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Introduction

The present paper describes an attempt of a generic study of several problems that are now classical: perforated tube mufflers without [START_REF] Sullivan | Analy-885 sis of concentrical tube resonators having unpartitioned cavities[END_REF][START_REF] Sullivan | A method for modeling perforated tube muffler components[END_REF][START_REF] Hasegawa | Acoustic Two-Hole and Multi-Hole Directional Couplers[END_REF][START_REF] Jayaraman | Decoupling approach 895 to modeling perforated tube muffler components[END_REF][START_REF] Aurégan | Failures in the discrete models for flow duct with perforations: an experimental investigation[END_REF] or with partitions [START_REF] Yu | Hybrid silencers with micro-perforated panels and internal partitions[END_REF]. They can be with absorbing materials [START_REF] Kirby | A comparison between analytic and numerical methods for modelling automotive dissipative silencers with mean flow[END_REF][START_REF] Ji | Boundary element acoustic analysis of 910 hybrid expansion chamber silencers with perforated facing[END_REF][START_REF] Jiang | A singledomain boundary element method for packed 915 silencers with multiple bulk-reacting sound absorbing materials[END_REF]. Related problems are tubes with branched resonators, which can be uncoupled [START_REF] Fang | Ultrasonic meta-920 materials with negative modulus[END_REF][START_REF] Wang | Coupling of evanescent and propagating guided modes in locally resonant phononic crys-925 tals[END_REF] or coupled [START_REF] Griffin | Coupled Helmholtz Resonators for Acoustic Attenuation[END_REF], or with honeycomb cavities [START_REF] Tagg | Multiple frequency op-930 timization of coupled Helmholtz resonators for improved acoustic nacelle liners for turbofan engines[END_REF][START_REF] Jones | Effects of Liner Geometry on Acoustic Impedance[END_REF]. Other kind of systems are splitter silencers with perforated facing [START_REF] Ko | Theoretical analyses of sound attenua-940 tion in acoustically lined flow ducts separated by porous splitters (rectangular, annular and circular ducts)[END_REF][START_REF] Aurégan | Low frequency sound propagation in a coaxial cylin-945 drical duct: application to sudden area expansions and to dissipative silencers[END_REF][START_REF] Kim | Rayleigh Ritz approach for predicting the acoustic performance 950 of lined rectangular plenum chambers[END_REF][START_REF] Kirby | The influence of baffle fairings on the acoustic performance of rectangular splitter silencers[END_REF][START_REF] Kirby | A three dimensional investigation into the acoustic performance of dissipative splitter silencers[END_REF][START_REF] Binois | On the Efficiency of Parallel Baffle Type Silencers in Rectangular Ducts: Prediction and Measurement[END_REF]. This generic problem is that of a periodic lattice of two waveguides coupled by perforations.

Figure 1: Sectional view of the type of lattice under study : lateral perforations (dark grey) couple two waveguides periodically along the direction of propagation. Each waveguide have its own acoustic properties. In Guide 2, diaphragms are periodically spaced along the direction of propagation Assuming low frequencies, only one mode is considered in each guide, therefore the system in study is a system with two coupled modes. The propagation in [START_REF] Strang | Linear Algebra and Its Applications[END_REF] the two waveguides can be very different, thanks to the presence of constrictions, diaphragms, porous material, partitions or other type of obstacles (see Figure 1). Following Sullivan [START_REF] Sullivan | A method for modeling perforated tube muffler components[END_REF], we use a discrete, periodic model based on 4th-order transfer matrices. However 50 in a transfer matrix, after diagonalization, there are terms like cosh(nΓ), where n is the number of cells and Γ is the real propagation constant when the modes are evanescent. This leads to diverging terms when n tends to infinity, and can be avoided by combin-55 ing a decoupling approach, i.e., a diagonalization, and then the transformation of a transfer matrix into an impedance matrix for the finite-length lattice, which involves terms like tanh(nΓ), which cannot diverge. A decoupling approach was used also in a continuous 60 modeling ( [START_REF] Jayaraman | Decoupling approach 895 to modeling perforated tube muffler components[END_REF][START_REF] Peat | A numerical decoupling analysis of perforated pipe silencer elements[END_REF], see also [START_REF] Pierce | Acoustics: an introduction to its physical principles and applications[END_REF] p 356).

The papers aims at showing that it is possible to use an analytical formulation for a very wide class of problems, with the illustration of basic examples of coupled waveguides. Thanks to a discrete model, the Generally speaking, coupling is obviously strong when the perforations are wide, but also when propagation in the two guides is rather similar (i.e., the two propagation constants are close). This analysis is done for lattices of finite length, focusing on the behaviour relationships between the transmission coefficient and the dispersion curves and frequency bands.

A major difficulty is the modeling of the perforations. Semi-empirical formulas are generally used [START_REF] Sullivan | A method for modeling perforated tube muffler components[END_REF][START_REF] Maa | Potential of microperforated panel absorber[END_REF][START_REF] Dickey | An experimental study of the impedance of perforated plates with grazing flow[END_REF][START_REF] Peat | The effects of thickness on the impedance of a rectangular aperture in the presence of a grazing flow[END_REF][START_REF] Denia | Acoustic attenuation performance of perforated dissipative mufflers with empty inlet/outlet extensions[END_REF][START_REF] Bravo | Optimisation of micro-perforated cylindrical silencers in linear and nonlinear regimes[END_REF], especially when there is a mean flow. One focus of the present paper is on the role of the series impedance of the perforation [START_REF] Kergomard | Propagation of acoustics waves in two waveguides coupled by perforations. I. Theory[END_REF], which can be ignored in a continuous model, but not in a discrete model. A priori this impedance, due to the antisymmetric field in the perforation, must be accounted for the case of wide and well spaced perforations. To our knowledge, no paper used the complete model found in the paper published in 1994 [START_REF] Kergomard | Propagation of acoustics waves in two waveguides coupled by perforations. I. Theory[END_REF]. However for a similar problem in musical acoustics, the effect of the series impedance of tone-holes of woodwind instruments, can be significant [START_REF] Dubos | Theory of sound propagation in a duct with a branched tube using modal decomposition[END_REF][START_REF] Nederveen | Acoustical aspects of woodwind instruments[END_REF][START_REF] Debut | Analysis and optimisation of the tuning of the twelfths for a clarinet resonator[END_REF].

The values of the perforation shunt admittance and series impedance are not discussed in detail in this paper, but the values given in [START_REF] Kergomard | Propagation of acoustics waves in two waveguides coupled by perforations. I. Theory[END_REF] are sufficient for a discussion (exact values were given for the 2D, rectangular case at low frequencies, but for the cylindrical case, only approximate formulas were proposed).

Several papers are concerned with more general systems with more than two guides, or with 2D silencers, in particular for applications to metamaterials [START_REF] Fang | Ultrasonic meta-920 materials with negative modulus[END_REF][START_REF] Liu | Locally Resonant Sonic Materials[END_REF][START_REF] Wu | A direct mixed-body boundary element method for packed silencers[END_REF][START_REF] Kar | Generalized analysis of a muffler with any number of interacting ducts[END_REF][START_REF] Wu | Numerical Analysis of Parallel Perforated Single-Inlet and Double-Outlet Mufflers Using the Transfer Function[END_REF][START_REF] Chen | Group velocity in lossy periodic structured media[END_REF][START_REF] Lafarge | Nonlocal maxwellian 1030 theory of sound propagation in fluid-saturated rigid-framed porous media[END_REF][START_REF] Groby | The use of slow waves to design sim-1035 ple sound absorbing materials[END_REF]. They are not discussed here. Concerning a general view on 1D periodic structures, we refer to classical references [START_REF] Brillouin | Wave Propagation in Periodic Structures[END_REF][START_REF] Elachi | Waves in active and passive periodic structures: A review[END_REF].

The assumptions are as follows: linear acoustics, no mean flow, rigid walls. However the diagonalization is done in a very wide, linear framework. The basic geometry and the model used are described in Section 2, with the definition of the transfer matrix of a lattice cell. Section 3 derives the eigenvalues and eigenvectors of a cell, using the more general result given in Appendix A. For the case of lossless guides, the cut-off frequencies are determined.

For a finite lattice of n cells, the impedance matrix is derived by using the calculation of the transfer matrix calculated in Appendix B. Finally the transmission coefficient of the lattice into an infinite waveguide is derived. Section 5 proposes a theoretical analysis of the coupling between the two guides, focusing on the effect of the series impedance; on a definition of a coupling coefficient; and on a derivation of a condition for a local reaction. Finally numerical simulations of application examples are presented in Section 6, with an analysis of the transmission coefficient with respect to the nature of the two modes. It is shown how the model proposed tends to existing results [ [START_REF] Sullivan | Analy-885 sis of concentrical tube resonators having unpartitioned cavities[END_REF][START_REF] Pierce | Acoustics: an introduction to its physical principles and applications[END_REF]] for extreme values of the coupling coefficient. x n x n+ℓ P F T (Eq.8)

T L P F T R (Eq.9)

0 x x n + ℓ x n+1 + ℓ waveguide waveguide perforation 2ℓ
Figure 2: Basic geometry; an asymmetric cell includes one perforation followed by a length 2ℓ of tube, with the transfer matrix P T between abscissas x n and x n+1 , while a symmetric cell includes one perforation between two lengths ℓ of tube, with the transfer matrix T L P F T R , between abscissas x n + ℓ and x n+1 + ℓ.

2 Generic geometry; model and notations

Geometry

The two guides are coupled by perforation, as shown 130 in Fig. 2. When their cross section is uniform, the waves are planar at an axial distance from perforations larger that the transverse dimensions, so that the evanescent modes due to perforations vanish. When the cross section is not uniform, the change in 135 cross-section area needs to be sufficiently far from the perforation, i.e., at an axial distance larger than the transverse dimension. The propagation in the guides is characterized by the effective density ρ i and the speed of sound c i (the subscript i = 1, 2). The change 140 in cross section allows various situations to be created, as shown in Figure 3. When the propagation is identical in the two guides, the lattice is homogeneous, while when diaphragms are present in one guide only, the lattice is non-homogeneous. The case 145 of branched resonators without longitudinal coupling between them is a limit case, with a local reaction of Guide 2 on Guide 1. In the following the term "(non)-uniform" will be used for each waveguide and the term "(non-)homogeneous" will be used for the 150 lattice.

Model for a perforation

The general model, valid in harmonic regime, is developed in [START_REF] Kergomard | Propagation of acoustics waves in two waveguides coupled by perforations. I. Theory[END_REF]. It is summarized hereafter, with similar notations. Four basic quantities are chosen to be the coefficients p and v of the planar mode for the acoustic pressure and velocity, respectively, in the two guides. They build a 4th-order vector, V, as follows:

V = V 1 V 2 where V i = p i v i , (1) 
i = 1, 2. The following notations are chosen: calligraphic characters correspond to 4th-order matrices and vectors, while bold characters correspond to 2ndorder matrices and vectors (e.g. I and I are the identity matrices of order 4 and 2, respectively); other quantities are scalar. For a periodic medium made of asymmetric lattice cells, one perforation at x n is followed by a portion of length 2ℓ of separated waveguides (see Fig. 2). The vectors V are related by 4thorder matrices. For a perforation, the following relationship is derived in [START_REF] Kergomard | Propagation of acoustics waves in two waveguides coupled by perforations. I. Theory[END_REF] (the subscripts L and R correspond to the left side and right side of a perforation, respectively):

V L = P F V R (2) 
where

P F = (γ 1 + γ 2 M) γ 2 (I -M) γ 1 (I -M) (γ 2 + γ 1 M) , (3) 
with

γ 1,2 = S 1,2 S 1 + S 2 , (4) 
M = I+ 2Z a Y s 1 -Z a Y s K, K= 1 Y -1 s Z -1 a 1 . (5) 
S 1,2 are the cross-section areas of the guides. This model considers the effect of a perforation as localized at the abscissa of the perforation center, as explained in [START_REF] Schwinger | Discontinuities in Waveguides: Notes on Lectures by Julian 1045 Schwinger[END_REF]. Z a and Y s are the series impedance and shunt admittance of the perforation, respectively (these quantities are specific impedance and specific admittance, i.e., ratios pressure/velocity and velocity/pressure, respectively). Both are acoustic masses and correspond to the anti-symmetric and symmetric pressure field in the perforation, respectively. When Z a = 0, Y s produces a jump in velocity inside each guide, from the left to the right of the perforation, along the guide axis. In a dual way, when Y s = 0, Z a produces a jump in pressure inside each guide, from the left to the right of the perforation. Reciprocity is assumed, therefore the determinant of P F is unity.

Model for the propagation in the waveguides

For a non-perforated portion of the waveguides, between abscissas x n and x n+1 , the following 4th-order matrix relationship is written as:

V R,n = T V L,n+1 where T = T 1 0 0 T 2 . (6) 
The general transfer matrices are specific impedances, while the coefficients C 1,2 are specific admittances. In the separated portion, the geometry may be various, e.g., may includes discontinuities and/or dissipation. Provided that the perforation shunt admittance and the series impedance 200 are known, and with the restricting assumption of an equivalent fluid model, the presence of porous material within the lattice can be described by the model.

T 1,2 = A 1,2 B 1,2 C 1,2 D 1,2 (7) 

Model for the propagation with perforations: asymmetric and

symmetric cells

For a periodic medium, two types of cells can be considered (see Fig. 2): i) an asymmetric cell, involving a perforation followed by a portion of tubes of length 2ℓ; ii) a symmetric cell involving a portion of tubes of 210 length ℓ, then a perforation, then a portion of tube of length ℓ. The complete transfer matrix of an asymmetric cell (see Fig. 2) can be characterized by the equation:

V L,n = P F T V L,n+1 . (8) 
The case of a symmetric cell is more particular, but 215 remains very general. It will be used for the diago-nalization (see next section). For such a cell, between abscissas x n + ℓ and x n+1 + ℓ, the transfer matrix relationship is given by:

V n-1 = (T L P F T R )V n , (9) 
where V n = t (p 1n , v 1n , p 2n , v 2n ), defined in Equation [START_REF] Sullivan | Analy-885 sis of concentrical tube resonators having unpartitioned cavities[END_REF], is considered at mid-distance (abscissa x n + ℓ) between two perforations. The transfer matrix T (Equation ( 6)) describing the uncoupled propagation over distance 2ℓ between two neighboring perforations is therefore the product of the two transfer matrices:

T = T R T L , (10) 
where T L (resp.T R ) describes the uncoupled propagation over the distance ℓ situated on the left (resp. right) of one perforation. Since T is block-diagonal (Equation ( 6)), we can adopt the same decomposition for 2nd-order blocks, namely T 1 = T R1 T L1 , and

T 2 = T R2 T L2 .
Moreover, in order for the cell to be symmetric, we generalize the concept of reversed fourterminal explained in [START_REF] Brillouin | Wave Propagation in Periodic Structures[END_REF]. The matrices T L (i = 1, 2) need to be proportional to the invert of the matrices T R , with a change in sign for the x-axis, and with the 235 same determinant δ. This means:

A R B R C R D R = D L B L C L A L , (11) 
With this condition the matrix T is symmetric:

A = D = A L D L + B L C L ; B = 2B L D L C = 2C L A L . ( 12 
)
Moreover reciprocity is assumed (in particular no flow is present), i.e., the determinant is unity, as well as the determinant of the 4th-order matrix T . More 240 general cases are investigated in Appendix A.

3 Infinite periodic lattice: eigenvalues and eigenvectors

Eigenvalues and eigenvectors

In this section, we are searching for the diagonal form of the transfer matrix T L P F T R (Equation ( 9)) for an elementary, symmetric cell (with reciprocity) of the periodic lattice shown on Fig. (2):

T L P F T R def = EDE -1 (13) 
with

D =     λ (1) 0 0 0 0 λ (2) 0 0 0 0 λ (3) 0 0 0 0 λ (4)     , and (14) 
E = W (1) W (2) W (3) W (4) . (15) 
λ (i) are the eigenvalues and W (i) (i = 1..4) are the 250 eigenvectors. The detailed calculation is derived in Appendix Afor the most general case (no reciprocity is required). Since for the perforation matrix (Equation (2)), det P F = 1, the eigenvalues of the diagonal matrix D (Equation ( 14)) can be grouped by inverse 255 pairs when reciprocity holds for the elementary cell λ (1) , λ (2) = (λ, 1/λ) and λ (3) , λ (4) = (λ ′ , 1/λ ′ ) (see [START_REF] Kergomard | Propagation of acoustics waves in two waveguides coupled by perforations. I. Theory[END_REF]). Each pair corresponds to opposite propagation directions of an eigenmode along the lattice axis. They are denoted λ = exp(Γ) and λ ′ = exp(Γ ′ ).
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This leads to the following dispersion equation for the unknowns Γ and Γ ′ :

det T 0 = A 0 D 0 -B 0 C 0 = 0, ( 16 
)
where

A 0 = D 0 = -sinh Γ [γ 2 /Q 1 + γ 1 /Q 2 ] B 0 = 1 Y s -γ 2 B 1 /Q 1 -γ 1 B 2 /Q 2 ( 17 
)
C 0 = 1 Z a -γ 2 C 1 /Q 1 -γ 1 C 2 /Q 2 with Q i = (coshΓ -A i ).
The eigenvector matrix is found to be:

E =v 0     z 1 z 1 z ′ 1 z ′ 1 h 1 -h 1 h ′ 1 -h ′ 1 -z 2 -z 2 -z ′ 2 -z ′ 2 -h 2 +h 2 -h ′ 2 +h ′ 2     D -1/2 , (18) 
z 1 = 1 γ 1 Q 1 [B R1 cosh(Γ/2) -w 0 D R1 (sinh Γ/2)] , (19) 
h 1 = 1 γ 1 Q 1 [A R1 (sinh Γ/2) -w 0 C R1 cosh(Γ/2)]( 20 
)
w 0 = B 0 /A 0 = D 0 /C 0 . ( 21 
)
v 0 is an arbitrary constant with the dimension of a 265 velocity. Similar expressions can be found for h 2 and z 2 . For h ′ 1 and z ′ 1 , Γ is changed in Γ ′ and w 0 in w ′ 0 , and similarly for the quantities with subscript 2. It is shown in Appendix C that because of the reciprocity property the following relationships are induced :

270 γ 1 z 1 h ′ 1 = -γ 2 z 2 h ′ 2 ; γ 1 z ′ 1 h 1 = -γ 2 z ′ 2 h 2 . (22) 
The matrix D -1/2 corresponds to a shift of an eigenvector by one half-cell. Notice that because the eigenvectors are defined apart from a multiplicative constant, three quantities define an eigenvector. Coming back to the definition of the physical-quantity vec-275 tors (see Equation ( 1)), we deduce the following interpretations:

• The ratio z 1 /h 1 is the (specific) characteristic impedance in Guide 1 for the first propagation constant Γ;

• Because the second eigenvalue corresponds to a change in sign of the propagation constant Γ, the corresponding characteristic impedance is -z 1 /h 1 , as expected;

• Similar remarks hold for subscript 2 and superscript ';

• With the two characteristic impedances, the last quantity defining an eigenvector is the velocity ratio -h 1 /h 2 ; this ratio is identical for the two waves with opposite propagation constants.

In order to calculate the constant Γ, Equation ( 16) can be re-written as a 2nd-order equation for the unknown cosh(Γ). For this purpose the terms proportional to γ 2 1 and γ 2 2 can be rearranged by using the relations

γ 1 + γ 2 = 1 and sinh 2 Γ -B i C i = cosh 2 Γ -A 2 i .
The following equation is obtained:

(1 -Y s Z a ) cosh 2 Γ+ -[A 1 + A 2 + γ 2 E 1 + γ 1 E 2 + d 12 ] cosh Γ +γ 1 γ 2 Y s Z a [(B 1 C 2 + B 2 C 1 ) + 2 + 2A 1 A 2 ] +A 1 A 2 (1 + Y s Z a ) + γ 2 A 2 E 1 + γ 1 A 1 E 2 = 0, ( 23 
)
where

d 12 = (A 1 -A 2 )(γ 2 -γ 1 )Y s Z a and E i = Y s B i + Z a C i .
Thanks to Equation ( 23), general solutions cosh Γ and cosh Γ ′ , for the two modes Γ and Γ ′ of the lattice can be written explicitly.

Lossless lattices; cut-off frequencies

Up to now the considered lattice is can be lossy, when one of the coefficients defining a cell is complex. For lossless waveguides, several types of waves can exist [START_REF] Kergomard | Propagation of acoustics waves in two waveguides coupled by perforations. I. Theory[END_REF]. When reciprocity holds, each of the two modes with propagation constant Γ and Γ ′ can be either propagating or evanescent. In the case of two evanescent waves the possibility for the propagation constant to be complex was found: the energy flux in each guide decreases exponentially, but is not zero (its sign is opposite in the two guides, ensuring the energy conservation).

Ref. [START_REF] Kergomard | Propagation of acoustics waves in two waveguides coupled by perforations. I. Theory[END_REF] studied the particular case of an homogeneous lattice, i.e., a lattice with identical transfer matrices T in the two guides. This happens for example when the guides are straight guides with the same sound speed and density. In this case, there is at least one propagating wave, and the decomposition of the propagation into two modes (one is planar, the other one is called the "flute" mode) is valid even for a lattice with irregular perforations.

The cut-off frequencies are given by coshΓ = ±1, i.e., Γ = 0 or Γ = jπ. Therefore, according to Equations [START_REF] Kim | Rayleigh Ritz approach for predicting the acoustic performance 950 of lined rectangular plenum chambers[END_REF], A 0 = D 0 = 0, and the dispersion equation [START_REF] Aurégan | Low frequency sound propagation in a coaxial cylin-945 drical duct: application to sudden area expansions and to dissipative silencers[END_REF] implies either B 0 = 0 or C 0 = 0. Writing cosh Γ = ±1 in Equation [START_REF] Kim | Rayleigh Ritz approach for predicting the acoustic performance 950 of lined rectangular plenum chambers[END_REF], and using Equations [START_REF] Wang | Coupling of evanescent and propagating guided modes in locally resonant phononic crys-925 tals[END_REF][START_REF] Griffin | Coupled Helmholtz Resonators for Acoustic Attenuation[END_REF] with the property det(T L ) = 1, the cut-off frequencies are given by one of the four following equations:

Γ = 0; B 0 = 0; ⇒ 1 Y s + γ 2 D L1 C L1 + γ 1 D L2 C L2 = 0; (24) Γ = 0; C 0 = 0; ⇒ 1 Z a + γ 2 A L1 B L1 + γ 1 A L2 B L2 = 0; (25) Γ = jπ; B 0 = 0; ⇒ 1 Y s + γ 2 B L1 A L1 + γ 1 B L2 A L2 = 0; (26) Γ=jπ; C 0 =0;⇒ 1 Z a + γ 2 C L1 D L1 + γ 1 C L2 D L2 = 0. ( 27 
)
The characteristic impedances of the two guides, z i /h i (see Equations. [START_REF] Kirby | A three dimensional investigation into the acoustic performance of dissipative splitter silencers[END_REF][START_REF] Binois | On the Efficiency of Parallel Baffle Type Silencers in Rectangular Ducts: Prediction and Measurement[END_REF], are found to be either infinite or zero. It is interesting to interpret these results. Consider the example of Equation ( 24). Be-320 cause Γ = 0, for an infinite lattice, p n = p n+1 in each guide, and because the characteristic impedance is infinite, the velocity vanishes at the extremities of the cell. Consequently, if there is a opening at the extremity of the cell, this cut-off does not depend on 325 the opening. It can be checked that this equation gives the eigenfrequency of the cell when it is closed at their extremities (infinite impedance). The second and the third terms of Equation ( 24) correspond to the impedance in Guide 1 and 2, respectively, at the 330 abscissa of the perforation, calculated by projecting the infinite impedance at the end of the cell to the perforation abscissa. Moreover the pressure field in the cell being symmetrical, the series impedance Z a does not intervene.

335

Similar interpretation can be done for the three other equations, using the duality pressure/velocity. [START_REF] Jayaraman | Decoupling approach 895 to modeling perforated tube muffler components[END_REF] Impedance matrix of a lattice on n cells; insertion into an infinite waveguide 340

Impedance matrix

In order to derive the (acoustic) impedance matrix of a lattice of n cells, the vector V (Equation ( 1)) is replaced by a vector V defined as follows:

V = P U where P = p 1 p 2 and U = u 1 u 2 , (28) 
where u i = S i v i (i = 1, 2) are the flow rates. In 345 Appendix A3 it is shown that for these vectors the transfer matrix relationship can be written as:

V 0 = Z 0 0 G C n S n S n C n Z 0 0 G -1 V n , (29) 
with

C n = cosh nΓ 0 0 cosh nΓ ′ , (30) 
S n = sinhnΓ 0 0 sinhnΓ ′ , (31) 
Z = z 1 z ′ 1 -z 2 -z ′ 2 , G = g 1 g ′ 1 -g 2 -g ′ 2 , (32) 
if g i = S i h i . This acoustic impedance matrix is directly derived from this transfer matrix. It is chosen for two reasons: i) as explained hereafter, the impedance matrix avoids numerical difficulties that appear using transfer matrix products, for strongly evanescent eigenmodes and a large number of cells; ii) the impedance matrix makes easy the boundary conditions to be introduced at each end of the lattice. Consider two 4th-order vectors t P 0 U 0 and t P n U n related by a (general) matrix as follows:

P 0 U 0 = A B C D P n U n , (33) 
where A, B, C and D are 2nd order-matrices. This expression is equivalent to:

P 0 P n = AC -1 B -AC -1 D C -1 -C -1 D U 0 U n . (34) 
Applying this result to the transfer matrix (Equation ( 29)), the impedance matrix of the lattice of n cells is obtained:

    p 1,0 p 2,0 p 1,n p 2,n     = Z C n S -1 n -S -1 n S -1 n -S -1 n C n G -1     u 1,0 u 2,0 u 1,n u 2,n     where Z = Z 0 0 Z and G = G 0 0 G , (35) 
where the identity S n -C n S -1 n C n = -S -1 n is used. Actually, because of the different sign before S -1 n in the second diagonal, this impedance matrix is antisymmetric (with a change in the orientation of the velocities at the extremity n, the impedance matrix would become symmetric). Notice that the matrix Z has the dimension of a specific impedance, while the matrix G has the dimension of the inverse of an area. Furthermore, for evanescent modes (real Γ) the ratios coshnΓ/sinhnΓ and 1/sinhnΓ do no diverge when n tends to infinity, unlike the coefficients of the transfer matrix.

Lattice of finite length inserted into an infinite waveguide

We consider the geometry shown in Figure 4. A lattice of finite length, with n cells, is inserted into an infinite waveguide so as to act as an acoustic wall treatment. By closing Guide 2 at each end of the lattice (Equation 380(36)) by an impedance condition (Figure 4), the 4thorder impedance matrix (Equation ( 35)) is reduced to a 2nd-order one, and the transmission coefficient of the finite lattice can be obtained. Simple boundary conditions are chosen. Guide 2

385 is closed at each end by setting u 2,0 = u 2,n = 0 into Equation [START_REF] Wu | Numerical Analysis of Parallel Perforated Single-Inlet and Double-Outlet Mufflers Using the Transfer Function[END_REF]. The 2nd-order impedance matrix of the finite lattice can be derived:

p 1,0 p 1,n = Z A -Z B Z B -Z A u 1,0 u 1,n , with (36) 
Z A = ZC n S -1 n G -1 11 = Ẑ coth nΓ + Ẑ′ coth nΓ ′ (37) 
Z B = ZS -1 n G -1 11 = Ẑ/ sinh nΓ + Ẑ′ / sinh nΓ ′ , (38) 
where the impedances Ẑ and Ẑ′ associated to each mode result from Equation (32) as follows:

Ẑ = z 1 g ′ 2 /(det G) and Ẑ′ = z ′ 1 g 2 /(det G). ( 39 
)
Recall that these impedances are acoustic impedances (ratio pressure/flow rate). This particular case of lat-390 tice is built as the combination of two four-terminals with their extremities in series, each four-terminal corresponding to a propagation mode with constant Γ and Γ ′ . Expression ( 36) is then written in form of a transfer matrix:

395 p 1,0 u 1,0 = A s B s C s A s p 1,n u 1,n = 1 Z B Z A (Z 2 A -Z 2 B ) 1 Z A p 1,n u 1,n . (40) 
Let us consider an infinite waveguide with characteristic impedance zc1 = ρ 1 c 1 /S 1 . The outgoing and incoming plane wave have the amplitudes p + 1 = (p 1 + zc1 u 1 )/2 and p - 1 = (p 1 -zc1 u 1 )/2, respectively. Once the finite lattice of Fig.( 4) is inserted, the transmission coefficient can be written as:

T = p + 1,n p + 1,0 = p - 1,0 p - 1,n = 2 2A s + (B s /z c1 + C s zc1 ) (41) = 2Z B zc1 (Z A + zc1 -Z B )(Z A + zc1 + Z B ) . ( 42 
)
We notice from Expressions (42) that when Z B = 0 (Equation ( 38)), i.e., when:

Ẑ/ sinh nΓ + Ẑ′ / sinh nΓ ′ = 0 , (43) 
the transmission coefficient is zero.

5 Analysis of the coupling effect; local vs non-local reaction

Effect of the series impedance on the coupling

The respective roles of the series impedance Z a and the shunt admittance Y s can be discussed qualitatively at the zero-frequency limit. Exact values are known for the 2D, rectangular case. For the cylindrical case, we use approximate values for two guides with radii a 1 and a 2 and the same fluid density ρ, which exhibit the dependence on the parameters [START_REF] Kergomard | Propagation of acoustics waves in two waveguides coupled by perforations. I. Theory[END_REF]:

Y -1 s ≃ jω ρ r p S 1 ; Z a ≃ -jω0.57ρr 2 p a 1 /S 1 , (44) 
where j = (-1) 2 , ω is the angular frequency. r p is the radius of the perforation, and a 2 is assumed to be larger than a 1 . A first observation is that the product Y s Z a is independent of the frequency and is very small, because it is proportional to (r p /a 1 ) 3 . As a consequence, at a first approximation, Equation ( 23) can be simplified in:

(cosh Γ -A 1 -γ 2 E 1 )(cosh Γ -A 2 -γ 1 E 2 ) = γ 1 γ 2 E 1 E 2 . ( 45 
)
The influence of the series impedance can be estimated by considering the expression of the quantities E i . Considering the low frequency case, the guides are reduced to lumped elements, B i = 2jωρℓ is a mass and C i = 2jωℓ/ρc 2 is a compliance (c is the sound speed). It turns out that Y s B i is a ratio of two masses, while Z a C i is proportional to ω 2 : therefore the effect of the series impedance Z a can be neglected at low frequency. This justifies the following analysis of the coupling of the two guides with Z a = 0. This approximation will be done from here until to the end of the paper.

Eigenvalues and eigenvectors for the simplified model 430

What are the conditions for reducing the number of guided modes form 2 to 1? If Z a = 0, the perforation matrix (Equation ( 4)) connects the two guides through one coupling quantity only, the shunt admittance Y s . The dispersion Equation (16 or 23) reduces to Equation [START_REF] Strang | Linear Algebra and Its Applications[END_REF], with E i = Y s B i . This equation is obtained for the choice of specific admittances and impedances, corresponding to the choice of acoustic pressure and velocity (of the planar mode) as basic quantities for the considered 4ports. This choice is convenient for the description of the perforation effects, but when the series impedance Z a is ignored, it is easier to use flow rates instead of velocities (therefore to use acoustic admittances and impedances). For this purpose the impedances and admittances need to be modified, and Equation [START_REF] Strang | Linear Algebra and Its Applications[END_REF] becomes:

(cosh Γ -A 1 - 1 2 Ȳp B 1 )(cosh Γ -A 2 - 1 2 Ȳp B 2 ) = 1 4 Ȳ 2 p B 1 B 2 , ( 46 
)
where

B 1 = B 1 /S 1 B 2 = B 2 /S 2
and the acoustic admittance Ȳp is given by:

Y s = 1 2 1 S 1 + 1 S 2 Ȳp ( 47 
)
The bars above the symbols indicate acoustic 435 impedances or admittances. When the radius of the perforation is very small, a simple formula can be chosen:

1 Ȳp = jω(ρ 1 + ρ 2 ) 4r p , (48) 
where r p is the radius of a circular perforation or the equivalent radius when the perforation is not circular.
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Another form of the dispersion equation is useful:

2 Ȳp = B 1 cosh Γ -A 1 + B 2 cosh Γ -A 2 . ( 49 
)
For the calculation of the eigenvectors, we make the choice of an asymmetric cell, and use Equations (A17) and (A18). For the eigenvalue λ = exp(Γ), it is found:

W (i) L1 = v 0 γ 1 (cosh Γ -A 1 ) B 1 S 1 e -Γ 1 -A 1 e -Γ , (50) 
and similarly for Guide 2 (with a change in sign).
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Using Equation (49), the pressure ratio is found to be:

p 1 p 2 = 1 + A 2 -cosh Γ 1 2 Ȳp B 2 . ( 51 
)

Definition of the coupling coefficient

The discriminant ∆ of the quadratic equation in cosh Γ (Equation ( 46)) can be written by exhibiting a coupling coefficient C, as follows:

∆ = (A 1 -A 2 ) 2 1 + 2 B 1 -B 2 B 1 + B 2 C + C 2 , ( 52 
)
where

C = 1 2 Ȳp B 1 + B 2 A 1 -A 2 . ( 53 
)
The coupling coefficient C is proportional to the perforation admittance Ȳp , and inversely proportional to the difference between the coefficients A 1 and A 2 of 455 the two guides, which are characteristic of the propagation into each guide separately. For identical guides, C is infinite; at low frequencies, the admittance is large, so is C. Two extreme cases can therefore be distinguished. 460

The weak coupling limit

When the coupling coefficient C is small, the following solution is found:

cosh Γ = A 1 + 1 2 Ȳp B 1 + C 2 (A 1 -A 2 )B 1 B 2 (B 1 + B 2 ) 2 + O(C 3 ) (54) = A 1 + 1 2 Ȳp B 1 + 1 4 Ȳ 2 p B 1 B 2 A 1 -A 2 + O(C 3 ). p 2 p 1 = 2C 2 (A 2 -A 1 )B 2 (B 1 + B 2 ) 2 Ȳp + O(C 3 ) (55) = -C B 2 (B 1 + B 2 ) + O(C 3 ).
The mode Γ ′ is obtained by exchanging the subscripts 1 and 2. For a very weak coupling, the solution (54) can be interpreted, at the first order of C, as follows: the medium 2 acts as an equivalent impedance Z eq = Ȳ -1 p on the medium 1. The pressure becomes very small in the medium 2.

The strong coupling limit; locally reacting impedance

Strong coupling occurs when the media are not very different or when the perforation effect is strong (large opening of the perforation and/or low frequencies). The solutions cosh Γ and cosh Γ ′ of Equation ( 46) can be written as a series expansion with respect to C -1 :

cosh Γ = A 1 B 2 + A 2 B 1 B 1 + B 2 (56) - 1 C B 1 B 2 B 1 + B 2 2 (A 1 -A 2 ) 1 + O( 1 C ) , cosh Γ ′ = 1 2 Ȳp (B 1 + B 2 ) + A 1 B 1 + A 2 B 2 B 1 + B 2 (57) + 1 C B 1 B 2 B 1 + B 2 2 (A 1 -A 2 ) 1 + O( 1 
C
) .

The mode Γ is an average value of the two propagation constants given by cosh Γ = A 1 and cosh Γ = A 2 .

The mode Γ ′ is a generalization of the flute mode (see [START_REF] Kergomard | Propagation of acoustics waves in two waveguides coupled by perforations. I. Theory[END_REF]): it is strongly evanescent at low frequencies 480 and for large perforations (large Ȳp ). This mode was also given by Pierce [START_REF] Pierce | Acoustics: an introduction to its physical principles and applications[END_REF] for the continuous case of a perforated tube muffler. The pressure ratios corresponding to the two modes Γ and Γ ′ are:

p 1 p 2 = 1 + 1 C + 1 C 2 B 1 B 1 + B 2 1 + O( 1 C ) ( 58 
)
p 1 p 2 ′ = - B 1 + B 2 B 2 + 1 C B 1 B 2 - 1 C 2 B 1 B 1 + B 2 1 + O( 1 
C
) .

The first solution corresponds to a modified planar 485 mode while for the second, the two pressures are opposite in phase, at least at low frequencies. For the case where the mode Γ ′ is strongly evanescent, only the first mode can be taken into account, and the effect of the second medium on the first one (or vice-490 versa) can be represented by an equivalent impedance Z eq , the second one being equivalent to a locally reacting medium. This impedance can be found from the following dispersion equation:

cosh Γ = A 1 + 1 2 Z-1 eq B 1 , (59) 
obtained by searching for the eigenvalue of the peri-495 odic medium built with a cell described by the following transfer matrix:

A 1 B 1 C 1 A 1 1 0 Z-1 eq 1
.

From Equations (56, 59), the following equivalent impedance Z eq is found to be:

Zeq = B 2 Ȳp (B 1 + B 2 ) 1 + O( 1 C ) + B 1 + B 2 2(A 2 -A 1 )
. (60)

Obviously this concept of equivalent impedance is es-500 pecially interesting if it does not depend on the first medium: this situation occurs if B 1 << B 2 , and

A 1 << A 2 .
As expected, it can be checked that these conditions of local reaction are fulfilled in particular when the cells of the second medium are uncoupled, Nb of cells n 5 Cell length (2ℓ) (m) 2.17 10 -1 Cross section S 1 (m 2 ) 3.14 10 -2 Cross section S 2 (m 2 ) 3.46 10 -2 Perf. radius r p (m) 3.9 10 -2 Perf. open area ratio σ p 3.5 10 -2 Diaph. radius r d (m) (Fig. 5) 0.105 and 0.104 Diaph. open area ratio σ d (Fig. 5) 1 and 0.98 Diaph. radius r d (m) (Fig. 6) 0.018 and 0 Diaph. open area ratio σ d (Fig. 6) 0.03 and 0 Table 1: Geometrical parameters of the finite lattice e.g. thanks to closed walls between them. If these conditions are satisfied the equivalent impedance is the sum of the perforation impedance and the half of the input impedance of a cell of the second medium, closed by a rigid wall:

Zeq = 1 Ȳp + 1 2 B 2 A 2 -1 , (61) 
and corresponds to Helmholtz resonators branched on Guide 1.

6 Analysis of lattices with finite length 6.1 Definition of the geometries con-

sidered

We consider the geometries of finite length lattices shown in Figure 3. In particular we focus on parameters (see Table 1) that correspond to the strong coupling case (see Section 5.3.2). Therefore Guide 2 is strongly coupled to Guide 1 and acts as an acoustic wall treatment on Guide 1.

If the series impedance of the perforation is ignored, the perforation matrix (Equation ( 4)) is completely defined by choosing the specific shunt admittance Y s .
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A simple formula, sufficient for our purpose is chosen for the acoustic admittance Ȳp , according to Equation (48) as follows:

1 Ȳp = R + jωρ/2r p , (62) 
where R = 2 √ 2ηρω is a small resistive term [START_REF] Ingard | On the theory and design of acoustic resonators[END_REF] describing viscous losses near the perforation and η 530 is the shear viscosity of the fluid. This allows limiting the resonance heights. Equation (62) is valid for small perforations, and also for a length between perforations sufficiently large in comparison with the transverse dimensions of the guide. This issue, which is important for the understanding of the transition between discrete and continuous descriptions, is discussed in [START_REF] Kergomard | Propagation of acoustics waves in two waveguides coupled by perforations. I. Theory[END_REF]. For the sake of simplicity we consider here that an equivalent radius exists (see e.g. [START_REF] Rschevkin | The theory of sound[END_REF]).

We define the radius r p of the perforation thanks to its 540 open area ratio in one cell of Guide 1 σ p = πr 2 p /(2ℓa 1 ). The shunt admittance Ȳp vanishes when the perforation is closed.

In air, the transfer matrix for the planar mode along one uncoupled portion of length ℓ is:

545 T = cos(kℓ) jZ c sin(kℓ) j sin(kℓ)/Z c cos(kℓ) . (63) 
If propagation losses are ignored, Z c = ρc and k = ω/c are the characteristic impedance and wavenumber of the medium (air) filling the guides 1 and 2. For Guide 1, the transfer matrix along length ℓ is: T 1R = T 1L = T, and T 1 = T 2 for the length 2ℓ (Equation ( 7)). 

D d = 1 Zd /2 0 1 (64)
corresponds to the presence of a diaphragm within 555 Guide 2, and introduces the non-homogeneity between the two guides. For the sake of simplicity, the (acoustic) impedance is Zd = jωρS 2 /2r d 1 -√ σ d , where r d is the opening radius of a diaphragm without thickness, and σ d = (r d /a 2 ) 2 is its open area 560 ratio. This is a crude simplification of Fock's formula [START_REF] Fock | A theoretical investigation of the acoustical conductivity of a circular aperture in a wall put across a tube[END_REF]. In what follows, we first consider the transition between homogeneous lattices to slightly nonhomogeneous lattices, then the transition between ducts with branched resonators and strongly non-565 homogeneous lattices.

From homogeneous to slightly non-homogeneous lattices

Consider the homogeneous lattice shown in Figure 3c, where the same medium fills the waveguides 1 and 2.

No diaphragm is placed in Waveguide 2. The lattice is said to be homogeneous. The wavenumber and characteristic impedance are identical for the two waveguides, and

A 1 = A 2 = A = cos(2kℓ). Equation (49)
gives the planar mode with constant Γ and the flute mode with constant Γ ′ : cosh Γ = cos(2kℓ) ,

cosh Γ ′ = cos(2kℓ) + j Ȳp Z c 1 S1 + 1 S2 sin(2kℓ). ( 65 
)
They correspond to the first term of Equations ( 56) and (57), respectively (the coupling coefficient C is 570 infinite). Their variation with frequency is shown in Figure 5 (top and center). The planar mode, with Γ = 2jkℓ, is not dispersive and is unaffected by the perforation admittance Ȳp . The flute mode, with constant Γ ′ , is evanescent at low frequencies, because
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Ȳp is high, yielding cosh Γ ′ > 1 (or Re(Γ) > 0 and Im(Γ) = 0). The mode Γ ′ is cut on at f = 247 Hz. Above this frequency the two modes propagate within the lattice. Looking at frequencies below 797 Hz (this limit is explained later on), the transmission coefficient obtained for the homogeneous lattice (Figure 5 (bottom) is similar to the results presented in [START_REF] Sullivan | Analy-885 sis of concentrical tube resonators having unpartitioned cavities[END_REF] (Insertion Loss, Figure 12). The transmission coefficient curve exhibits a low frequency behaviour similar to that of 585 an expansion chamber (driven by the expansion ratio S 1 /S 2 ). At higher frequencies (between 247 and 797 Hz), transmission coefficient minima are observed. As a first result of the present analysis, this behaviour change in transmission coefficient at 247 Hz can be associated to the number of propagating modes (here 1 or 2) within the lattice. A second result is that the frequencies at which the transmission coefficient is minimum are given by Equation [START_REF] Rschevkin | The theory of sound[END_REF] shown that the minimum of the transmission coeffi-595 cient is resonant (limited by losses) only if the two terms of Equation ( 43) have the same order of magnitude and if the lattice length is finite. Above 797 Hz, a stop band of Bragg type appears for the flute mode Γ ′ , with a low transmission co-600 efficient (Figure 5, bottom). In a Bragg stop band (or Bragg resonance due to spatial periodicity) Im(Γ) constant and equal to nπ, where n is an integer and Re(Γ) is positive but remains finite [START_REF] Elachi | Waves in active and passive periodic structures: A review[END_REF]. Unlike Figure 5, this behaviour is not reported in [START_REF] Sullivan | Analy-885 sis of concentrical tube resonators having unpartitioned cavities[END_REF], presumably 605 because the spatial periodicity of the lattice that [START_REF] Sullivan | Analy-885 sis of concentrical tube resonators having unpartitioned cavities[END_REF] used makes the Bragg stop band out of the frequency band presented (unfortunately this periodicity is not mentioned in [START_REF] Sullivan | Analy-885 sis of concentrical tube resonators having unpartitioned cavities[END_REF]).

Let us now consider a slightly non-homogeneous lat-610 tice. The diaphragms are now slightly closed (σ d = (r d /a 2 ) 2 ≃ 0.98). The solution of the dispersion Equation (49) for the mode Γ of the non-homogeneous lattice is:

cosh Γ = 1 2 A 1 + A 2 + 1 2 Ȳp B 1 + B 2 - √ ∆ , (66) 
where ∆ is given by Equation (52). The second so-615 lution for the mode Γ ′ is given by the same result, changing the sign before ∆. The mode Γ ′ is not really affected by the added mass. In particular, its first cut-off frequency remains unchanged at 247 Hz, like for the homogeneous lattice (the cut-off frequencies 620 for the slightly non-homogeneous lattice are given in Table 2). This is explained by symmetry properties discussed in Section 3.2, which imply that the velocity within the diaphragms vanishes at that particular frequency.

625

However the mass added by the diaphragms strongly modifies the mode Γ: the mode is now dispersive, with a phase velocity lower than that the planar mode of the homogeneous lattice (see Figure 5, center). This slowdown of the mode Γ explains why 630 the resonant minima of the transmission coefficient are shifted towards the low frequencies, compared to those of the homogeneous lattice. A Bragg stop band also appears for the mode Γ between 509 and 797 Hz (see Figure 5, top): only the mode Γ ′ propagates and 635 the transmission coefficient does not exhibit resonant peaks because the mode Γ is evanescent. For the mode Γ ′ , the width of the the Bragg stop band is reduced to the interval [797, 839] Hz, where the transmission coefficient is close to 1. This issue could be further investigated.

In these simulations the number of cells of the lattice is limited to n = 5 for the sake of readability of the transmission coefficent curves. Indeed, increasing n increases the number of resonant peaks, according to Equation [START_REF] Rschevkin | The theory of sound[END_REF]. But it can be checked that the computation does not encounter numerical difficulties even for high n (and/or highly evanescent modes), thanks to the impedance matrix formalism.

Summarizing the effect of the non-homogeneity induced by the diaphragms, the width of frequency bands where two modes propagate is reduced, and therefore the possibility of resonant transmission coefficient minima as well.

From ducts with branched

Helmholtz resonators to strongly non-homogeneous lattices

Let us now start from another classical muffler configuration: the branched Helmholtz resonators (Figure 3b), which are locally reacting. There is only one mode in the lattice. The model at its strong coupling limit (Equation ( 59)) tends to the following solution of the dispersion equation :

cosh Γ h = cos(2kℓ) + j ρc 2S 1 Z-1 eq sin(2kℓ) (67) 
where, according to Equation (61), the input impedance of one resonator is Zeq = 1/ Ȳpj(ρc/2S 2 ) cot(kℓ). Γ h is the classical Helmholtz mode. It is strongly dispersive (see Figure 6) and exhibits a stop band within the band [f h 1 , f h 2 ] = [162, 247] Hz, which can be called "Helmholtz stop band". This band is a resonance stop band (indeed, the Helmholtz resonance frequency f r is given by Zeq = 0). Im(Γ) = mπ below f r , and Im(Γ) = m ′ π above f r , m being an even integer and m ′ an odd integer (or vice versa) [START_REF] Elachi | Waves in active and passive periodic structures: A review[END_REF]. Moreover, if there are no losses, Re(Γ) is infinite at f r . The lower bound of the stop band f h 1 , given by cosh Γ

h = -1 or 2 Ȳp = jZ c - 1 S 1 tan(kℓ) + 1 S 2 cot(kℓ) . (68) 
The upper bound is f h 2 , given by cosh Γ h = 1 or

2 Ȳp = jZ c 1 S 1 + 1 S 2 tan(kℓ) . (69) 
Notice that this cut-off frequency f h 2 defined by Equation ( 69) is the the first cut-off frequency of the mode Γ ′ defined by Equation [START_REF] Dickey | An experimental study of the impedance of perforated plates with grazing flow[END_REF]. In particular, f h remains unchanged when a diaphragm is open between resonators, because the velocity within the diaphragms vanishes at this particular frequency (Section 3.2).

Consider now Figure 6, which shows the effect of 685 a strong inhomogeneity of the lattice. It appears that the mode Γ ′ (σ d = (r d /a 2 ) 2 ≈ 0.03), is cut off exactly at the upper bound of the Helmholtz stop band f h 2 . The cut-off frequencies for the strongly non-homogeneous lattice are given in Table 3. The 690 mode Γ propagates at low frequencies and is evanescent for f lying within [284,797] Hz. This implies that even a small opening of the diaphragms between resonators entails that the stop band of the branched Helmholtz resonators disappears. In particular, the tends to increase the transmission coefficient of the strongly non-homogeneous lattice compared to that of branched resonators.

Conclusion

The analytical approach proposed is able to describe a wide variety of periodically coupled waveguides. For two classical examples of applications (homogeneous lattices and branched Helmholtz resonators), the model shows how the frequency behaviour of the transmission coefficient, can be attributed either to 710 the properties of the medium (dispersion within the lattice), or to the boundary conditions and the finite length. Moreover, the introduction of a nonhomogeneity within the lattice, by means of an added mass in one of the waveguides, illustrates how the properties (dispersion and transmission coefficient) of the two classical examples are modified, and how this can be interpreted.

A coupling coefficient is useful for the study of the transition between local and non-local reaction of one waveguide to the other. In practice, the model have shown that a very small coupling between (locally reacting) Helmholtz resonators is sufficient to obtain a lattice where the local reaction vanishes. A particular situation is encountered when an interaction between Bragg and Helmholtz stop bands occurs. How this could be combined with finite length effects for sound attenuation purpose could be further investigated.

Other types of non-homogeneity, like the presence of dissipative media (porous materials described as equivalent fluids) or varying cross sections are in the scope of the method, provided that coupling of the evanescent modes created by two singularities does not occur, i.e., perforations are sufficiently spaced.

Arguments can be found for ignoring the series impedance of the perforation, but this restricts applications to cases where the frequency is low and the perforation radius is small compared to the waveguides radii. The knowledge of appropriated expres-sions for series impedance and shunt admittance of 740 the perforation would be required for practical application of the model to a particular geometry. An issue of interest could be the effects of the series impedance Z a on the properties of a finite lattice at higher frequencies. Precise values of the perforation admittance 745 and impedance remain a topic of further investigation, in particular when the frequency increases. This can be done either with numerical methods or with measurements.

Application can be done to different kind of devices, 

Figure 3 :

 3 Figure 3: (a) Three simple cases of coupled waveguides. Non-homogeneous lattice, (b) branched Helmholtz resonators, and (c) homogeneous lattice. Case (b) is a limit case of perfectly local reaction.

(i = 1 , 2 )

 12 are of 2nd-order and describe the propagation within Guides 1 and 2. The coefficients B 1,2 195

Figure 4 :

 4 Figure 4: Lattice with n cells, with the transfer matrix (T L P F T R ) n and boundary conditions for Guide 2 (see Equations (36 and 40)), inserted into an infinite waveguide.

550Inside Guide 2 ,

 2 we write for the length ℓ on the left of a perforation T 2L = D d T, and T 2R = T D d on the right. Therefore T 2 = TD 2 d T for the length 2ℓ . The matrix

Figure 5 :

 5 Figure 5: Dispersion curves Γ(ω) (top and center). Black lines: homogeneous lattice (σ d = 1). Grey lines: slightly non-homogeneous lattice (σ d = 0.98). Solid lines: mode with propagation constant Γ. Dotted lines: mode with propagation constant Γ ′ (notice that Γ ′ is mildly affected by the non-homogeneity). Transmission coefficient |T (ω)| (bottom) for 5 cells. Black line: homogeneous lattice (σ d = 1) and Grey line: slightly non-homogeneous lattice (σ d = 0.98).

2

 2 

Figure 6 :

 6 Figure 6: Dispersion curves Γ(ω) (top and center). Black line: branched Helmholtz resonators (σ d = 0, notice that for non-coupled resonators, there is only one mode). Grey lines: strongly non-homogeneous lattice (σ d = 0.03). Grey, solid line: mode with constant Γ. Grey, dotted line: mode with constant Γ ′ . Transmission coefficient |T (ω)| (bottom) for 5 cells. Black line: branched Helmholtz resonators (σ d = 0). Grey line: strongly non-homogeneous lattice (σ d = 0.03).

750 such a silencers

  or sample of 1D metamaterials of finite length. To a certain extent, it could be possible to divide their design into two steps: first an optimization of the transmission coefficient with respect to given values of the perforation parameters, then a 755 determination of the geometry corresponding to these parameters.With the same model, further investigation could be done on dissipation effects, either in the perforations or in the waveguides. Mean flow or nonlinearγ 1 (T 1 -λI)W L1 = -γ 2 (T 2 -λI)W L2 def = W 0 . (A5)

Table 2 :

 2 . It can be Cut-off frequencies of the slightly nonhomogeneous modes in Figure5(in grey). Symbol * denotes a cut-off frequency that does not depend on the diaphragm radius r d .

		Lattice mode
	Freq.(Hz)	Γ	Γ ′
	247*	-	Eq.24
	509	Eq.26	-
	797*	Eq.27 Eq.27
	839	-	Eq.26

diagonalization of 4th-order transfer matrices can be found analytically, by using the partition of these matrices into 2nd-order matrices. The study of the coupling between two guides especially involves an analysis of the local or non-local character of the coupling.

singularity of Re(Γ h ) at f r , which is a characteristic of the Helmholtz stop band, is lost.

effects would require different models.
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Eq.25

Table 3: Cut-off frequencies of strongly nonhomogeneous modes in Figure 6 (in grey). Symbol * denotes a cut-off frequency that does not depend on the diaphragm radius r d .

Summarizing the effect of the coupling of the branched resonators, the two modes have very different behaviours for all the frequencies considered. This Appendix A : Derivation of the eigenvalues and eigenvectors of the transfer matrix A1 Eigenvalues, dispersion equation 765 For the sake of simplicity, the eigenvalues λ and eigenvectors, denoted W L , are first sought for a generic, asymmetric cell. They are solutions of the 4th-order equation:

where O is the zero matrix of 4th-order. Using Equations ( 2) and ( 7), and a calculation based upon submatrices, Equation (A1) can be rewritten as follows:

Subtracting the two Equations (A2) leads to a new 770 equation:

Then, multiplying in System (A2) the first equation by γ 1 and the second equation by γ 2 , and adding the resulting equations, the following equation is obtained:

Then, writing for i = 1 and 2:

and substituting in Equation (A4) the values of W 0 given by Equation (A5), Equation (A4) can be written as follows:

Finally, multiplying Equation (A6) by the matrix 2(M -I) -1 = K -I, where K is given by Equation (4), it is found that the 4th-order Equation (A1) is equivalent to the following 2nd-order equation:

Consequently, each eigenvalue λ (i) (i = 1..4) is solution of the general dispersion equation:

Here the coefficients of the matrix T 0 are denoted A 0 , B 0 , C 0 , D 0 . Equation (A8) gives their expression, which depends on the eigenvalue λ:

where the coefficients A 1,2 , B 1,2 , C 1,2 , D 1,2 of matrices T 1,2 correspond to the diagonal blocks of the 4thorder transfer matrix T (see Equations ( 6) and ( 7), and where A9) is a simplification of the dispersion equation (46) given in [START_REF] Kergomard | Propagation of acoustics waves in two waveguides coupled by perforations. I. Theory[END_REF] (see Equation of this reference). In the same reference, the expression of the 4th-order equation for the unknown λ is given (see Equation [START_REF] Rschevkin | The theory of sound[END_REF] of this reference).
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A2 Eigenvectors for an asymmetric cell

The eigenvectors of the matrix P F T (see Equation [START_REF] Ko | Theoretical analyses of sound attenua-940 tion in acoustically lined flow ducts separated by porous splitters (rectangular, annular and circular ducts)[END_REF]) can be obtained thanks to Equation (A5) by determining the 2nd-order vector W 0 (Equation (A7)).
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For each eigenvalue, this vector is defined apart from a constant multiplicative value. The following general form is chosen:

where v 0 is an arbitrary constant having the dimension of a velocity, and w (i) 0

are impedances associ-800 ated to eigenvalues λ (i) . By construction, Expression (A15) fulfils Equation (A7), which means that for each eigenvalues λ (i) we have:

Introducing the general form of W 0 (Equation (A15)) into Expression (A5) gives the eigenvectors of an 805 asymmetric cell of the lattice. For the upper and lower rows, each column i (i = 1..4) of the matrix E L (Equation ( 15)) can be written as:

, (A17)

Finally each column i (i = 1..4) of the matrix E L is obtained by assembling the 2nd-order vectors W 

A3 Eigenvectors for a symmetric cell

The dispersion equation (A9) and the expression (A17,A18)) of the eigenvectors are general. A more useful expression can be obtained if the propagation 815 matrix T is splitted into two matrices in order to get a symmetric cell (see Section 2.4 and Figure 2). Consequently A 0 = D 0 .

The transfer matrix of a symmetric cell (Equation ( 9)) is written in the diagonal form (Equation 820(13)):comparing this equation and Equation [START_REF] Tagg | Multiple frequency op-930 timization of coupled Helmholtz resonators for improved acoustic nacelle liners for turbofan engines[END_REF], the columns of the eigenvector matrix E (Equation ( 15)) can be obtained from the eigenvectors of the antisymmetric cell W (i) L (Equations (A17,A18)) by:

Therefore, using Equation (A5), W

1 is given by: 825

with δ 1 = det(T L1 ) = det(T R1 ). A similar expression holds for the guide 2, with a sign -before v 0 . When the determinants are unity, the eigenvectors are given by Equation [START_REF] Kirby | The influence of baffle fairings on the acoustic performance of rectangular splitter silencers[END_REF].

Appendix B: Transfer matrix of a lattice of n cells B1 First form of the transfer matrix

In order to simplify the calculation of the invert matrix of E (Equation ( 18)), it is convenient to write its first up-left quarter in the form of a matrix product:

where

Using similar notations, the three other quarters of the matrix E are:

By assembling expressions (B1-B4), the eigenvector matrix 4) is written as:

Thanks to this particular form for E, that results from reciprocity, the 4th-order transfer matrix for a lattice of n symmetric cells (T L P F T R ) n = (ED n E -1 ) is obtained as:

B2 Second form of the transfer matrix

In order to derive the impedance matrix, a second form of the transfer matrix is useful. The vector V (Equation ( 1)) is replaced by a vector V defined as follows:

) where u i = S i v i (i = 1, 2) are the flow rates. Considering the eigenvector matrix E (Equation ( 18)), a permutation of the second and third rows and columns is required, as well as a permutation of the second and third eigenvalues (see e.g. [START_REF] Strang | Linear Algebra and Its Applications[END_REF]). The following result is obtained:

Finally the second from of the transfer matrix is:

Appendix C: Reciprocity rela-

tionships

Reciprocity is related to the choice of matrices T 1 , T 2 and M, with a determinant equal to unity. In order to find the consequences on the eigenvectors of a cell, we start from the classical reciprocity equation valid 860 for guides without flow. We write it on the surface Σ of a cell (e.g., a symmetric cell):

The superscripts i and j correspond to two different situations. For instance two situations where only one eigenmode exists can be chosen. The integral 865 vanishes on all rigid walls, therefore it is limited to the input and output of a cell. The term in parenthesis in Equation (C1) is the same for the output surface and the input surface, apart from the factor -exp(Γ (i) ) exp(Γ (j) ). Therefore it is possible to 870 factorize the term 1 -exp(Γ (i) ) exp(Γ (j) ) , and for the eigenmodes corresponding to Γ and -Γ, Equation (C1) is trivial because this term vanishes. It remains to solve the following equation:

-Γ ′ . Using the expressions (18) of the eigenvectors, the following equations are obtained:

A direct checking of these equations is heavy. Reciprocity implies also the symmetry of the impedance matrix, as shown in Section 4.1.