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Abstract
A rescaled matrix-valued dissipation is reformulated for the Roe scheme in low Mach-number flow regions

from a well known family of local low-speed preconditioners popularized by Turkel. The rescaling is obtained by
suppressing the iterative preconditioning and by deriving explicitely the full set of eigenspaces of the Roe-Turkel
matrix dissipation. This formulation preserves the time consistency and does not require to reformulate the
boundary conditions based on the characteristic theory. The dissipation matrix achieves by construction the
proper scaling in low-speed flow regions and returns the original Roe scheme at the sonic line. We find that
all eigenvalues are nonnegative in the subsonic regime. By removing the iterative preconditioning, it becomes
necessary to formulate a stringent stability condition to the explicit scheme in the low-speed flow regions based
on the spectral radius of the rescaled matrix dissipation. This formulation also raises a two-timescale problem
for the acoustic waves, which is circumvented for a steady-state iterative procedure by the development of a
robust implicit characteristic matrix time-stepping scheme. The behaviour of the modified eigenvalues in the
incompressible limit and at the sonic line also suggest applying the entropy correction carefully for complex
non-linear flows.

1 Introduction

Iterative preconditioning based on Chorin artificial compressibility has become widely used for computing
low-speed flow configurations with numerical schemes developed for compressible flows. This iterative precon-
ditioning technique was designed to achieve an optimal conditioning of the iterative procedure and to guaranty
the proper scaling of the artificial dissipation when the Mach number approaches zero. The low-speed precon-
ditioning approach has proved to be very efficient to overcome the accuracy issue of compressible flow solvers in
the incompressible limit. Actually, the low-speed preconditioning should always be used since many industrial
applications are characterized by mixed compressible and incompressible flows, over a wide range of Reynolds
numbers.

However, the standard iterative preconditioning suffers from the complexity of its practical implementation.
Since the local preconditioner modifies the characteristic relations, all boundary conditions based on character-
istic variables or Riemann invariants must be reformulated accordingly. For large aerodynamics codes in which
a large number of boundary conditions may be implemented, it is then necessary to reformulate most of the
boundary conditions. Furthermore, the extension of iterative preconditioning to unsteady flows is not trivial
and without a special treatment, time-accuracy may be lost.

The problem of the accuracy in the asymptotic limit of the incompressible flow for the discretization of
the normalized Euler equations was first addressed by Guillard and Viozat [1, 2]. For their non-iterative
preconditioning formulated with the Roe scheme as defined in [2], it was shown that the checkerboard modes for
the leading and second-order pressure fields are cancelled out by the rescaled matrix dissipation and that the
pressure field should be constant in space up to a fluctuation in space of order two. Furthermore, the authors
have clearly pointed out a lack of dissipation of the standard conservative schemes in the incompressible limit.

A number of authors have further considered the discrete analysis based on the normalized equations for the
asymptotic behaviour of the pressure and velocity fields. An ”all-speed Roe scheme” has been developed by Li
and Gu [3] in order to recover at the discrete level the divergence constraint of the leading order velocity and
the Poisson equation for the second-order pressure, which are not satisfied by the rescaling of the Roe scheme
formulated in [1, 2]. However, checkerboards modes are not automatically suppressed by their numerical flux
and a low Mach number fix proposed by Rieper for the Roe’s approximate Riemann solver [4] seems attractive,
as combining the advantages in the incompressible limit of both approaches investigated in [1] and [3].
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Over the last years, many modified Roe-type [1], AUSM-type [5] or Godunov-type schemes [6] have been
formulated to apply conservative finite-difference schemes to low-speed flows. It has been found necessary to
propose a unified theoretical framework to analyse their respective discrete properties and to understand why
they fail to be accurate in the incompressible limit without specific corrections. It is worth mentioning the
work of Li and Gu for the analysis of Roe-type schemes based on expansions in the freestream mach number of
solutions of the normalized Euler equations [7] and the contribution of Dellacherie for Godunov-type schemes
[8] using the Hodge decomposition for solutions derived from the one-dimensional barotropic Euler equations.

On the other hand, few contributions have addressed the numerical stability of shock-capturing schemes
adapted for low-speed flows. A Fourier Analysis is carried out by Dellacherie for the one-dimensional wave
equations using the low Mach Godunov scheme and an explicit CFL condition is formulated for both the explicit
and the implicit scheme [8]. For a non-iterative low-speed preconditioning formulation of the compressible Euler
equations, the issue of the stability for a matrix-valued dissipation formulated from the Lax-Friedrich scheme
is pointed out for the first time by Birken and Meister [9] on the basis of the asymptotic behaviour of the
largest eigenvalue in the incompressible limit. Formulating a stability criteria is also an essential feature when
designing numerical schemes for complex flows, especially when an ”all-speed scheme” is being developed.
Results obtained by Birken and Meister clearly show for the Euler equations that the standard CFL condition
used for the computation of compressible flows is no longer valid in the incompressible limit and that a stringent
stability condition for the time step with ∆t ≃ O(M2) when M → 0 must be accounted for when a non-iterative
preconditioning is considered. Nevertheless, the eigenspaces of the matrix-valued dissipation are not derived
and a practical CFL condition for the local time step is not formulated explicitly for the steady-state problem.

Thus, a practical point of view has essentially motivated this contribution. For the compressible Euler equa-
tions, it was found interesting to investigate the effect of removing the pre-multiplication of the preconditioning
matrix with the time-derivative of the independent flow variables. This formulation called ”non-iterative precon-
ditioning” and corresponding to a rescaling of the matrix-valued dissipation has been investigated particularly
in [1, 2] and [9]. With this simplification, the explicit scheme recovers a basic structure with the centred scheme
and stabilization terms. Then it becomes no longer necessary to reformulate the characteristic curves for the
preconditioned Jacobian matrix and the time accuracy is preserved. Some recent attempts of improving the
accuracy of conservative schemes in the low speed limit as mentioned above may have been also motivated by
a drastic simplification of the implementation of the low-speed preconditioning. This is especially the case of
the Rieper low Mach-number fix proposed in [4], and the Thornber et al. ”Low Mach” LMRoe scheme [10]
modifying jumps of the discrete velocities, which was further developed by Oßwald et al. with the ”Low dis-
sipation Low Mach” L2Roe scheme [11]. This may also explain the success of the AUSM-familly schemes and
their modification for low Mach-number flows.

The stabilization terms must be then interpreted as a rescaling of the original dissipation in the low-speed
flow regions and therefore the necessary Von Neumann criteria for the linear stability must be reconsidered
completely. This can be achieved only by deriving the eigenvalues and the full set of the right and left eigen-
vectors of the matrix-valued dissipation. The diagonalization is performed step by step, by considering first as
working variables the symmetrising entropic variables for the stream-aligned formulation of the Euler equations.
The formulation for the conservative variables is obtained by successive similarity transformations. We have
considered the Roe scheme as baseline formulation for the matrix dissipation. The necessary rescaling of the
Roe scheme in the low speed flow regions is formulated from a family of preconditioners popularized by Turkel
[12]-[18]. This family of preconditioners include the Choi-Merkle preconditioner [20], with the particular case
considered in [1]. The scheme is sometimes termed as the Roe-Turkel scheme [2, 8]. The diagonalization of
the rescaled matrix-valued dissipation must be achieved for the computation of complex flows, also because
somehow an entropy fix may be used to prevent eigenvalues from approaching zero and to select the relevant
physical solution satisfying the entropy condition across shocks.

By removing the iterative preconditioning, we loose the optimal conditioning but we save the essential feature
of the accuracy in the incompressible limit. Without iterative preconditioning, we see that by forcing the proper
scaling of the dissipation matrix, we cannot avoid the two-timescale issue, since the isentropic solution breaks
up into a fast component that should disappear when the Mach number goes to zero, and a slow component
solution of the incompressible equations [19]. The system then becomes very stiff and numerically difficult to
solve with the explicit scheme and a time step defined by the stability condition for the fastest acoustic wave.
For steady-flow problems, a robust implicit scheme must be developed to improve both the stability and the
damping properties of the iterative procedure. However, we must stress that our final objective is not to develop
an optimal approach specialized to handle almost incompressible flows, but only a more accurate compressible
flow solver in low speed flow regions, without reformulating the boundary conditions and keeping the consistency
in time for unsteady flows.

In the following, we shall first consider the iterative and non-iterative preconditioning following Turkel’s
analysis. This allows a smooth transition to the formulation of the rescaled Roe scheme and the corresponding
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stability condition. For steady-state problems, a robust implicit scheme has been developed in order to cir-
cumvent the severe stability bound occurring for low Mach number flows. The implicit scheme combines the
introduction of a characteristic time-step matrix and under-relaxation. Preliminary results for low-speed and
transonic flows are then presented. It is experienced that higher accuracy is achieved with the rescaled matrix
dissipation not only in the incompressible limit but also at the stagnation point. It is especially shown in the
transonic case that the known spurious entropy produced by the Roe scheme at the stagnation point is strongly
reduced by the rescaling of the Roe matrix dissipation.

2 Iterative and non-iterative preconditioning

2.1 Iterative preconditioning

When considering the iterative preconditioning, the time derivatives are premultiplied by a matrix which slows
down the speed of the acoustic waves down the fluid speed. Hence, at low Mach numbers all the waves will
travel at the same speed and therefore, the equations will be again well conditioned. The preconditioned Euler
equations for the iterative preconditioning are formulated as follows

P−1 ∂W

∂t
= −

(
∂F

∂x
+

∂G

∂y

)
= −

(
A

∂W

∂x
+B

∂W

∂y

)
,

where P is a preconditioning matrix. The expression of the Jacobian matrices A, B depends on the choice
of the variables W . However, the preconditioning can be viewed as an artificial compressibility effect of the
incompressible Euler equations and was first formulated for the Euler equations formulated for the primitive
variables. The formulation of the preconditioner described below is the generalization of previous preconditioners
due to Turkel [13], considering the independent variables W0 = [p, u, v, S]T where p is the pressure u, v are the
velocity components and S is the entropy. This leads to a non-conservative formulation for ease of presentation.
The Euler equations are then formulated in quasi-linear form

∂W0

∂t
= −

[
A0

∂W0

∂x
+B0

∂W0

∂y

]
, (1)

with the corresponding Jacobian matrices in the (x, y) directions

A0 =


u ρa2 0 0
1

ρ
u 0 0

0 0 u 0
0 0 0 u

 , B0 =


v 0 ρa2 0
0 v 0 0
1

ρ
0 v 0

0 0 0 v

 . (2)

The family of preconditioners we shall consider contain a free parameter β as formulated by Choi-Merkle and
is defined as

P0
−1 ∂W0

∂t
= −

[
A0

∂W0

∂x
+B0

∂W0

∂y

]
, (3)

with

P0
−1 =



a2

β2
0 0 δ

αu

ρβ2
1 0 0

αv

ρβ2
0 1 0

0 0 0 1


, P0 =



β2

a2
0 0 −β2

a2
δ

− αu

ρa2
1 0

αu

ρa2
δ

− αv

ρa2
0 1

αv

ρa2
δ

0 0 0 1


. (4)

For δ = 0 we get the family of preconditioners including the Weiss-Smith formulation as suggested by Turkel
[14], while for δ = 1 and α = 0 we recover the preconditioner introduced by Choi and Merkle [20]. Setting
α = 0 corresponds to the original artificial compressibility method formulated for the primitive variables while
α = −1 corresponds to the artificial compressibility method formulated for the conservatives variables [12]. In
all the following the free parameter is formulated as a square of the local Mach number with

β2

a2
= min

(
max

(
k1M

2, ϵ2
)
, 1
)

(5)

where usually ϵ2 ≃ k2M
2
∞. Computationally, k2 is found to depend on the number of grid nodes near the

stagnation points. For viscous flows, k2 also depend on α and may depend on the local cell Reynolds number
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[20]. Note that in the next sections, the preconditioning parameter homogeneous to a speed |β| > 0 is introduced,
with the following definition

|β| = a
√

min
(
max

(
k1M

2, ϵ2
)
, 1
)
. (6)

To transition smoothly to transonic flow, we demand that β2

a2 → 1 with α = 0 as M → 1. In that case the
preconditioning matrix returns the identity matrix.

We consider now the steady-state problem for the preconditioned Euler equations. We reformulate system
(3) as follows

∂W0

∂t
= −

[
(P0A0)

∂W0

∂x
+ (P0B0)

∂W0

∂y

]
. (7)

The eigenvalues of P0A0 are independent of the parameter δ, with
λ0 = u,

λ± = zu ±
√

(zu)2 +
β2

a2
(a2 − u2), z = 0.5

(
1− α+

β2

a2

)
(8)

In a straightforward implementation of this procedure, the preconditioning algorithm can be converted from any
set of variables to the appropriate conditioning matrix for the conservation variables. Let W1 represent some
set of independent variables and W0 the solution of the preconditioned equations (7), expressed as a function
of the variables W1 with W0(W1). Then we also have in variables W1

∂W1

∂t
= −

[
(P1A1)

∂W1

∂x
+ (P1B1)

∂W1

∂y

]
. (9)

with the preconditioner and the flux Jacobian matrices obtained by similarity transformation

P1 =
∂W1

∂W0
P0

∂W0

∂W1
, A1 =

∂W1

∂W0
A0

∂W0

∂W1
, B1 =

∂W1

∂W0
B0

∂W0

∂W1
. (10)

If W1 = W represents the conservative variables, with A =
∂F

∂W
, B =

∂G

∂W
, we recover the preconditioned

Euler equations for the conservative variables

∂W

∂t
= −P

(
∂F

∂x
+

∂G

∂y

)
. (11)

Confronting expressions (7) and (9) for the matrix coefficients, the preconditioned Jacobian matrices (P0A0),
(P0B0) and (P1A1), (P1B1) are similar by any change of independent variables and therefore have the same
eigenvalues. The same transformations apply to the rescaled Roe scheme derived in the next sections.

2.2 Extension to time-dependent flows

Turkel has proposed a straightforward extension of low speed preconditioning for time dependent problems,
based on the dual-time stepping method [16]. The unsteady equations are then replaced by

∂W

∂τ
+

[
∂W

∂t
+

∂F

∂x
+

∂G

∂y

]
= 0, (12)

where τ is the dual time. The time derivative is discretized by some first or second-order differencing formula. A
typical implicit difference scheme for the preconditioned system in pseudo-time with generic artificial dissipation
terms can be expressed with the following conservative formulation

∆W = −∆t∗ P

 1

∆t

c0W
n +

∑
k∈{−1,1}

ckW
n+k

+

(
∂F

∂x
+

∂G

∂y

)
− ∂

∂x

(
P−1|PA|∂W

∂x

)
− ∂

∂y

(
P−1|PB|∂W

∂y

)]
,

(13)

where ∆t∗ is a pseudo time-step. The numerical treatment for the artificial dissipation is then unchanged by
the introduction of the backward differencing formula considered for the approximation of the time derivative.

2.3 Non-iterative preconditioning

A second approach to handle both steady and time-dependent flows is described in [1]. A time-consistent method
is considered with the preconditioning used as a way of controlling the effects of the artificial dissipation in case
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of low speed flow. The proposed method is formulated for the conservative variables by removing the pre-
multiplication of the residual with the preconditioning matrix

∆W = −∆t

[(
∂F

∂x
+

∂G

∂y

)
− ∂

∂x

(
P−1|PA|∂W

∂x

)
− ∂

∂y

(
P−1|PB|∂W

∂y

)]
. (14)

We can see that system (14) is a time-consistent discretization of the non-preconditioned Euler equations based
on a backward Euler approximation of the time derivative. In the framework of a steady state problem, the
time step ∆t is replaced by a local time step. This non-iterative preconditioning algorithm is interpreted by
Turkel as a preconditioning of the stabilization term only. Following the same idea, we may also consider the
following dual time-stepping scheme for unsteady problems

∆W = −∆t∗

 1

∆t

c0W
n +

∑
k∈{−1,1}

ckW
n+k

+

(
∂F

∂x
+

∂G

∂y

)
− ∂

∂x

(
P−1|PA|∂W

∂x

)
− ∂

∂y

(
P−1|PB|∂W

∂y

)]
.

(15)

We clearly see that both schemes can be interpreted as a modification of the matrix-valued dissipation scheme.
Thus, we will prefer to consider the formulations (14) or (15) as a rescaling of the dissipation for low-speed
flows, since the two approaches are quite different. The non-iterative preconditioning achieves by construction
the proper scaling of the matrix dissipation in the incompressible limit, but doesn’t improve the condition
number of the iterative procedure and the stability bound is drastically modified in the low-speed flow regions.
Additionally formulations (14) or (15) alleviate its implementation in a CFD code since once removed the
iterative preconditioning, there is no need to reformulate the boundary conditions using the characteristic
theory or the Riemann invariants. As a final comment, for the steady-state problem or the time-dependent
problem, the time or pseudo-time derivative vanishes and since the preconditioning matrix is not singular, both
iterative and non-iterative preconditioning methods fall into the same steady-state or unsteady equations. At
the asymptotic convergence of the iterative process it is worth noticing that in both cases the governing matrix
dissipation is given by coefficients (P−1|PA|,P−1|PB|) in the (x, y) space directions.

However, for the linear problem, the stability of the iterative preconditioning is characterized by |PA| and
|PB|, while removing the pre-multiplication of the residual with P , the stability must be reconsidered from
matrices P−1|PA| and P−1|PB|. It becomes then essential to reformulate the Von Neumann condition by
deriving algebraically the corresponding eigenspaces and eigenvalues. This can be achieved step by step as
indicated in the two next sections, starting from the stream-aligned formulation of the Euler equations for the
symmetrizing entropic variables.

3 Formulation of the rescaled Roe scheme

3.1 One-dimensional framework

3.1.1 Iterative preconditioning

In order to investigate the limit to incompressible equations as the Mach number goes to zero, we follow
Turkel [17] and explicitly describe the scheme for the one-dimensional equations, including a second-order
artificial viscosity term. For the equations termed in entropic variables, we shall consider first a streamwise
two-dimensional coordinate system with the x-axis aligned to the flow. Then setting ∂v

∂y = 0, ∂p
∂y = 0 in the

basic system (1) and taking as independent variables for the pressure dΦ = dp
ρa and dS = dp−a2dρ

ρa proportional

to the entropy for the symmetrizing variables, system (1) can be recast as follows

∂Φ

∂t
+ u

∂Φ

∂x
+ a

∂u

∂x
= 0,

∂u

∂t
+ a

∂Φ

∂x
+ u

∂u

∂x
= 0,

∂v

∂t
+ u

∂v

∂x
= 0,

∂S

∂t
+ u

∂S

∂x
= 0.

(16)
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The equations for v and S decouple and so we shall consider the two acoustic equations. Let introduce some
artificial dissipation terms with constant coefficients. We then get the following scheme

∂Φ

∂t
+ u

∂Φ

∂x
+ a

∂u

∂x
= Q1,1

∂2Φ

∂x2
+Q1,2

∂2u

∂x2
,

∂u

∂t
+ a

∂Φ

∂x
+ u

∂u

∂x
= Q2,1

∂2Φ2

∂x2
+Q2,2

∂2u

∂x2
.

(17)

Let dW̃0 = [dΦ, du]T . In matrix form, the previous system reads

∂W̃0

∂t
+ Ã0

∂W̃0

∂x
= Q

∂2W̃0

∂x2
, (18)

with the symmetric Jacobian matrix

Ã0 =

 u a

a u

 . (19)

The matrix Ã0 has the two eigenvalues λ± = u ± a corresponding to the acoustic waves. The limit to incom-
pressible equations for the scheme (17) has been investigated in [17, 18]. From now on, all quantities ρ, u, v, p, S
are nondimensionalized by some reference quantities ρr, ur, pr = ρru

2
r, Sr = rr, where rr is the reference perfect

gas constant. Let introduce ϵ = ur

ar
= M . In the incompressible limit, the fluid is assumed isentropic. Then

p =
ργ

γϵ2
≃ O(

1

M2
), a =

ρ
γ−1
2

ϵ
≃ O(

1

M
) as M → 0. (20)

Within a formal asymptotic analysis, the mesh size being kept constant, it was found that in the incompressible
limit, the proper scaling of the matrix-valued dissipation requires

Q1,1 = O(
1

M2
), Q1,2 = O(

1

M
), Q2,1 = O(

1

M
), Q2,2 = O(1). (21)

For the system (17), we assume that the artificial dissipation is some function of the matrix |Ã0|. In the case
of subsonic flow |u| ≤ a, we have the following diagonalization

|Ã0| =

 a a

a −a

 a+ u 0

0 a− u

 1
2a

1
2a

1
2a − 1

2a

 =

 a u

u a

 . (22)

Thus, as M → 0:

|Ã0| ≃


O(

1

M
) O(1)

O(1) O(
1

M
)

 . (23)

This implies that the momentum equation has too much artificial viscosity, while the the divergence equation has
too little viscosity which will cause oscillations. For the system in variables dW̃0, the preconditioner becomes

P̃0
−1

=


a2

β2
0

αua

β2
1

 , P̃0 =


β2

a2
0

−αu

a
1

 . (24)

The preconditioned Jacobian matrix

P̃0Ã0 =


β2

a2
u

β2

a

a

(
1− α

u2

a2

)
(1− α)u

 , (25)

has eigenvalues λ± given by (8). We have the following diagonalization

|P̃0Ã0| = R̃|Λ|R̃
−1

, (26)
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where |Λ| = diag(|λ+|, |λ|), R and R̃
−1

are respectively the matrices of the right and left eigenvectors

R̃ =


β2

a

β2

a

λ+ − β2

a2
u λ− − β2

a2
u

 , R̃
−1

=
1

(λ+ − λ−)


a

β2
[λ+ − (1− α)u] 1

− a

β2
[λ− − (1− α)u] −1

 . (27)

3.1.2 Rescaled Roe scheme

By removing the iterative preconditioning, we introduce the rescaled Roe scheme

∂W̃0

∂t
+ Ã0

∂W̃0

∂x
= Q̃0

∂2W̃0

∂x2
, (28)

with the matrix-valued dissipation

Q̃0 = P̃0
−1

|P̃0Ã0| = P̃0
−1

R̃|Λ|R̃
−1

.

In the following, we will assume the flow subsonic. Let χ = (zu)2 + β2

a2 (a
2 − u2). We always have χ > 0 and

χ ≥ (zu)2 ⇒ (zu−√
χ) (zu+

√
χ) ≤ 0.

Hence, eigenvalues λ+ and λ− have opposite signs for a subsonic flow with

if u ≤ 0 → λ− ≤ 0 ⇒ λ+ ≥ 0,
if u ≥ 0 → λ+ ≥ 0 ⇒ λ− ≤ 0.

Thus |λ+| = λ+ and |λ−| = −λ− and we get an explicit expression of the dissipation matrix

P̃0
−1

|P̃0Ã0| =
1
√
χ


[
zM2 +

(
1−M2

)]
a2 z u a

[
z + α

(
1−M2

)]
u a

[
zM2 +

β2

a2
(
1−M2

)]
a2

 , (29)

where M =
|u|
a
. Note that for the two acoustic equations

P̃0
−1

|P̃0Ã0| =
1
√
χ

[
zuÃ0 +

β2

a2
(a2 − u2)P̃0

−1
]

as a consequence of the Cayley-Hamilton theorem. Therefore the dissipation matrix can be interpreted as a
weighted average between the Jacobian matrix and the preconditioner. At a sonic point the second coefficient
vanishes and it can be easily verified that for both possible values u = ±a the rescaled dissipation matrix returns
|Ã0| for α = 0. Let be Qij the coefficients of matrix (29). In the limit to the incompressible equations, assuming
M∞ << 1 and β2 ≃ u2 = O(1),we successively have

β2

a2
≃ u2

a2
= O(M2), χ = z2u2 + β2

(
1−M2

)
≃ u2 = O(1),

and

Q11 =
1
√
χ

[
zM2 +

(
1−M2

)]
a2 ≃ a2

|u|
= O(

1

M2
), Q12 =

1
√
χ

z u a ≃ a = O(
1

M
)

Q21 =
1
√
χ

[
z + α

(
1−M2

)]
u a ≃ a = O(

1

M
), , Q22 =

1
√
χ

[
zM2 +

β2

a2
(
1−M2

)]
a2 ≃ |u| = O(1).

Then, as M → 0

P̃0
−1

|P̃0Ã0| ≃


O(

1

M2
) O(

1

M
)

O(
1

M
) O(1)

 , (30)
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and the scheme gives the correct asymptotic order for the artificial dissipation terms. It is worth noticing that
the the rescaling (30) corresponds to a net increase of numerical dissipation in the pressure equation by a factor
1
M compared to the unpreconditioned scheme (23) whereas in the equation for the stream-aligned velocity, the
coefficients of the stabilization terms are consistently rescaled by the preconditioner.

We also see that matrix P̃0
−1

|P̃0Ã0| has two real eigenvalues given by

µ± =
a

2
√
χ̃

[
2z + α

(
1−M2

)
±
√
∆
]
, (31)

with

∆ =

(
1− β2

a2

)2 (
1−M2

)2
+ 4z

[
z + α

(
1−M2

)]
M2, χ̃ = z2M2 +

β2

a2
(1−M2).

We find that both eigenvalues µ± are positive as long as the flow is subsonic with

µ+µ− = Q11Q22 −Q12Q21 = det
(
P̃0

−1
|P̃0Ã0|

)
,

and

det
(
P̃0

−1
|P̃0Ã0|

)
=

[(
z − β2

a2

)2
− αβ2

a2

]
u2 + β2[

z2 − β2

a2

]
u2 + β2

(
a2 − u2

)
= a2 − u2 = det

(
|Ã0|

)
> 0.

Note that rescaled matrix dissipation is symmetric for α = 0 and therefore is positive definite with the two
positive eigenvalues for in case of subsonic flow. This property is lost by any change of variables that does not

preserve the symmetry of P̃0
−1

|P̃0Ã0|. In the incompressible limit, the eigenvalues behave as

µ± ≃ a2

2|β|

[
1 +

β2

a2
± |1− β2

a2
|
]
.

Since β2

a2 ≤ 1

µ+ ≃ a2

|β|
= O(

1

M2
), µ− ≃ |β| = O(1).

Thus, in the asymptotic limit acoustics waves associated to µ+ will travel at infinite speed while acoustic waves
associated to µ− are slow down to the flow velocity. This is a general behaviour of the eigenvalues µ± in the
low speed limit, because (30) holds necessarily with the coefficients Qij for a proper scaling of the artificial

dissipation, whatever the definition of the preconditioner P̃0. This raises the well known singularity of the two
time-scale problem. The optimal conditioning of the iterative preconditioning is lost and is even worse that
the original system. The behaviour of eigenvalues µ± in the low Mach number limit will become critical for
the stability of the rescaled Roe scheme and a CFL condition must be formulated accordingly. For the other
extreme case, at a sonic line, for α = 0, we see that we recover the values of the unpreconditioned system

µ+ = 2a, µ− = 0.

When the preconditioning is not activated, setting α = 0 and β2

a2 = 1 in expressions (31) gives µ± = a(1±M) =

a± |u|, the eigenvalues of |Ã0| recast for the velocity module.
We can also easily derive the following diagonalization of the rescaled matrix dissipation

P̃0
−1

|P̃0Ã0| = R̃0Λ̃R̃0
−1

, (32)

where Λ̃ = diag(µ+, µ−), R̃0 is the matrix of the right eigenvectors for the acoustic eigenvalues µ± and R̃0
−1

is obtained by direct inversion of R̃0

R̃0 =

 [µ+ −Q22] Q12

Q21 [µ− −Q11]

 , R̃0
−1

=
1

det
(
R̃0

)
 [µ− −Q11] −Q12

−Q21 [µ+ −Q22]

 ,

with the determinant of matrix R̃0 given by

det
(
R̃0

)
= [µ− −Q11] [µ+ −Q22]−Q12Q21 = µ+ [µ− −Q11] + µ− [µ+ −Q22]

= [µ+ −Q22] [µ− − µ+] = [Q11 − µ−] [µ− − µ+] .

(33)
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At a stagnation point, Q12 = 0, Q21 = 0, and

µ+ = Q11 =
a2

|β|
, µ− = Q22 = |β|, µ+ − µ− = |β|

(
a2

β2
− 1

)
.

Thus with µ+ − µ− ̸= 0, we always have µ− − Q11 ̸= 0, µ+ − Q22 ̸= 0, and the decomposition (32) can never
become singular in the range |u| < a. Additionally, with α = 0, since by construction µ+ + µ− = Q11 + Q22,
we have

(µ+ −Q22)Q12 + (µ− −Q11)Q21 = 0 with Q12 = Q21, (34)

and we can see that the right and left eigenvectors are orthogonal. In this special case

det
(
R̃0

)
= −

[
(µ+ −Q22)

2 +Q2
12

]
.

Then defining

M̃0 =
1√

(µ+ −Q22)2 +Q2
12

R̃0 (35)

the symmetric matrix P̃0
−1

|P̃0Ã0| is diagonalized by the following unitary congruence

P̃0
−1

|P̃0Ã0| = M̃0Λ̃M̃0
T
. (36)

3.2 Multi-dimensional extension

3.2.1 Iterative preconditioning

We derive the multidimensional extension of the previous analysis, assuming the flow subsonic. Let be dW̃0 =
[dΦ, du, dv, dS]T the set of entropy variables for the two-dimensional Euler equations. In matrix form, the
two-dimensional scheme reads

∂W̃0

∂t
+ Ã0

∂W̃0

∂x
+ B̃0

∂W̃0

∂y
= Qx

∂2W̃0

∂x2
+Qy

∂2W̃0

∂y2
, (37)

with the expressions of the Jacobian matrix in the (x, y) directions

Ã0 =



u a 0 0

a u 0 0

0 0 u 0

0 0 0 u


, B̃0 =



v 0 a 0

0 v 0 0

a 0 v 0

0 0 0 v


,

and Qx and Qy are some matrix-valued artificial dissipation coefficients in the (x, y) directions. For a general
direction n = [nx, ny]

T , we will consider a matrix-valued dissipation in the general form Q(n) = nxQx+nyQy.
As the Mach number goes to zero, a proper scaling of system (37) is achieved when the coefficients of the
matrix-valued dissipation satisfy [17, 18]

Q(n) ≃



O( 1
M2 ) O( 1

M ) O( 1
M ) 0

O( 1
M ) O(1) O(1) 0

O( 1
M ) O(1) O(1) 0

0 0 0 O(1)


as M −→ 0. (38)

A standard dissipation for the scheme (37) will be some function of the Jacobian matrix Ã0(n) = nxÃ0 +
nyB̃0. Note that we can always formulate Ã0(n) for any unitary vector n1 = n

|n| since Ã0(n) = Ã0(n1)|n|
independently of the choice of variables. This is obviously also the case for the dissipation matrices |Ã0(n)|
and P̃0

−1
|P̃0Ã0(n)| that we will consider in the following. In the case of the Roe scheme, the matrix-valued

dissipation is characterized by |Ã0(n)|. The matrix Ã0(n) has eigenvalues λ± = q ± a|n| and double λ0 = q,
with q = unx + vny. Assuming subsonic flow, we have |q| ≤ a|n| and |λ+| = a|n|+ q, |λ−| = a|n| − q. Hence

|Λ| = diag(a|n|+ q, a|n| − q, |q|, |q|).
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Thus, we get the explicit expression

|Ã0(n)| =



a|n| nx

|n|
q

ny

|n|
q 0

nx

|n|
q

a

|n|
(
n2
x + n2

yMn

) nxny

|n|
a (1−Mn) 0

ny

|n|
q

nxny

|n|
a (1−Mn)

a

|n|
(
n2
y + n2

xMn

)
0

0 0 0 |q|


,

where Mn =
|q|
a|n|

is the directional Mach number. Let M =

√
u2 + v2

a
be the local Mach number. It is actually

important in the following to differentiate the local Mach number defining the preconditioning parameter β2

a2 and
the directional (normal) Mach number arising in the formulation of the Jacobian matrices. We have Mn ≤ M .
Then as M −→ 0, Mn −→ 0 and

|Ã0(n)| ≃



O( 1
M ) O(1) O(1) 0

O(1) O( 1
M ) O( 1

M ) 0

O(1) O( 1
M ) O( 1

M ) 0

0 0 0 O(1)


as M −→ 0.

This is to be compared to result (38). As for the one-dimensional case, we can see that without preconditioning in
the incompressible limit, the pressure equation has to little numerical viscosity while the momentum equation
has too much numerical viscosity. We can see that the eigenvalues of the preconditioned matrix P̃0Ã0 are
independent of the parameter δ in the preconditioner. This is also true for the rescaled matrix dissipation

P̃0
−1

|P̃0Ã0|. Thus, in the following, we will set δ = 0 in the family of preconditioners, since we are basically
interested in finding out a stability criteria for the rescaled Roe scheme.

For the set of variables dW̃0, the preconditioning matrix in the two-dimensional case is then given by

P̃0
−1

=



a2

β2
0 0 0

αua

β2
1 0 0

αva

β2
0 1 0

0 0 0 1


, P̃0 =



β2

a2
0 0 0

−αu

a
1 0 0

−αv

a
0 1 0

0 0 0 1


.

In direction n, the Jacobian matrix of the preconditioned system reads

P̃0Ã0(n) =



β2

a2
q

β2

a
nx

β2

a
ny 0

a
(
nx − αuq

a2

)
q − αunx −αuny 0

a
(
ny −

αvq

a2

)
−αvnx q − αvny 0

0 0 0 q


.

We have the following diagonalization [15]

|P̃0Ã0(n)| = R̃|Λ|R̃
−1

,
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with eigenvalues 
λ0 = q,

λ± = zq ±
√
(zq)2 +

β2

a2
(a2|n|2 − q2).

(39)

The matrix of the right eigenvectors given by

R̃ =



β2

a

β2

a
0 0

β2nx − αuλ+

λ+ − q

β2nx − αuλ−

λ− − q
−ny 0

β2ny − αvλ+

λ+ − q

β2ny − αvλ−

λ− − q
nx 0

0 0 0 1


,

and the matrix of the left eigenvectors can be expressed as follows

R̃
−1

=



a

β2

(λ+ − (1− α)q)

λ+ − λ−

nx

λ+ − λ−

ny

λ+ − λ−
0

− a

β2

(λ− − (1− α)q)

λ+ − λ−
− nx

λ+ − λ−
− ny

λ+ − λ−
0

αa
(uny − vnx)

(λ+ − q)(λ− − q)

(β2ny − αvq)

(λ+ − q)(λ− − q)
− (β2nx − αuq)

(λ+ − q)(λ− − q)
0

0 0 0 1


.

3.2.2 Rescaled Roe scheme

We now consider the non-iterative preconditioning scheme

∂W̃0

∂t
+ Ã0

∂W̃0

∂x
+ B̃0

∂W̃0

∂y
= P̃0

−1|P̃0Ã0|
∂2W̃0

∂x2
+ P̃0

−1|P̃0B̃0|
∂2W̃0

∂y2
.

In case of subsonic flow, we know the sign of the two acoustic eigenvalues, with λ+ ≥ 0 and λ− ≤ 0. Therefore

|Λ| = diag(λ+,−λ−, |q|, |q|).

We proceed as for the one-dimensional case to find an explicit expression of the matrix valued dissipation

P̃0
−1

|P̃0Ã0(n)| = P̃0
−1

|R̃|Λ|R̃
−1

.

Let first introduce the following coefficients

Q11 =
1
√
χ

|n|2
[
zM2

n +
(
1−M2

n

)]
a2, Q12 =

1
√
χ

z q a,

Q21 =
1
√
χ

|n|2
[
z + α

(
1−M2

n

)]
q a Q22 =

1
√
χ

|n|2
[
zM2

n +
β2

a2
(
1−M2

n

)]
a2,

with z = 0.5
(
1− α+ β2

a2

)
and

χ = (zq)2 +
β2

a2
(
a2|n|2 − q2

)
= a2|n|2

[
z2M2

n +
β2

a2
(1−M2

n)

]
.

We also define

ξx =
αuq − β2nx

(λ+ − q)(λ− − q)
, ξy =

αvq − β2ny

(λ+ − q)(λ− − q)
,
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and

ζx =
ny(uny − vnx)

(λ+ − q)(λ− − q)
, ζy = − nx(uny − vnx)

(λ+ − q)(λ− − q)
,

with λ± given by (39). Using the identity (λ+ − q)(λ− − q) = αq2 − β2|n|2, we have

ξxnx + ξyny = 1. (40)

We also see that
ζxnx + ζyny = 0. (41)

The rescaled dissipation matrix can be expressed as follows

P̃0
−1

|P̃0Ã0(n)| =



Q11 nxQ12 nyQ12 0

ξxQ21 − αζxa|q| nxξx(Q22 − |q|) + |q| nyξx(Q22 − |q|) 0

ξyQ21 − αζya|q| nxξy(Q22 − |q|) nyξy(Q22 − |q|) + |q| 0

0 0 0 |q|


. (42)

In the multidimensional case, we find the following decomposition

P̃0
−1

|P̃0Ã0(n)| =
1
√
χ

[
zqÃ0(n)+

β2

a2
(a2|n|2 − q2)P̃0

−1
]
+ (|q| −Q22)L̃0(n) (43)

with

L̃0(n) =



0 0 0 0

−αζxa nyξy 0 0

−αζya 0 nxξx 0

0 0 0 1


.

The matrix (|q| − Q22)L̃0(n) has essentially |q| − Q22 as non-zero eigenvalue with |q| ≃ Q22 in the whole
subsonic range except in the low speed limit. It doesn’t affect the pressure equation. On the other hand, the
resulting matrix of the two first contributions has the two acoustic eigenvalues µ± > 0 given in the following
and double eigenvalue Q22 > 0. So, this resulting matrix is close to the rescaled matrix dissipation (42).
In particular, this ”acoustic” contribution has the same behaviour as the rescaled matrix dissipation in the

low speed limit. Additionally, when α = 0 we see that P̃0
−1

and L̃0(n) have only diagonal entries and
therefore the rescaled dissipation matrix is symmetric. At a sonic point, i.e. |q| = a|n|, if α = 0 we also get
Q22 = a|n|. Therefore the two last contributions vanish and again for both possible values q = ±a|n| we check

that P̃0
−1

|P̃0Ã0(n)| = |Ã0(n)|.
In the incompressible limit, as M −→ 0, we have successively

χ ≃ |q|2,

and for the coefficients Qij

Q11 ≃ a2

|q|
|n|2 = O(

1

M2
), Q12 ≃ a = O(

1

M
), Q21 ≃ a|n|2 = O(

1

M
), Q22 ≃ |q| = O(1).

We also have
ξx ≃ O(1), ξy ≃ O(1), ζx ≃ O(1), ζy ≃ O(1).

Finally

P̃0
−1

|P̃0Ã0(n)| ≃



O( 1
M2 ) O( 1

M ) O( 1
M ) 0

O( 1
M ) O(1) O(1) 0

O( 1
M ) O(1) O(1) 0

0 0 0 O(1)


as M −→ 0,
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which gives by construction the proper scaling in the incompressible limit. Again, the rescaling can be interpreted
as a net increase of numerical dissipation in the pressure equation by a factor 1

M and a consistent rescaling for
the flow velocity.

From expression (42), we can easily find the eigenvalues µ of the matrix Q̃0. Using the identities (40) and
(41), we find for the linear waves

µ0 = |q| (double),

and for the acoustic waves

µ± =
1

2

[
Q11 +Q22 ±

√
(Q11 −Q22)

2
+ 4 Q12 Q21

]
.

Upon substitution with the expressions of the Qij

µ± =
a|n|
2
√
χ̃

[
2z + α(1−M2

n)±
√
∆
]

with ∆ =

(
1− β2

a2

)2 (
1−M2

n

)2
+ 4z

[
z + α(1−M2

n)
]
M2

n, χ̃ = z2M2
n +

β2

a2
(1−M2

n).

We find as expected from the one-dimensional analysis that as long as the flow remains subsonic, the eigenvalues
µ± are positive with the following identity

µ+µ− = a2|n|2 − q2. (44)

Thus, with α = 0 and µ0 ≥ 0, the rescaled dissipation matrix formulated for the set of independent variables
dW̃0 is positive semidefinite in the subsonic range. For the two extreme cases

as Mn −→ 0 ⇒ µ+ ≃ a2

|β|
|n| = O(

1

M2
), µ− ≃ |β||n| = O(1), µ0 ≃ O(1)

as Mn −→ 1 ⇒ µ+ ≃ 2a|n|, µ− ≃ 0, µ0 ≃ a|n|.

As anticipated in the one-dimensional case, we can see that severe stability constraints will occur in the incom-
pressible limit, as it is discussed later.

In the multi-dimensional case, we derive the following diagonalization of the rescaled matrix dissipation

P̃0
−1

|P̃0Ã0(n)| = R̃0Λ̃R̃0
−1

,

with Λ̃ = diag(µ+, µ−, |q|, |q|), R̃0 is the matrix of the right eigenvectors

R̃0 =



(µ+ −Q22) Q12 0 0

[ξxQ21 − αζxa|q|R1] [ξx (µ− −Q11)− αζxa|q|R2] −ny 0

[ξyQ21 − αζya|q|R1] [ξy (µ− −Q11)− αζya|q|R2] nx 0

0 0 0 1


, (45)

where

R1 =
µ+ −Q22

µ+ − |q|
, R2 =

Q12

µ− − |q|
,

and R̃0
−1

is the matrix of the left eigenvectors

R̃0
−1

=



(µ− −Q11)

D
−Q12

D
nx −Q12

D
ny 0

−Q21

D

(µ+ −Q22)

D
nx

(µ+ −Q22)

D
ny 0

−αζa|q|L1 −ξy − αζya|q|L2 ξx + αζxa|q|L2 0

0 0 0 1


, (46)
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with

ζ =
ζx
ny

= − ζy
nx

=
(uny − vnx)

(λ+ − q) (λ− − q)
,

and

L1 =
Q22 − |q|

(µ+ − |q|) (µ− − |q|)
, L2 =

Q12

(µ+ − |q|) (µ− − |q|)
,

where D = det
(
R̃0

)
given by (33).

The above scaling of the eigenvectors corresponds to the most straightforward extension of the one-dimensional
formulation. It is worth noticing that the apparent singularity µ− − |q| = 0 which may occur for a specific di-
rectional Mach number Mn < 1, root of the non-linear equation

M2
n +

µ+

a|n|
Mn − 1 = 0,

doesn’t create any numerical difficulty. We actually find by a deep inspection of the eigenspaces corresponding
the second right eigenvector and the third left eigenvector that if µ− = |q|, then necessarily the velocity vector is
aligned with the actual direction n and therefore ζx = ζy = ζ = 0. Thus, for this specific state, the second right
eigenvector and the third left eigenvector recover non-singular expressions. It will be also shown in the stability
analysis that µ+ > |q| for all possible values of the preconditioning parameter α. So the above diagonalization
can never become singular in practice in the subsonic range.

We also remind that by disactivating the preconditioning matrix with β2

a2 = 1 with α = 0, expressions (45)-

(46) do not return the right and left eigenvector matrix of |Ã0(n)|, associated to eigenvalues |λ+| = a|n| + q
and |λ−| = a|n| − q. They actually correspond to the diagonalization of matrix |Ã0(n)| with the acoustic
eigenvalues recast for the module of the normal velocity a|n|+ |q| and a|n| − |q|. In the case q −→ −a|n|, we
especially see that |λ+| −→ 0 and |λ−| −→ 2a|n| while µ+ −→ 2a|n| and µ− −→ 0 respectively. This justifies
to formulate carefully a possible entropy fix at the sonic line as described later.

In the special case α = 0, we also see that the ”shear” and ”entropic” eigenvectors are both orthogonal
to the acoustic eigenvectors. Taking |n| = 1, with (34) the acoustic eigenvectors are also orthogonal to each
others and the diagonalization with unitary congruence (35)-(36) can be applied. So the symmetry properties
of the original unpreconditioned system are preserved for the rescaled matrix dissipation. However, this is no
longer true when the rescaled matrix dissipation is formulated from the primitive or conservative variables since
the eigenvectors are modified by any change of variables. We know from [21] that the non normality of the
preconditioned system leads to significant robustness problems at stagnation points.

The formulation of the rescaled matrix dissipation expressed for the conservative variables W is achieved by
additional similarity transformations, using the intermediate primitive variables W0 = [p, u, v, S]T and applying

the change of variables with the similarity matrix
∂W

∂W̃0

=
∂W

∂W0

∂W0

∂W̃0

.

4 Stability analysis for the explicit scheme

We now consider the explicit scheme with rescaling of the dissipation matrix derived in the previous section,
expressed for the conservative variables W

∂W

∂t
= −

[
∂F

∂x
+

∂G

∂y
− ∂

∂x

(
Qx

∂W

∂x

)
− ∂

∂y

(
Qy

∂W

∂y

)]
.

In the two-dimensional case, the explicit time-discretization at mesh point xij = (iδx, jδy), where δx and δy
are the constant mesh spacing in the (x, y) directions, can be formulated in conservation form

∆W ij

∆t
+

hi+ 1
2 j

− hi− 1
2 j

δx
+

gij+ 1
2
− gij− 1

2

δy
= 0, (47)

with the time increment ∆W ij = W n+1
ij −W n

ij . For the first-order Roe scheme, the numerical flux writes in
the x-direction

hi+ 1
2 j

=
1

2

[
F (W n

ij) + F (W n
i+1j)

]
− 1

2
|Aroe|i+ 1

2 j

(
W n

i+1j −W n
ij

)
. (48)

For the rescaled Roe scheme, we substitute (48) with

hi+ 1
2 j

=
1

2

[
F (W n

ij) + F (W n
i+1j)

]
− 1

2
P−1|PA|i+ 1

2 j

(
W n

i+1j −W n
ij

)
, (49)
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with matrix P−1|PA| formulated for the Roe average. There is no need to explicitly formulate the matrix
dissipation for the conservative variables. In practice, the dissipation vector can always be computed using
similarity transformations following the algebraic algorithm described in [15] for the iterative preconditioning

P−1|PA|i+ 1
2 j

(
W n

i+1j −W n
ij

)
=

[
∂W

∂W̃0

R̃0Λ̃R̃0
−1 ∂W̃0

∂W

]
i+ 1

2 j

(W i+1j −W ij) .

The stability constraint is strongly concerned with the spectral radius ρ(P−1|PA|) of the matrix-valued dis-
sipation. We have ρ(P−1|PA|) = max(µ+, |q|) since µ+ > µ−. We found that µ+ > |q| when Mn → 0 and
Mn → 1. This is actually true ∀Mn ≤ 1 and for α = 0, α = 1 and α = −1 as demonstrated in the following.

Using identity (44) and taking advantage of having both µ± ≥ 0, we can derive the following expression

(µ+ − |q|)(µ− + |q|) = a2|n|2
[
1 +Mn

√
∆

χ̃
− 2M2

n

]
. (50)

From (50), we have the sufficient condition that as long as Mn ≤
√
2
2 , then µ+−|q| ≥ 0 and ρ(P−1|PA|) = µ+,

without condition on the free parameter α. We also find that if ∆− χ̃ ≥ 0, then
√

∆
χ̃ ≥ 1 and µ+−|q| ≥ 0 with

1 +Mn

√
∆

χ̃
− 2M2

n ≥ 1 +Mn − 2M2
n ≥ 0 for all 0 ≤ Mn ≤ 1.

We can formulate the quantity ∆− χ̃ as follows

∆− χ̃ = P0(1−M2
n) + P1M

2
n,

with

P0 = (1− β2

a2
)2(1−M2

n) + 2α(1− α+
β2

a2
)M2

n − β2

a2
and P1 =

3

4
(1− α+

β2

a2
)2

Since P1 > 0, a sufficient condition for ∆ − χ̃ ≥ 0 is P0 ≥ 0. Taking α = 1, we see that as long as Mn lies in

the range
√
2
2 ≤ Mn ≤ 1, P0 ≥ 0. Thus setting α = 1 ensures µ+ − |q| > 0 and then ρ(P−1|PA|) = µ+ for all

Mn ≤ 1. On the other hand, considering now the cases α = 0 and α = −1, we cannot conclude on the sign of
µ+ − |q| by using the expression ∆− χ̃. However, using identity (50), we see that

(µ+ − |q|)(µ− + |q|)

(
1 +Mn

√
∆

χ̃
+ 2M2

n

)
= a2|n|2

[
1 + 2Mn

√
∆

χ̃
+M2

n

(
∆− 4M2

nχ̃

χ̃

)]
,

with χ̃ > 0. Following the same idea, we also have

(µ+ − ρ(A))(µ− + ρ(A))

(√
∆

χ̃
+ 2Mn

)
= a2|n|2 (1 +Mn)

(
∆− 4M2

nχ̃

χ̃

)
,

where ρ(A) = |q|+ a|n| is the spectral radius for the unpreconditioned scheme.
With α = 0

∆− 4M2
nχ̃ = (1− β2

a2
)2(1−M4

n) ≥ 0 for all 0 ≤ Mn ≤ 1.

With α = −1

∆− 4M2
nχ̃ =

(
(1− β2

a2
)2 −M2

n

)
(1−M2

n) => 1 +M2
n

(
∆− 4M2

nχ̃

χ̃

)
> 0.

We then conclude that
ρ(P−1|PA|) = µ+ ∀Mn ≤ 1,

for all possible values of the parameter α. Furthermore, if α = 0, we also have µ+ ≥ ρ(A) for all Mn ≤ 1 which
is not always the case with α = 1 or α = −1.

In the framework of a linear Von-Neumann analysis, W n
ij is replaced by its Fourier expansion. The Jacobian

matrices A and P−1|PA| are assumed constant matrices and the amplification matrix corresponding to the
explicit scheme (47) with the numerical flux (49) is given for one space-dimension by

G(ϕ, σ) = Id+ (cos(ϕ)− 1)σP−1|PA|− i sin(ϕ)σA,
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where ϕ is the wave number (normalized by 1/δx), σ = ∆t
δx and i2 = −1. This amplification matrix is the

same as for the preconditioned Lax-Friedrich type schemes studied in [9]. Let ϵ > 0. Then, there exits some
subordinate matrix-norm ||.||G,ϵ depending on G and ϵ such that

ρ(G) ≥ ||Id+ (cos(ϕ)− 1)σP−1|PA| − i sin(ϕ)σA||G,ϵ − ϵ.

We also have for any matrix-norm

||A|| ≥ ρ(A) ≃ O(
1

M
) and ||P−1|PA||| ≥ ρ(P−1|PA|) ≃ O(

1

M2
) >> ρ(A) as M → 0.

Therefore, the Von-Neumann stability condition gives a stringent constraint on the time-step in the incompress-
ible limit as formulated in [9], with for a fixed δx

1 ≥ ρ(G) ≥ ||G||G,ϵ − ϵ ≥ ∆t

δx
ρ(P−1|PA|)− ϵ ≃ O(

∆t

M2
) =⇒ ∆t ≃ O(M2) as M → 0. (51)

This proof can be extended to the multi-dimensional formulation in a straightforward way. From (51), we
conclude that the stability condition for the explicit rescaled Roe scheme is formulated for the fasted wave
speed as follows

∆t ≤ h

ρ(P−1|PA|)
, (52)

where h represents some characteristic cell distance. In the two extreme cases, the stability condition yields

∆t ≤ h

µ+
≃ O(M2) as M → 0,

and

∆t ≤ h

|q|+ a|n|
as M → 1. (53)

So for steady-state problems, the local time step will be very small ≃ O(hM2) in the low-speed flow regions
only. In supersonic flow regions, the ”standard” stability condition (53) must be applied. Therefore, with the
strong limitation on the time step, an efficient implicit stage must be added to the baseline explicit rescaled
Roe scheme as described in the next section for the steady-state problem.

It is interesting to compare the acoustic eigenvalues µ± of the rescaled dissipation matrix and the original
eigenvalues |λ±| in the whole subsonic range Mn ≤ 1. In the next figures, all eigenvalues are normalized by
the local speed of sound and therefore can be expressed only as functions of the dimensionless normal velocity
q

a|n|
∈ [−1, 1] (= u

a in the one-dimensional case). The eigenvalues µ± strongly depend on the local Mach

number M within the parameter β2

a2 with a noticeable effect of the second parameter α for low Mach numbers.
In Fig. 1-3 we have compared the effect of α = −1, α = 0 and α = 1, considering different values of the local
Mach number. As demonstrated above, we see that µ+ is the largest eigenvalue in the entire subsonic range
with µ+ > |q|, ∀α, µ+ ≥ ρ(A) for α = 0 and that µ− takes small values especially when M ≤ 0.1. The value
of α has little impact on µ− but a large effect on µ+ in the incompressible limit, as illustrated in Fig. 1 for
M = 0.1. As it can be clearly seen, the stiffness of the rescaled dissipation matrix increases dramatically as
the local Mach number is becoming smaller and smaller. The worst situation arises for α = 1, which could
not be tested in our computations of low Mach-number flows. Globally α = −1 gives the better conditioning

except when
q

a|n|
→ 0 where the asymptotic value of µ+ is reached. This asymptotic value given by

a2

|β|
|n|

is independent of α but strongly depends on the local Mach number. When M → 1, the effect of α is almost
negligible and the stiffness of the rescaled Roe matrix becomes identical to the original Roe matrix (see Fig. 3
for the case M = 1 with µ+ = ρ(A) if α = 0).
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Figure 1: Dimensionless eigenvalues for the original matrix-valued dissipation (Roe) and for the rescaled Roe
scheme when M = 0.1

Figure 2: Dimensionless eigenvalues for the original matrix-valued dissipation (Roe) and for the rescaled Roe
scheme when M = 0.3

5 Implicit matrix time-stepping scheme for the steady-state prob-
lem

5.1 Formulation

The Jacobi preconditioning or preconditioning-squared is known to smooth out high frequency errors and is
especially efficient with the multigrid technique to accelerate the convergence. It basically doesn’t help to
improve the stiffness of the rescaled Roe scheme in the low speed limit. On the other hand the low-speed
preconditioning is not designed to treat high frequency errors. Turkel suggested to combine both approaches.
However, here we apply a block Jacobi preconditioner to the rescaled Roe scheme in order to formulate an
implicit matrix time-stepping scheme for the steady-state problem in the sens that each characteristic variables
is updated with its own ∆t(k) [22]. Actually the matrix time-stepping approach provides a mechanism enforcing
the damping properties of the scheme as it is described next within a linear stability analysis. In the case of the
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Figure 3: Dimensionless eigenvalues for the original matrix-valued dissipation (Roe) and for the rescaled Roe
scheme when M = 1

rescaled Roe scheme, the formulation of a time-step matrix is not obvious, since the dissipation matrix is not an
explicit function of the original Jacobian matrix. For the fully discrete scheme in a two-dimensional Cartesian
mesh (47) with the numerical flux corresponding to the rescaled Roe scheme (49), the Jacobi preconditioning
may be formulated as follows(

Ap +Bp

ρ(P−1|PA|) + ρ(P−1|PB|)
∆W

)
ij

= −∆t

(
hi+ 1

2
j − hi− 1

2
j

δx
+

gij+ 1
2
− gij− 1

2

δy

)
, (54)

where the matrix coefficients Ap and Bp must fulfill the following conditions:

1. The eigenvectors must be the same as the original Jacobian matrix in order to preserve the formulation
of the characteristics variables;

2. The eigenvalues must be non negative in order to let unchanged the signs of the characteristic speeds and
bounded away from zero (thus positive) for the formulation of a characteristic time-step matrix;

3. The stability condition (52) must be satisfied for the characteristic variable corresponding to the fastest
wave speed;

4. The matrix coefficients Ap and Bp should achieve a smooth transition with |A| and |B| at the sonic line.

Matrix coefficients Ap = P−1|PA| and Bp = P−1|PB| perfectly match conditions 2., 3. and 4. but must be
rejected as not satisfying the first condition. SettingAp = |A| = RA|ΛA|RA

−1 andBp = |B| = RB|ΛB|RB
−1

satisfy conditions 1., 2. and 4., provided that the vanishing eigenvalues |λ(k)| are corrected by some entropy
fix. This latter choice reduces the spread of the characteristic speeds from a factor 1/M with respect to the
formulation with the rescaled dissipation matrix. However, condition 3. is lost with ρ(A) ≤ µ+ and in practice,
this formulation is unstable and can be used only with small or moderate values of the CFL number. A
intermediate choice is to build matrix coefficients from the eigenvectors of the original Jacobian matrix and the
eigenvalues µ(k) of the rescaled matrix dissipation supposed to be all bounded away from zero. In that case,
the eigenvalues µ(k) must be corrected to ensure the transition at the sonic line with |λ(k)| the eigenvalues of
the original Roe matrix dissipation. This intermediate formulation provides optimal stability properties and
yields a robust scheme but let the spread of the characteristic speeds unchanged with respect to the rescaled
Roe scheme.

Hence, let consider Ap = RAΛ̃ARA
−1 and Bp = RBΛ̃BRB

−1, with Λ̃ = diag(µ(k)), RA and RB being
the left eigenvector matrices of the original Jacobian matrices A and B. In a Cartesian mesh, the CFL condition
(52) can be expressed with a more restrictive formulation of the local time-step

∆t = CFL
h

ρ(P−1|PA|) + ρ(P−1|PB|)
.
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We introduce a characteristic time-step matrix

∆tc = CFL h (Ap +Bp)
−1

=
[
(RA∆tA

−1RA
−1) + (RB∆tB

−1RB
−1)
]−1

,

where ∆t is the diagonal matrix
∆t = diag(∆t+,∆t−,∆t0,∆t0)

with

∆t+ = CFL
h

µ+
∗
, ∆t− = CFL

h

µ−
∗
, ∆t0 = CFL

h

µ0
∗
.

The star symbol indicates that the eigenvalues may be bounded away from zero and especially that µ± must
be modified to ensure that the above condition 4 is satisfied. This point is discussed later, in the supersonic
flow extension of the rescaled Roe scheme.

Thus, the Jacobi preconditioner amounts to reformulate the original conservative scheme (47) with a time-
step matrix

∆W ij = −(∆tc)ij

(
hi+ 1

2 j
− hi− 1

2 j

δx
+

gij+ 1
2
− gij− 1

2

δy

)
.

This scheme has optimal properties in damping high frequency errors, and is well adapted to transonic flows.
By setting P to the identity matrix Id in (54), we can also formulate a matrix time-stepping scheme for the
original Roe scheme with

∆t+ = CFL
h

|λ+|
, ∆t− = CFL

h

|λ−|
, ∆t0 = CFL

h

|λ0|
.

and λ± = q ± a|n|, λ0 = q. Note that if ∆t− and ∆t0 are set to the maximum value allowed by the CFL
condition, we recover the usual local time step with ∆tc = ∆tId. In the matrix time-step approach, we would
like to let the time steps associated to the slowest waves unbounded. Intuitively, since in the incompressible
limit we have for a fixed mesh

∆t+ ≃ h CFL O(M2), ∆t− ≃ h CFL O(1), ∆t0 ≃ h CFL O(1),

the original idea behind the formulation of a time-step matrix was to modify the characteristic time-steps so
that the solution advance in time along the characteristic curves with time steps of the same order of magnitude.
This is actually not suitable, since it is essential to keep the numerical stability of the rescaled Roe scheme.
Equalizing all characteristic time steps would give the additional constraint that ∆t− and ∆t0 must be scaled
to the smallest time step ∆t+, and we recover the behaviour of the numerical scheme formulated for the scalar
time step. In order to overcome the issue of using very small time steps in the incompressible limit, we see that
the matrix time-stepping scheme must be combined with a robust implicit scheme allowing the use of large CFL
numbers, as recommended in [9].

A usual way to define an implicit scheme for the Roe scheme, is to consider the following backward Euler
scheme as formulated in [23] for an approximated differentiation of the Roe flux

−σxA
+

i− 1
2 j

∆W i−1j + σxA
−

i+ 1
2 j

∆W i+1j

+
(
Id− σxA

−
i+ 1

2 j
+ σxA

+
i− 1

2 j
− σyB

−
ij+ 1

2
+ σyB

+
ij− 1

2

)
∆W ij

−σyB
+

ij− 1
2
∆W ij−1 + σyB

−
ij+ 1

2
∆W ij+1 = ∆W exp

ij

(55)

where ∆W exp
ij is the time increment for the explicit scheme, σx = ∆t

δx , σy = ∆t
δy and A+, A−, B+, B+ are

respectively the positive and negative parts of the flux Jacobian matrices A and B in the (x, y) space directions.
For the rescaled Roe scheme, a baseline implicit scheme is then formulated by replacing in (55) respectively

A± 7−→ A± P−1|PA|
2

= P−1(PA)± and B± 7−→ B ± P−1|PB|
2

= P−1(PB)±. (56)

The implicit scheme (55) can be also formulated for the characteristic matrix time-stepping scheme, upon the
following substitutions

σxId 7−→ 1

δx
∆tc, σyId 7−→ 1

δy
∆tc. (57)
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5.2 Stability of the implicit scheme

In the following, the stability of the implicit rescaled Roe scheme with scalar and matrix time-steps is considered.
Both versions correspond actually to small perturbations of the original implicit Roe scheme (55) in the transonic
regime. Both are especially unconditionally stable for the linear problem as shown below. But as the free-stream
Mach number is decreasing, their dissipative properties substantially differ from the original Roe scheme. This
can be pointed out within a Fourier analysis. Let (ϕ, θ) be the normalized wave numbers in the two space
directions. Then, for the linear problem the amplification matrix takes the general form

G(ϕ, θ) = Id−H−1(ϕ, θ)K(ϕ, θ),

with for the implicit scheme H(ϕ, θ) = Id+K(ϕ, θ). We get successively
- For the original Roe scheme

K(ϕ, θ) = (1− cos(ϕ))σx|A|+ (1− cos(θ))σy|B|+ i sin(ϕ)σxA+ i sin(θ)σyB

- For the rescaled Roe scheme

K(ϕ, θ) = (1− cos(ϕ))σxP
−1|PA|+ (1− cos(θ))σyP

−1|PB|+ i sin(ϕ)σxA+ i sin(θ)σyB

- For the the matrix time-stepping schemes, we replace σx and σy according to (57).
Stability and damping properties of the four schemes can be characterized by the following estimates,

assuming that all matrix coefficients simultaneously diagonalizable according to the Lerat’s general framework
[24]. Under this assumption, the time-step matrix has eigenvalues

∆t(k) = CFL
h

|λ(k)

A
|+ |λ(k)

B
|

(Roe scheme), ∆t(k) = CFL
h

µ
(k)

A
+ µ

(k)

B

(rescaled Roe scheme).

Let also introduce λ
(k)

G
the eigenvalues of the amplification matrix G(ϕ, θ) and respectively λ

(k)

A
, λ

(k)

B
and

µ
(k)

A
, µ

(k)

B
the eigenvalues of the matrix coefficients A, B and Ap, Bp, P

−1|PA| and P−1|PB|. Important
for differentiating the different formulations is to have a close upper estimate of the spectral radius of the
amplification matrix. Without loss of generality, we have for the Roe scheme in one space-dimension

ρ(G) =
1

min
k
(|1 + λ

(k)

K
|)
,

with
|1 + λK | =

√
(1 + 2(1− cos(ϕ))σ|λ|(1 + σ|λ|)) ≥ 1, ∀σ.

Denoting ν = σ|λ|, we see that ν 7−→ ρ(G)(ϕ, ν) is a strictly diminishing function and therefore

ρ(G) =
1√

(1 + 2(1− cos(ϕ))νmin(1 + νmin))
,

where νmin = σmin
k
(|λ(k)|) if no matrix time-stepping scheme is formulated, νmin = min

k
(σ(k)|λ(k)|), σ(k) =

∆t(k)

δx with the matrix time-stepping scheme. The optimal rate of convergence to a steady state is then obtained
for large CFL numbers with lim

CFL→∞
ρ(G) = 0, ∀ϕ ∈]0, 2π[, ∀λ ̸= 0. The same results hold for the two-

dimensional problem with the upper-bound estimate

ρ(G) ≤ 1√
(1 + 2(1− cos(ϕ))(νmin)x + 2(1− cos(θ))(νmin)y

≤ 1, ∀σx, σy.

So the higher are (νmin)x or (νmin)y, the lower is ρ(G) and the better is the convergence rate to a steady state.
In the case of the rescaled Roe scheme, using similar arguments, we get in the one-dimensional case

ρ(G) =
1√

(1 + (1− cos(ϕ))[2 + (1− cos(ϕ))(νµ)min](νµ)min + sin2(ϕ)(νλ)min

,

where (νµ)min = σmin
k
(µ(k)), (νλ)min = σmin

k
(|λ(k)|) if no matrix time-stepping scheme is formulated,

(νµ)min = min
k
(σ(k)µ(k)), (νλ)min = min

k
(σ(k)|λ(k)|) with the matrix time-stepping scheme.
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Now comparing the effect of the matrix time-stepping scheme on the non-dimensional quantities (νmin)x
and (νmin)y for both the Roe scheme and the rescaled Roe scheme, we get
-For the Roe scheme:

σx|λ(k)

A
| = ∆t

δx
|λ(k)

A
| = CFL

h

δx

|λ(k)

A
|

ρ(A) + ρ(B)
≤ CFL

h

δx

|λ(k)

A
|

|λ(k)

A
|+ |λ(k)

B
|
=

∆t(k)

δx
|λ(k)

A
| = σ(k)

x |λ(k)

A
| ∀k,

and similarly σy|λ(k)

B
| ≤ σ

(k)
y |λ(k)

B
|, ∀k. Assuming that (νmin)x is reached for k = k0, we see that

(νmin)x = σx|λ(k0)

A
| ≤ σx|λ(k)

A
| ≤ σ(k)

x |λ(k)

A
|, ∀k ⇒ (νmin)x ≤ min

k
(σ(k)

x |λ(k)

A
|).

-For the rescaled Roe scheme, the previous result writes

[(νµ)min]x = σxµ
(k0)

A
≤ min

k
(σ(k)

x µ
(k)

A
) and [(νλ)min]x = σx|λ(k0)

A
| ≤ min

k
(σ(k)

x |λ(k)

A
)|.

Therefore the matrix time-stepping scheme always yields higher (νmin)x and (νmin)y and thus may improve the
damping properties of the iterative procedure. It is also interesting to look at the situation in the incompressible
limit. Since for the Roe scheme in a fixed mesh

|λ+| ≃ |λ−| ≃ O(
1

M
) and |λ0| ≃ O(1) as M → 0,

with find that
(νmin)x ≃ O(M) < min

k
(σ(k)

x |λ(k)|) ≃ O(1) as M → 0.

For the rescaled Roe scheme in the same conditions

µ+ ≃ O(
1

M2
) and µ− ≃ µ0 ≃ O(1) as M → 0,

thus
[(νµ)min]x ≃ O(M2) << min

k
(σ(k)

x µ(k)) ≃ O(1) as M → 0.

So the optimal damping properties of the matrix time-stepping scheme should be enforced in the incompressible
limit.

It can also be demonstrated that the rescaled Roe scheme is also second-order dissipative in the sens of
Kreiss [25] and can be used for the computation of non-linear flows.

5.3 Under relaxation of the implicit scheme

In our implementation of the rescaled Roe scheme, we have considered the finite-volume method in structured
grids. The implicit scheme (55) is solved iteratively using a LU-SGS method, with successive forward and
backward diagonal sweeps within the mesh. Numerical experiments for low Mach-number flow simulations
have shown that a large number of diagonal sweeps should be considered to get an efficient inversion of the
linear system. Furthermore, considering that all boundary conditions were not linearized implicitly (only the
implicit treatment of the wall and symmetry boundary conditions was implemented) and the error introduced
the iterative procedure, this practically limits the use of large CFL numbers required by the stability condition.
As shown in the previous section, the efficiency of rescaled Roe scheme to handle low-speed flow computations
depends on first the use of large CFL numbers and second the use of a characteristic time-step matrix. This
will be illustrated next for the case of the NACA0012 airfoil. Then, it has been found necessary to improve
the efficiency the LU-SGS algorithm and a simple under-relaxation of the implicit scheme turned out to very
efficient to overcome these limitations.

Let first reformulate the implicit scheme (55) in condensed form

(Id−∆tM)∆W = ∆tResexp,

where ∆t = ∆tId if a scalar time step is used or ∆t = ∆tc for the time-step matrix. We modify this with

(Id− ϕ∆tM)∆W = ∆tResexp,

and we take ϕ > 1, which implies under-relaxation. So large values of ϕ will slow down the convergence rate
for the steady problem, but will permit the use large CFL numbers. We experienced that, depending upon the
low-Mach number inflow conditions, the relaxation coefficient ϕ should be increased from ϕ = 1.5 at M∞ = 10−1

to ϕ = 150 at M∞ = 10−3, in order to obtain a stable algorithm supporting very large CFL numbers, with
typically CFL ≃ O(1/M2

∞).
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6 Practical implementation of the rescaled Roe scheme

In our implementation, the Choi-Merkle preconditioning parameter will assume the following formulation

β2

a2
= min(max(M2, ϵ2), 1),

where ϵ2 is used as a small cut-off value. It is worth mentioning that for high subcritical or transonic flows, it
is essential to set the small parameter ϵ2 to a much smaller value than M2

∞ to preserve the higher accuracy of
the rescaled Roe scheme in the low-speed flow regions. For low-speed flow computations, the small parameter
ϵ2 was set to a cut-off value for all inflow Mach numbers considered. In [1], the use of the small parameter ϵ2

was not mentioned. This doesn’t seem to create any numerical difficulties. On the other hand, no spurious
dissipation effects due to corrected eigenvalues are introduced. For low Mach-number flow computations, the
Van Leer formulation was also considered

β2

a2
= min(

2M2

1− 2M2
, 1), so

β2

a2
= 1 as M ≥ 0.5.

6.1 Entropy fix

The so-called entropy fix is considered as a mean to select the relevant physical solution satisfying the entropy
condition to the hyperbolic problem, which may be violated by the Roe’s approximate Riemann solver. The
formulations proposed by Harten have been widely accepted by the CFD community, as being very simple to
implement in existing CFD codes based on the Roe scheme. These formulations act on all the eigenvalues
approaching zero and therefore also correct the contact discontinuity with consequently additional numerical
dissipation and loss of accuracy. The behaviour of the modified eigenvalues µ± and µ0 = |q| suggests to apply
selectively the entropy fix. With µ+ > 0, a correction has to be found only for µ0 at the stagnation point and
for µ− at the sonic line, since the formulation of the rescaled matrix prevents µ− from being too small near a
stagnation point. With µ− ≃ |q| near the stagnation point, this suggests to equalize µ0 and µ− when M → 0.
We suppose the Mach number to be small enough so that the preconditioning parameter recovers its cut-off

value β2

a2 = ϵ2. Then, a possible correction will assume the following form

µ0 = max(|q|, ϵa|n|) with ϵa|n| = lim
M→0

µ− ≃ O(1). (58)

This correction might be interpreted as formally similar to the first entropy correction proposed by Harten and
Hyman [26]. However, notice that the quantity ϵa|n| is actually a bit smaller than the threshold employed for
the entropy fix, which is usually based on some fraction of the spectral radius |q| + a|n| (even for the linear
waves) and not on the local speed of sound only. For viscous or turbulent flows, as it is discussed below,
the formulation of the cut-off value ϵ2 must be reconsidered, and the correction (58) may assume a different
formulation.

Regarding the acoustic eigenvalue µ− at the sonic line when Mn = 1, it seems reasonable to be consistent
with the formulation of the original matrix dissipation, by considering the same formulation of the entropy fix
as used for the Roe scheme. This choice is motivated by the extension to a supersonic flow described in the
following. Considering again the symmetrizing entropic variables, in the case of subsonic flow |u| ≤ a we have
the following diagonalization

|Ã0| =

 a a

a −a

 |u+ a| 0

0 |u− a|

 1
2a

1
2a

1
2a − 1

2a

 .

Although in case of transonic flow the entropic variables are not appropriate, suppose for the analysis that
u → a. Then the acoustic eigenvalue |λ−| = |u − a| may be corrected by some entropy fix and therefore
|λ−| → 0 is modified with |Ã0| formulated for diag(|u+ a|, Ψ(|u− a|)), where Ψ is some given cut-off function

preventing |λ−| from reaching zero. On the other hand, assuming β2

a2 → 1 with α = 0 in the expression of the
rescaled dissipation matrix as |u| → a, we get

P̃0
−1

|P̃0Ã0| =

 |u| u

u −|u|

 a+ |u| 0

0 a− |u|

 1
2|u|

1
2u

1
2u − 1

2|u|

 .

Thus at the sonic line, µ− = a−|u| → 0 and P̃0
−1

|P̃0Ã0|may be also reformulated with diag(a+|u|, Ψp(a−|u|)).
The cut-off function Ψp(µ−) must be defined in order to assure P̃0

−1
|P̃0Ã0| → |Ã0| when |u| → a. In the limit
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|u| → a, when applying the entropy fix, we can see that we get the identity P̃0
−1

|P̃0Ã0| = |Ã0| provided that{
Ψp(µ−) = Ψ(|λ+|) and µ+ = |λ−| if u → −a
Ψp(µ−) = Ψ(|λ−|) and µ+ = |λ+| if u → a

(59)

If no entropy fix is applied

|Ã0| = P̃0
−1

|P̃0Ã0| =

 a ±a

±a a

 when u = ±a.

The formulation (59) of the entropy fix for the rescaled Roe scheme is unchanged by similarity transformations
and can be also extended to the Euler equations in conservation form. The definition of Ψp is also formally
unchanged in the multidimensional case, as indicated below. For complex non-linear flows, we may consider the
classical Harten’s entropy fix formulated in [27]{

Ψ(|λ|) =
λ2+δ2h
2δh

if |λ| < δh
Ψ(|λ|) = |λ| if |λ| ≥ δh

(60)

with δh being the threshold for the correction of the eigenvalues approaching zero which is usually a fraction of
ρ(A).

6.2 Supersonic flow

If the flow becomes locally supersonic, the formulation of the rescaled Roe scheme is no longer valid and the
original Roe scheme must be selected. It becomes then necessary to introduce a ”switch” between the subsonic
and supersonic flow conditions. The matrix valued dissipation Q must be formulated as follows

if a|n| − |q| ≥ 0 then Q = P−1|PA| else Q = |Aroe|,

with P−1|PA| = |Aroe| if |q| = a|n| and α = 0 provided that the rescaled dissipation matrix is formulated for
the Roe’s average. In the supersonic flow regions, the CFL condition must be selected accordingly with (53).
As aforementioned, the entropy fix must be applied selectively in order to assure a smooth transition with the
Roe scheme near the sonic line. For the rescaled dissipation matrix, the entropy fix must be applied according
to (59) with

Ψp(µ−) = Ψ(|λ±|) and µ+ = |λ∓| if |q ± a|n|| ≤ δh,

whenever the Harten’s entropy fix (60) is considered.
Since µ+ → ρ(A) as M → 1, no special treatment has to be considered for the formulation of the scalar

time-step. However, this is not true for the eigenvalues as illustrated in Fig. 1-3. So in the formulation of the
time-step matrix, a smooth transition Ap = RAΛ̃ARA

−1 → |Aroe| can only be achieved by modifying the
eigenvalues µ(k). A possible reformulation of the acoustic speeds µ∗

± has been found by considering the ”acoustic

portion” of decomposition (43). Upon substitution of matrices A and P−1 by their respective eigenvalues, we
get

µ∗
+ = Q11 + a|n| zq√

χ
, µ∗

− = |Q22 − a|n| zq√
χ
|,

where the absolute value on µ∗
− ensures positivity. The behaviour of the corrected eigenvalues as function of

q

a|n|
is plotted in Fig. 4 for M = 0.1 and α = 0. It can be especially seen that µ∗

± → |λ±| the eigenvalues of

|Aroe| as q → ±a|n| and that the asymptotic behaviour of µ∗
+ ≃ µ+ as |q| → 0 is reproduced by the correction.

Note that µ∗
− ≃ |λ−| except when |q| → 0 where µ∗

− becomes singular. So the final expression of µ∗
− is further

simplified in order to avoid any singularity, and we simply take µ∗
− = |λ−| in the whole subsonic range |q| ≤ a|n|.

So for the rescaled Roe scheme, the time-step matrix will assume the following expression for all inflow Mach
numbers

∆t+ = CFL
h

Q11 + a|n| zq√
χ

, ∆t− = CFL
h

|q − a|n||
, ∆t0 = CFL

h

|q|
.

In practice, |q − a|n|| and |q| may locally vanish or be very small and must be bounded away from zero with
the entropy fix.
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Figure 4: Dimensionless corrected eigenvalues µ∗
± in the definition of time-step matrix when M = 0.1 - Grey

delta symbols: µ∗
+. Black diamond symbols: µ∗

−

6.3 High-order extension

The rescaled Roe scheme can be easily extended to higher orders of space accuracy assuring the TVD property
by using the MUSCL extrapolation, since it doesn’t affect the formulation of the matrix valued dissipation.

6.4 Extension to viscous flows

The local preconditioning approach used to construct the rescaled dissipation matrix (whatever it is iterative
or not) may be further developed to handle viscous and turbulent flows. So far, the extension to the Navier-

Stokes/RANS equations has been considered by extending the definition of the preconditioning parameter β2

a2

in order to enforce the accuracy and especially the robustness of the preconditioned scheme in stagnation point
regions and in the boundary layer with high-aspect ratio grids. It has been especially demonstrated in [28] that a

better control of the free parameter β2

a2 has to be achieved in the low Reynolds number flow regions. The authors
suggest the cut-off value ϵ2 to be related to the isentropic Mach number inside the boundary layer. In [29],
the ”inviscid” preconditioning parameter is modified for high lift configurations and a cell Reynolds number is
considered as a viscous correction. The necessary corrections of the original formulation are especially relevant
for the computation of some industrial configurations characterized by co-existing transonic flows and large three-
dimensional separated flows. These modifications obviously do not modify the derivation of the eigenspaces and
the formulation of stability condition for the rescaled dissipation matrix, the low-speed preconditioner remaining
formally the same.

7 Computational results

We were basically interested in testing numerically the stability and the accuracy of the rescaled matrix dissi-
pation for the Roe scheme in the two extreme cases M → 0 and M → 1. Since it was necessary to assess the
effect of removing the iterative preconditioning on both the numerical stability and the accuracy of the solution,
flow configurations were selected assuming steady conditions. In order to frame the assumption of inviscid
flow considered previously and to demonstrate numerically the properties of the rescaled Roe scheme, we have
considered a NACA0012 airfoil configuration widely used for the assessment of CFD solvers. The meshes used
are the Vasseberg-Jameson meshes, a family of O-meshes generated from a conformal transformation, yielding
quadrilateral cells with an aspect ratio of one, with gridlines essentially orthogonal at each vertex within the
mesh [30]. This mesh topology allows to avoid introducing poor grid quality or highly grid stretching effects in
the numerical solutions. Note that the original formulation in the CFD solver of the boundary conditions using
characteristic variables has been left unchanged when the rescaled Roe scheme was selected.
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7.1 Low Mach number flows about the NACA0012 airfoil

The experiment of reference [1] was reproduced for the reformulation of the rescaled Roe matrix dissipation. In
[1] the rescaled dissipation matrix was computed from the diagonalization of preconditioned Jacobian matrix
|PA|, while in our implementation, the diagonalization was formulated from the full matrix P−1|PA| and
the implicit scheme (55) with matrix coefficients (56) was used. The primary interest of this test case is to
demonstrate that the proper scaling of the pressure field is recovered at the discrete level in the incompressible
limit by the rescaled Roe scheme. The test-case corresponds to a nonlifting solution at zero angle-of-attack.
The grid considered for this preliminary assessment has Nc = 128 cells in both directions.

For the normalized equations, we know that the discrete solutions of the first-order Roe scheme support
pressure fluctuations in space of order M∞, with p(x, t) = p0(t)+ p1(x, t)M∞, while in the continuous case, the
pressure fluctuations scale as M2

∞. It was also demonstrated that the rescaled Roe scheme (with α = 0) support
pressure fluctuations in space of second-order p(x, t) = p0(t) + p2(x, t)M

2
∞. Thus, without preconditioning or

rescaling of the dissipation operator, a compressible flow solver usually fails to compute low Mach number flows.
A rigorous way to prove this result numerically consists in considering a sequence of computations with

decreasing inflow Mach number using the same mesh and investigating whether the pressure fluctuations undergo
a linear or quadratic behaviour with the Mach number. Looking for steady solutions, the pressure field will
then assume the form p(x) = p0 + δp(x), with δp(x) = pf (x)M

n
∞, where p0 is the leading order pressure

corresponding to the thermodynamic static pressure, pf is the magnitude of the pressure fluctuations and n = 1
or 2 is the order of the fluctuations. Following [1], the accuracy of the computations in the incompressible limit
can be characterized by the evolution of a normalized pressure field p̃ ∈ [0, 1] and an indicator characterizing
the order of the pressure fluctuations as the Mach number goes to zero. The normalized pressure used for the
comparison of the pressure fields at different inflow Mach numbers is defined as

p̃(x) =
p(x)− pmin

pmax − pmin
=

pf (x)− (pf )max

(pf )max − (pf )min
= p̃f (x),

and then also corresponds to a normalized field for pressure fluctuations. Note that the normalized pressure
p̃ is independent from the inflow Mach number and therefore as M∞ → 0, numerical solutions should also
converge to a consistent approximation of the incompressible solution. A normalized pressure fluctuation δp̃ is
also introduced with

δp̃ =
pmax − pmin

pmax
≃
[
(pf )max − (pf )min

p0

]
Mn

∞ for M∞ << 1.

Since in the normalization process all flow variables are of the same order of magnitude (around unity), the
above definition of δp̃ gives the variation of the pressure fluctuations with the Mach number.

The behaviour p = O(1/M2) for the pressure field was reproduced for a fixed mesh within a sequence
of computations by increasing the inflow pressure while keeping constant the inflow velocity and the density,
for decreasing Mach numbers M∞ in the range 10−1 to 10−3. The entropy correction was deactivated for all
inflow Mach numbers considered. Numerical experiments are represented in the next figures for the Van Leer
formulation of the preconditioning parameter and α = −1. As expected, solutions obtained with the rescaled
matrix dissipation converge to a unique isentropic solution with constant density, corresponding to a decoupling
of the velocity and pressure fields, which cannot be achieved with the Roe scheme, as illustrated in Fig. 5-6.
The behaviour of the pressure fluctuations with the inflow Mach number is represented in figure 7. With the
rescaled Roe scheme, the pressure fluctuations exactly scale with M2

∞. As also indicated, the same experience
was conducted for the Choi-Merkle formulation of the preconditioning parameter and α = 0, with exactly the
same quadratic behaviour reproduced for the pressure fluctuations. As shown by many authors, we see that
the Roe scheme supports fluctuations of order M∞ in the incompressible limit. Additionally, for inflow Mach
numbers lower than 0.1, a grid-convergence study carried out in [2] rigorously demonstrates that the effort
in grid density required to the Roe scheme to consistently converge to the correct pressure field is inversely
proportional to the Mach number. This is a consequence of the behaviour of the leading order term of the
truncation error in the incompressible limit.

The effects of the CFL number and of the use of the matrix time-stepping scheme are illustrated in Fig 8 for
the rescaled Roe scheme. As demonstrated in the stability analysis, the convergence rate is drastically increased
when large CFL numbers are used, and the time-step matrix proved to be more efficient than the standard
scalar time for any tested CFL number. The use of large CFL numbers was made possible by under relaxation
of the implicit scheme. Largest CFL numbers correspond to ∆t+ ≃ O(h), so typically CFL ≃ O(1/M2

∞), with
CFL = 100 (ϕ = 1) or larger for M∞ = 10−1, CFL = 10 000 (ϕ = 15) for M∞ = 10−2 and CFL = 1 000 000
(ϕ = 150) for M∞ = 10−3. In addition, as indicated in the figures with the dashed line, the zero level machine is
reached for the pressure fluctuations of order O(M−2). Therefore, the zero level machine corresponding to the
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Figure 5: Velocity contours with the inflow Mach number in the Vasseberg-Jameson mesh. Left: rescaled Roe
scheme. Right: Roe scheme (V∞ = 270m/s)

Figure 6: Contours of the normalized pressure with the inflow Mach number in the Vasseberg-Jameson mesh.
Left: rescaled Roe scheme. Right: Roe scheme

limit cycle is shifted according to the inflow Mach number, from 13 orders of convergence when M∞ = 10−1 for
pressure fluctuations of order O(10−2), to 9 orders of convergence when M∞ = 10−3, with pressure fluctuations
of order O(10−6).

The effect of a usual grid stretching was also investigated for the rescaled Roe scheme. The unique isentropic
solution for the velocity field and the convergence history are plotted in Fig. 9. Much lower CFL values could
be used in this conventional grid, especially for M∞ = 10−3. However, the effect of the time-step matrix on the
convergence rate turned out to be much more important. The convergence rate is more than 30 times faster
with the characteristic time-step matrix for M∞ = 10−1, and practically, the zero machine level could not be
reached with a reasonable number of time steps using the scalar time step, when M∞ ≤ 10−2.

7.2 Transonic flow about the NACA0012 airfoil

A transonic flow condition for M∞ = 0.8, α = 00 was also considered in order to assess the smooth transition
of the rescaled Roe scheme with the original Roe scheme at the sonic line, and the effect of the rescaled
matrix dissipation at the stagnation point. This was achieved within grid convergence, considering 5 out of
the 8 coarsest-to-finest meshes defined in [30], with dimensions 128×128 to 2048×2048 cells. So the finest grid
used is composed of over 4 million cells. For the rescaled Roe scheme, the Choi-Merkle formulation of the
preconditioning parameter was selected, with ϵ2 = 0.01 << M2

∞ and α = 0. For both schemes, the entropy fix
was activated, with the special treatment described previously for the rescaled Roe scheme, and a second-order
MUSCL extrapolation was considered. For a transonic flow, both schemes have a similar conditioning and
therefore similar convergence rates were obtained, with zero-level machine convergence obtained for each mesh.
Note that with the matrix time-stepping scheme, the Roe scheme also achieves a faster convergence to the
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Figure 7: Pressure fluctuations with the inflow Mach number for the Roe scheme and the rescaled Roe scheme

Figure 8: Convergence history for the rescaled Roe scheme with the inflow Mach number 10−1, 10−2 and 10−3.
Solid lines: matrix time-step. Dashed lines: scalar time step
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Figure 9: Effect of grid stretching on the rescaled Roe scheme. Left: Velocity contours with the inflow Mach
number. Right: Convergence history for the scalar (dashed lines) and the matrix (solid lines) time steps

Figure 10: Comparison of the flow solution for the Roe scheme and the rescaled Roe scheme at M∞ = 0.8,
α = 00. Left: pressure coefficient. Right: entropy distribution

steady state compared to the standard scalar time step.
The comparison for the pressure coefficient obtained in the finest mesh is plotted in Fig. 10-left. The

respective solutions have a very similar discrete shock structure, with the same computed shock location. The
effect of the proper scaling of the matrix dissipation has to be found near the stagnation point, where a slightly
higher peak pressure is predicted with the rescaled Roe scheme. Then, the suction effect on the leading edge
is slightly reduced and a larger pressure drag coefficient is found with the rescaled Roe scheme, for all meshes
used in the grid-convergence study. A consequence of a better control of the numerical dissipation can be
readily pointed out with the entropy distribution on the airfoil. The effect of the grid refinement on the
entropy distribution is illustrated in Fig. 10-right for both schemes. A significant effect of the rescaled matrix
dissipation can be especially observed on the spurious entropy generation at the stagnation point. Since for both
schemes, the same definition of the entropy fix was considered, the strong reduction of the spurious entropy is
the consequence of the rescaling of the Roe scheme in the low speed flow regions where high gradients of the
solution are present. Similar effects were observed in sub-critical and in low-speed flow conditions.
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8 Conclusions

A rescaled matrix-valued dissipation was formulated by deriving explicitely the eigenspaces of the Roe-Turkel
matrix dissipation. This formulation is interpreted as a rescaling of the Roe scheme for low Mach number flows.
When the entropic variables are considered as independent variables, it is demonstrated that the rescaled ma-
trix dissipation is positive semidefinite and can be diagonalized by unitary congruence. So, robustness problems
could be significantly alleviated especially at stagnation points. However, our final objective is to developed a
more accurate compressible flow solver in low speed flow regions, and the optimal normality properties of the
rescaled matrix dissipation are lost by any change of variables. By construction, the rescaled Roe scheme gives
the correct asymptotic order for the artificial dissipation terms, and in particular returns the proper quadratic
behaviour of the pressure fluctuations in the incompressible limit. However, as the Mach number goes to zero,
the system becomes very stiff and very small time steps must be used, independently of the definition of the
local preconditioner used for the formulation of the Roe-Turkel scheme. With the rescaling of the Roe scheme, it
is then necessary to completely reformulate the stability condition. A CFL condition was formulated explicitly,
based on the spectral radius of the rescaled matrix dissipation. For steady-state problems, it is shown that a
robust implicit scheme can be formulated in order to circumvent the severe stability bound occurring for low
Mach number flows. The implicit scheme is characterized by the introduction of a characteristic time-step ma-
trix, enforcing the damping properties of the scheme, and under-relaxation, allowing the use of very large CFL
numbers. However, as indicated in the introduction, the rescaled Roe scheme is intended to improve locally
the prediction of complex high Reynolds number flows characterized by the coexistence of high gradients of the
solution in mixed incompressible and compressible regions, arising typically in industrial configurations. For
such complex flows, it is anticipated that the overall stability of the numerical procedure will not be dominated
by the limited number of computational cells where the flowfield can be retained as incompressible. In transonic
flow conditions, the rescaled Roe scheme ensures a smooth transition with the original Roe scheme, provided
that the entropy fix is carefully formulated. A grid-convergence study demonstrates that the discrete shock
structure is preserved with the TVD property enforced by the MUSCL extrapolation. As a consequence of the
proper scaling of the matrix dissipation, a significant effect can be especially observed for the inviscid flow, with
a drastic reduction of the spurious entropy generation at the stagnation point.
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