061/(ASCE)WR.1943-5452.0000578

ID Interval contain-
ing most head dif-
ferences dh (m)

Interval contain-
ing most flow dif-
ferences dq (L/s)

Mean
|q| dif-
ferences
(L/s)

Mean
h dif-
ferences
(m)

N1 [0, 2.1] [0, 0.3] 0.077 0.66

N2 [0, 1] [0, 1] 0.312 0.48

N3 [0, 0.1] [0, 2] 0.206 0.20

N4 [3, 5] [0, 10] 1.456 4.16

N5 [1.25, 2.5] ∪ [3, 3.5] [0, 0.6] 0.227 3.14

N6 [1, 3] ∪ [3.75, 4.25] [0, 0.7] 0.176 2.18

N7 [1, 3] [0, 5] 0.992 2.41

N8 [0, 0.5] [0, 0.5] 0.059 0.08

Table 4: Differences between solution heads and flows using c
R

(h) and c
C

(h) for the case study
networks N1 to N8 as (i) approximate intervals containing most differences and (ii) means of heads
and flows differences.
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Figure 1: The small illustrative network described in Table 1 and used to demonstrate the failure of
the undamped Newton method to converge.
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Figure 2: A family of curves showing flow q as a function proportional to hn for a range of exponents
n together with the cubic consumption function of Fujiwara & Ganesharajah (1993), c

C
(h), The

exponential consumption function of Tanyimboh & Templeman (2004), c
T

(h), and the the Regularized
Wagner function of Piller (1995), c

R
(h), (which is based on a value of n = 0.5).
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Figure 3: Frequency distributions of the differences in the heads (m) between the solutions for the
Regularized Wagner consumption function, c

R
(h), and the cubic consumption function c

C
(h) for

Network N1.
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Figure 4: Frequency distributions of the differences in the flows (L/s) between the solutions for the
Regularized Wagner consumption function, c

R
(h), and the cubic consumption function c

C
(h) for

Network N1.
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