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Summary

The paper deals with the generic problem of two
waveguides coupled by perforations, which can be per-
forated tube mufflers without or with partitions, pos-
sibly with absorbing materials. Other examples are5

ducts with branched resonators of honeycomb cav-
ities, which can be coupled or not, and splitter si-
lencers. Assuming low frequencies, only one mode is
considered in each guide. The propagation in the two
waveguides can be very different, thanks e.g. to the10

presence of constrictions. The model is a discrete,
periodic one, based upon 4th-order impedance ma-
trices and their diagonalization. All the calculation
is analytical, thanks to the partition of the matrices
in 2nd-order matrices, and allows the treatment of15

a very wide types of problems. Several aspects are
investigated: the local or non-local character of the
reaction of one guide to the other; the definition of a
coupling coefficient; the effect of finite size when a lat-
tice with n cells in inserted into an infinite guide; the20

relationship between the transmission coefficient and
the dispersion. The assumptions are as follows: linear
acoustics, no mean flow, rigid wall. However the ef-
fect of the series impedance of the perforations, which
is generally ignored, is taken into account, and is dis-25

cussed. When there are no losses, it is shown that, for
symmetry reasons, the cut-off frequencies depend on
either the series impedance or the shunt admittance,
and are the eigenfrequencies of the cells of the lattice,
with zero-pressure or zero-velocity at the ends of the30

cells.

1 Introduction

The present paper describes an attempt of a generic
study of several problems that are now classical: per-
forated tube mufflers without [1–5] or with parti-35

tions [6]. They can be with absorbing materials
[7–9]. Related problems are tubes with branched
resonators, which can be uncoupled [10, 11] or cou-
pled [12], or with honeycomb cavities [13, 14]. Other
kind of systems are splitter silencers with perforated40

facing [15–20]. This generic problem is that of a peri-
odic lattice of two waveguides coupled by perforations.

Figure 1: Sectional view of the type of lattice under
study : lateral perforations (dark grey) couple two
waveguides periodically along the direction of propa-
gation. Each waveguide have its own acoustic proper-
ties. In Guide 2, diaphragms are periodically spaced
along the direction of propagation

Assuming low frequencies, only one mode is consid-
ered in each guide, therefore the system in study is a
system with two coupled modes. The propagation in45

the two waveguides can be very different, thanks to
the presence of constrictions, diaphragms, porous ma-
terial, partitions or other type of obstacles (see Figure
1). Following Sullivan [2], we use a discrete, periodic
model based on 4th-order transfer matrices. However50

in a transfer matrix, after diagonalization, there are
terms like cosh(nΓ), where n is the number of cells and
Γ is the real propagation constant when the modes
are evanescent. This leads to diverging terms when
n tends to infinity, and can be avoided by combin-55

ing a decoupling approach, i.e., a diagonalization, and
then the transformation of a transfer matrix into an
impedance matrix for the finite-length lattice, which
involves terms like tanh(nΓ), which cannot diverge.
A decoupling approach was used also in a continuous60

modeling ( [4, 21], see also [22] p 356).

The papers aims at showing that it is possible to
use an analytical formulation for a very wide class of
problems, with the illustration of basic examples of
coupled waveguides. Thanks to a discrete model, the65

diagonalization of 4th-order transfer matrices can be
found analytically, by using the partition of these ma-
trices into 2nd-order matrices. The study of the cou-
pling between two guides especially involves an analy-
sis of the local or non-local character of the coupling.70
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Generally speaking, coupling is obviously strong when
the perforations are wide, but also when propagation
in the two guides is rather similar (i.e., the two prop-
agation constants are close). This analysis is done for
lattices of finite length, focusing on the behaviour re-75

lationships between the transmission coefficient and
the dispersion curves and frequency bands.

A major difficulty is the modeling of the perfo-
rations. Semi-empirical formulas are generally used
[2, 23–27], especially when there is a mean flow. One80

focus of the present paper is on the role of the series
impedance of the perforation [28], which can be ig-
nored in a continuous model, but not in a discrete
model. A priori this impedance, due to the anti-
symmetric field in the perforation, must be accounted85

for the case of wide and well spaced perforations. To
our knowledge, no paper used the complete model
found in the paper published in 1994 [28]. However
for a similar problem in musical acoustics, the effect
of the series impedance of tone-holes of woodwind in-90

struments, can be significant [29–31].

The values of the perforation shunt admittance and
series impedance are not discussed in detail in this
paper, but the values given in [28] are sufficient for a
discussion (exact values were given for the 2D, rect-95

angular case at low frequencies, but for the cylindrical
case, only approximate formulas were proposed).

Several papers are concerned with more general
systems with more than two guides, or with 2D si-
lencers, in particular for applications to metamateri-100

als [10,32–38]. They are not discussed here. Concern-
ing a general view on 1D periodic structures, we refer
to classical references [39, 40].

The assumptions are as follows: linear acoustics, no
mean flow, rigid walls. However the diagonalization105

is done in a very wide, linear framework. The basic
geometry and the model used are described in Sec-
tion 2, with the definition of the transfer matrix of
a lattice cell. Section 3 derives the eigenvalues and
eigenvectors of a cell, using the more general result110

given in Appendix A. For the case of lossless guides,
the cut-off frequencies are determined.

For a finite lattice of n cells, the impedance matrix
is derived by using the calculation of the transfer ma-
trix calculated in Appendix B. Finally the transmis-115

sion coefficient of the lattice into an infinite waveguide
is derived. Section 5 proposes a theoretical analysis
of the coupling between the two guides, focusing on
the effect of the series impedance; on a definition of a
coupling coefficient; and on a derivation of a condition120

for a local reaction. Finally numerical simulations of
application examples are presented in Section 6, with
an analysis of the transmission coefficient with respect
to the nature of the two modes. It is shown how the
model proposed tends to existing results [ [1, 22]] for125

extreme values of the coupling coefficient.

0 x

1

2

xn xn+ℓ

PFT
(Eq.8)

TLPFTR
(Eq.9)

0 x
xn + ℓ xn+1 + ℓ

waveguide

waveguide
perforation

2ℓ

Figure 2: Basic geometry; an asymmetric cell in-
cludes one perforation followed by a length 2ℓ of tube,
with the transfer matrix PT between abscissas xnand
xn+1, while a symmetric cell includes one perforation
between two lengths ℓ of tube, with the transfer ma-
trix TLPFTR, between abscissas xn + ℓ and xn+1 + ℓ.

2 Generic geometry; model and

notations

2.1 Geometry

The two guides are coupled by perforation, as shown130

in Fig. 2. When their cross section is uniform,
the waves are planar at an axial distance from per-
forations larger that the transverse dimensions, so
that the evanescent modes due to perforations vanish.
When the cross section is not uniform, the change in135

cross-section area needs to be sufficiently far from the
perforation, i.e., at an axial distance larger than the
transverse dimension. The propagation in the guides
is characterized by the effective density ρi and the
speed of sound ci (the subscript i = 1, 2). The change140

in cross section allows various situations to be cre-
ated, as shown in Figure 3. When the propagation
is identical in the two guides, the lattice is homo-
geneous, while when diaphragms are present in one
guide only, the lattice is non-homogeneous. The case145

of branched resonators without longitudinal coupling
between them is a limit case, with a local reaction
of Guide 2 on Guide 1. In the following the term
”(non)-uniform” will be used for each waveguide and
the term ”(non-)homogeneous” will be used for the150

lattice.

2.2 Model for a perforation

The general model, valid in harmonic regime, is devel-
oped in [28]. It is summarized hereafter, with similar
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notations. Four basic quantities are chosen to be the155

coefficients p and v of the planar mode for the acoustic
pressure and velocity, respectively, in the two guides.
They build a 4th-order vector, V , as follows:

V =

(
V1

V2

)
where Vi =

(
pi
vi

)
, (1)

i = 1, 2. The following notations are chosen: calli-
graphic characters correspond to 4th-order matrices160

and vectors, while bold characters correspond to 2nd-
order matrices and vectors (e.g. I and I are the iden-
tity matrices of order 4 and 2, respectively); other
quantities are scalar. For a periodic medium made
of asymmetric lattice cells, one perforation at xn is165

followed by a portion of length 2ℓ of separated waveg-
uides (see Fig. 2). The vectors V are related by 4th-
order matrices.
For a perforation, the following relationship is de-

rived in [28] (the subscripts L and R correspond to the170

left side and right side of a perforation, respectively):

VL = PF VR (2)

where PF =

(
(γ1 + γ2M) γ2(I−M)
γ1(I−M) (γ2 + γ1M)

)
,(3)

with γ1,2 =
S1,2

S1 + S2
, (4)

M = I+
2ZaYs

1− ZaYs
K, K=

(
1 Y −1

s

Z−1
a 1

)
.(5)

S1,2 are the cross-section areas of the guides. This
model considers the effect of a perforation as local-
ized at the abscissa of the perforation center, as ex-
plained in [41]. Za and Ys are the series impedance175

and shunt admittance of the perforation, respectively
(these quantities are specific impedance and specific
admittance, i.e., ratios pressure/velocity and veloc-
ity/pressure, respectively). Both are acoustic masses
and correspond to the anti-symmetric and symmetric180

pressure field in the perforation, respectively. When
Za = 0, Ys produces a jump in velocity inside each
guide, from the left to the right of the perforation,
along the guide axis. In a dual way, when Ys = 0, Za

produces a jump in pressure inside each guide, from185

the left to the right of the perforation. Reciprocity is
assumed, therefore the determinant of PF is unity.

2.3 Model for the propagation in the

waveguides

For a non-perforated portion of the waveguides, be-190

tween abscissas xn and xn+1, the following 4th-order
matrix relationship is written as:

VR,n = T VL,n+1 where T =

(
T1 0
0 T2

)
. (6)

The general transfer matrices

T1,2 =

(
A1,2 B1,2

C1,2 D1,2

)
(7)

1
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(σd = 1)

diaphragms

Non-homogeneous lattice

Branched Helmholtz resonators

Homogeneous lattice

axis

axis

axis

a.
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Figure 3: (a) Three simple cases of coupled waveg-
uides. Non-homogeneous lattice, (b) branched
Helmholtz resonators, and (c) homogeneous lattice.
Case (b) is a limit case of perfectly local reaction.

(i = 1, 2) are of 2nd-order and describe the propa-
gation within Guides 1 and 2. The coefficients B1,2195

are specific impedances, while the coefficients C1,2 are
specific admittances. In the separated portion, the
geometry may be various, e.g., may includes discon-
tinuities and/or dissipation. Provided that the per-
foration shunt admittance and the series impedance200

are known, and with the restricting assumption of an
equivalent fluid model, the presence of porous mate-
rial within the lattice can be described by the model.

2.4 Model for the propagation with

perforations: asymmetric and205

symmetric cells

For a periodic medium, two types of cells can be con-
sidered (see Fig. 2): i) an asymmetric cell, involving
a perforation followed by a portion of tubes of length
2ℓ; ii) a symmetric cell involving a portion of tubes of210

length ℓ, then a perforation, then a portion of tube of
length ℓ. The complete transfer matrix of an asym-
metric cell (see Fig.2) can be characterized by the
equation:

VL,n = PFT VL,n+1 . (8)

The case of a symmetric cell is more particular, but215

remains very general. It will be used for the diago-
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nalization (see next section). For such a cell, between
abscissas xn + ℓ and xn+1 + ℓ, the transfer matrix
relationship is given by:

Vn−1 = (TLPFTR)Vn , (9)

where Vn =t (p1n, v1n, p2n, v2n), defined in Equation220

(1), is considered at mid-distance (abscissa xn + ℓ)
between two perforations. The transfer matrix T
(Equation (6)) describing the uncoupled propagation
over distance 2ℓ between two neighboring perforations
is therefore the product of the two transfer matrices:225

T = TRTL, (10)

where TL (resp.TR) describes the uncoupled propa-
gation over the distance ℓ situated on the left (resp.
right) of one perforation. Since T is block-diagonal
(Equation (6)), we can adopt the same decomposi-
tion for 2nd-order blocks, namely T1 = TR1TL1, and230

T2 = TR2TL2. Moreover, in order for the cell to be
symmetric, we generalize the concept of reversed four-
terminal explained in [39]. The matrices TL (i = 1, 2)
need to be proportional to the invert of the matrices
TR, with a change in sign for the x-axis, and with the235

same determinant δ. This means:
(
AR BR

CR DR

)
=

(
DL BL

CL AL

)
, (11)

With this condition the matrix T is symmetric:

A = D = ALDL +BLCL; B = 2BLDL C = 2CLAL.
(12)

Moreover reciprocity is assumed (in particular no
flow is present), i.e., the determinant is unity, as well
as the determinant of the 4th-order matrix T . More240

general cases are investigated in Appendix A.

3 Infinite periodic lattice:

eigenvalues and eigenvectors

3.1 Eigenvalues and eigenvectors

In this section, we are searching for the diagonal form245

of the transfer matrix TLPFTR (Equation (9)) for an
elementary, symmetric cell (with reciprocity) of the
periodic lattice shown on Fig.(2):

TLPFTR
def
= EDE−1 (13)

with

D =




λ(1) 0 0 0

0 λ(2) 0 0
0 0 λ(3) 0

0 0 0 λ(4)


 , and (14)

E =
(
W(1) W(2) W(3) W(4)

)
. (15)

λ(i) are the eigenvalues and W(i) (i = 1..4) are the250

eigenvectors. The detailed calculation is derived in
Appendix Afor the most general case (no reciprocity
is required). Since for the perforation matrix (Equa-
tion (2)), detPF = 1, the eigenvalues of the diagonal
matrix D (Equation (14)) can be grouped by inverse255

pairs when reciprocity holds for the elementary cell(
λ(1), λ(2)

)
= (λ, 1/λ) and

(
λ(3), λ(4)

)
= (λ′, 1/λ′)

(see [28]). Each pair corresponds to opposite prop-
agation directions of an eigenmode along the lattice
axis. They are denoted λ = exp(Γ) and λ′ = exp(Γ′).260

This leads to the following dispersion equation for the
unknowns Γ and Γ ′:

detT0 = A0D0 −B0C0 = 0, (16)

where

A0 = D0 = − sinhΓ [γ2/Q1 + γ1/Q2]

B0 =
1

Ys
− γ2B1/Q1 − γ1B2/Q2 (17)

C0 =
1

Za
− γ2C1/Q1 − γ1C2/Q2

with Qi = (coshΓ − Ai). The eigenvector matrix is
found to be:

E =v0




z1 z1 z′1 z′1
h1 −h1 h′

1 −h′
1

−z2 −z2 −z′2 −z′2
−h2 +h2 −h′

2 +h′
2


 D̃−1/2 , (18)

z1 =
1

γ1Q1
[BR1 cosh(Γ/2)− w0DR1(sinhΓ/2)] ,(19)

h1 =
1

γ1Q1
[AR1(sinhΓ/2)− w0CR1 cosh(Γ/2)](20)

w0 = B0/A0 = D0/C0. (21)

v0 is an arbitrary constant with the dimension of a265

velocity. Similar expressions can be found for h2 and
z2. For h′

1 and z′1, Γ is changed in Γ′ and w0 in w′
0,

and similarly for the quantities with subscript 2. It is
shown in Appendix C that because of the reciprocity
property the following relationships are induced :270

γ1z1h
′

1 = −γ2z2h
′

2 ; γ1z
′

1h1 = −γ2z
′

2h2. (22)

The matrix D̃−1/2 corresponds to a shift of an
eigenvector by one half-cell. Notice that because the
eigenvectors are defined apart from a multiplicative
constant, three quantities define an eigenvector. Com-
ing back to the definition of the physical-quantity vec-275

tors (see Equation (1)), we deduce the following in-
terpretations:

• The ratio z1/h1 is the (specific) characteristic
impedance in Guide 1 for the first propagation
constant Γ;280
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• Because the second eigenvalue corresponds to
a change in sign of the propagation constant
Γ, the corresponding characteristic impedance is
−z1/h1, as expected;

• Similar remarks hold for subscript 2 and super-285

script ’;

• With the two characteristic impedances, the last
quantity defining an eigenvector is the velocity
ratio −h1/h2; this ratio is identical for the two
waves with opposite propagation constants.290

In order to calculate the constant Γ, Equation (16)
can be re-written as a 2nd-order equation for the un-
known cosh(Γ). For this purpose the terms propor-
tional to γ2

1 and γ2
2 can be rearranged by using the re-

lations γ1+γ2 = 1 and sinh2 Γ−BiCi = cosh2 Γ−A2
i .

The following equation is obtained:

(1− YsZa) cosh
2 Γ+

− [A1 +A2 + γ2E1 + γ1E2 + d12] coshΓ

+γ1γ2YsZa [(B1C2 +B2C1) + 2 + 2A1A2]

+A1A2 (1 + YsZa) + γ2A2E1 + γ1A1E2 = 0, (23)

where d12 = (A1 − A2)(γ2 − γ1)YsZa and Ei =
YsBi + ZaCi. Thanks to Equation (23), general solu-
tions coshΓ and coshΓ′, for the two modes Γ and Γ′

of the lattice can be written explicitly.

3.2 Lossless lattices; cut-off frequen-295

cies

Up to now the considered lattice is can be lossy, when
one of the coefficients defining a cell is complex. For
lossless waveguides, several types of waves can ex-
ist [28]. When reciprocity holds, each of the two300

modes with propagation constant Γ and Γ′ can be
either propagating or evanescent. In the case of two
evanescent waves the possibility for the propagation
constant to be complex was found: the energy flux
in each guide decreases exponentially, but is not zero305

(its sign is opposite in the two guides, ensuring the
energy conservation).

Ref. [28] studied the particular case of an homo-
geneous lattice, i.e., a lattice with identical transfer
matrices T in the two guides. This happens for ex-310

ample when the guides are straight guides with the
same sound speed and density. In this case, there is
at least one propagating wave, and the decomposition
of the propagation into two modes (one is planar, the
other one is called the “flute” mode) is valid even for315

a lattice with irregular perforations.

The cut-off frequencies are given by coshΓ = ±1,
i.e., Γ = 0 or Γ = jπ. Therefore, according to Equa-
tions (17), A0 = D0 = 0, and the dispersion equa-
tion (16) implies either B0 = 0 or C0 = 0. Writing
coshΓ = ±1 in Equation (17), and using Equations

(11,12) with the property det(TL) = 1, the cut-off fre-
quencies are given by one of the four following equa-
tions:

Γ = 0; B0 = 0;⇒ 1

Ys
+ γ2

DL1

CL1
+ γ1

DL2

CL2
= 0; (24)

Γ = 0; C0 = 0;⇒ 1

Za
+ γ2

AL1

BL1
+ γ1

AL2

BL2
= 0; (25)

Γ = jπ; B0 = 0;⇒ 1

Ys
+ γ2

BL1

AL1
+ γ1

BL2

AL2
= 0; (26)

Γ=jπ; C0=0;⇒ 1

Za
+ γ2

CL1

DL1
+ γ1

CL2

DL2
= 0. (27)

The characteristic impedances of the two guides, zi/hi

(see Equations.(19,20), are found to be either infi-
nite or zero. It is interesting to interpret these re-
sults. Consider the example of Equation (24). Be-320

cause Γ = 0, for an infinite lattice, pn = pn+1 in each
guide, and because the characteristic impedance is in-
finite, the velocity vanishes at the extremities of the
cell. Consequently, if there is a opening at the ex-
tremity of the cell, this cut-off does not depend on325

the opening. It can be checked that this equation
gives the eigenfrequency of the cell when it is closed
at their extremities (infinite impedance). The second
and the third terms of Equation (24) correspond to
the impedance in Guide 1 and 2, respectively, at the330

abscissa of the perforation, calculated by projecting
the infinite impedance at the end of the cell to the
perforation abscissa. Moreover the pressure field in
the cell being symmetrical, the series impedance Za

does not intervene.335

Similar interpretation can be done for the three
other equations, using the duality pressure/velocity.

4 Impedance matrix of a lattice

on n cells; insertion into an

infinite waveguide340

4.1 Impedance matrix

In order to derive the (acoustic) impedance matrix
of a lattice of n cells, the vector V (Equation (1)) is

replaced by a vector Ṽ defined as follows:

Ṽ =

(
P
U

)
where P =

(
p1
p2

)
and U =

(
u1

u2

)
,

(28)
where ui = Sivi (i = 1, 2) are the flow rates. In345

Appendix A3 it is shown that for these vectors the
transfer matrix relationship can be written as:

Ṽ0 =

(
Z 0
0 G

)(
Cn Sn

Sn Cn

)(
Z 0
0 G

)−1

Ṽn , (29)

with

Cn =

(
coshnΓ 0

0 coshnΓ′

)
, (30)



Pachebat and Kergomard, p. 6

Sn =

(
sinhnΓ 0

0 sinhnΓ′

)
, (31)

Z =

(
z1 z′1
−z2 −z′2

)
, G =

(
g1 g′1
−g2 −g′2

)
, (32)

if gi = Sihi. This acoustic impedance matrix is di-
rectly derived from this transfer matrix. It is cho-
sen for two reasons: i) as explained hereafter, the350

impedance matrix avoids numerical difficulties that
appear using transfer matrix products, for strongly
evanescent eigenmodes and a large number of cells;
ii) the impedance matrix makes easy the boundary
conditions to be introduced at each end of the lat-355

tice. Consider two 4th-order vectors t
(
P0 U0

)
and

t
(
Pn Un

)
related by a (general) matrix as follows:

(
P0

U0

)
=

(
A B
C D

)(
Pn

Un

)
, (33)

where A, B, C and D are 2nd order-matrices. This
expression is equivalent to:

(
P0

Pn

)
=

(
AC−1

[
B−AC−1D

]

C−1 −C−1D

)(
U0

Un

)
. (34)

Applying this result to the transfer matrix (Equation360

(29)), the impedance matrix of the lattice of n cells is
obtained:




p1,0
p2,0
p1,n
p2,n


 = Z

(
CnS

−1
n −S−1

n

S−1
n −S−1

n Cn

)
G−1




u1,0

u2,0

u1,n

u2,n




where Z =

(
Z 0
0 Z

)
and G =

(
G 0
0 G

)
, (35)

where the identity
[
Sn −CnS

−1
n Cn

]
= −S−1

n is used.
Actually, because of the different sign before S−1

n in
the second diagonal, this impedance matrix is anti-365

symmetric (with a change in the orientation of the
velocities at the extremity n, the impedance matrix
would become symmetric). Notice that the matrix Z
has the dimension of a specific impedance, while the
matrix G has the dimension of the inverse of an area.370

Furthermore, for evanescent modes (real Γ) the ratios
coshnΓ/sinhnΓ and 1/sinhnΓ do no diverge when n
tends to infinity, unlike the coefficients of the transfer
matrix.

4.2 Lattice of finite length inserted375

into an infinite waveguide

We consider the geometry shown in Figure 4. A lattice
of finite length, with n cells, is inserted into an infinite

1

2

x2 xn

(TLPFTR)

waveguide

waveguide

n perforations

2ℓ

x1

u2,0 = 0 u2,n = 0

n

Figure 4: Lattice with n cells, with the transfer ma-
trix (TLPFTR)n and boundary conditions for Guide 2
(see Equations (36 and 40)), inserted into an infinite
waveguide.

waveguide so as to act as an acoustic wall treatment.
By closing Guide 2 at each end of the lattice (Equation380

(36)) by an impedance condition (Figure 4), the 4th-
order impedance matrix (Equation (35)) is reduced
to a 2nd-order one, and the transmission coefficient
of the finite lattice can be obtained.
Simple boundary conditions are chosen. Guide 2385

is closed at each end by setting u2,0 = u2,n = 0 into
Equation (35). The 2nd-order impedance matrix of
the finite lattice can be derived:

(
p1,0
p1,n

)
=

(
ZA −ZB

ZB −ZA

)(
u1,0

u1,n

)
, with (36)

ZA =
[
ZCnS

−1
n G−1

]
11

=
[
Ẑ cothnΓ + Ẑ ′ cothnΓ′

] (37)

ZB =
[
ZS−1

n G−1
]
11

=
[
Ẑ/ sinhnΓ + Ẑ ′/ sinhnΓ′

]
,

(38)

where the impedances Ẑ and Ẑ ′ associated to each
mode result from Equation (32) as follows:

Ẑ = z1g
′

2/(detG) and Ẑ ′ = z′1g2/(detG). (39)

Recall that these impedances are acoustic impedances
(ratio pressure/flow rate). This particular case of lat-390

tice is built as the combination of two four-terminals
with their extremities in series, each four-terminal
corresponding to a propagation mode with constant
Γ and Γ′. Expression (36) is then written in form of
a transfer matrix:395

(
p1,0
u1,0

)
=

(
As Bs

Cs As

)(
p1,n
u1,n

)

=
1

ZB

(
ZA (Z2

A − Z2
B)

1 ZA

)(
p1,n
u1,n

)
.(40)

Let us consider an infinite waveguide with charac-
teristic impedance z̄c1 = ρ1c1/S1. The outgoing
and incoming plane wave have the amplitudes p+1 =
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(p1 + z̄c1u1)/2 and p−1 = (p1 − z̄c1u1)/2, respectively.
Once the finite lattice of Fig.(4) is inserted, the trans-400

mission coefficient can be written as:

T =
p+1,n

p+1,0
=

p−1,0

p−1,n
=

2

2As + (Bs/z̄c1 + Csz̄c1)
(41)

=
2ZB z̄c1

(ZA + z̄c1 − ZB)(ZA + z̄c1 + ZB)
. (42)

We notice from Expressions (42) that when ZB = 0
(Equation (38)), i.e., when:

Ẑ/ sinhnΓ + Ẑ ′/ sinhnΓ′ = 0 , (43)

the transmission coefficient is zero.

5 Analysis of the coupling ef-405

fect; local vs non-local reac-

tion

5.1 Effect of the series impedance on

the coupling

The respective roles of the series impedance Za and410

the shunt admittance Ys can be discussed qualita-
tively at the zero-frequency limit. Exact values are
known for the 2D, rectangular case. For the cylindri-
cal case, we use approximate values for two guides
with radii a1and a2 and the same fluid density ρ,415

which exhibit the dependence on the parameters [28]:

Y −1
s ≃ jω

ρ

rp
S1;Za ≃ −jω0.57ρr2pa1/S1, (44)

where j = (−1)2, ω is the angular frequency. rp is
the radius of the perforation, and a2 is assumed to be
larger than a1. A first observation is that the prod-
uct YsZa is independent of the frequency and is very
small, because it is proportional to (rp/a1)

3. As a con-
sequence, at a first approximation, Equation (23) can
be simplified in:

(cosh Γ−A1 − γ2E1)(cosh Γ−A2 − γ1E2)

= γ1γ2E1E2. (45)

The influence of the series impedance can be esti-
mated by considering the expression of the quantities
Ei. Considering the low frequency case, the guides
are reduced to lumped elements, Bi = 2jωρℓ is a420

mass and Ci = 2jωℓ/ρc2 is a compliance (c is the
sound speed). It turns out that YsBi is a ratio of two
masses, while ZaCi is proportional to ω2: therefore
the effect of the series impedance Za can be neglected
at low frequency. This justifies the following analysis425

of the coupling of the two guides with Za = 0. This
approximation will be done from here until to the end
of the paper.

5.2 Eigenvalues and eigenvectors for

the simplified model430

What are the conditions for reducing the number of
guided modes form 2 to 1?

If Za = 0, the perforation matrix (Equation (4))
connects the two guides through one coupling quan-
tity only, the shunt admittance Ys. The dispersion
Equation (16 or 23) reduces to Equation (45), with
Ei = YsBi. This equation is obtained for the choice of
specific admittances and impedances, corresponding
to the choice of acoustic pressure and velocity (of the
planar mode) as basic quantities for the considered 4-
ports. This choice is convenient for the description of
the perforation effects, but when the series impedance
Za is ignored, it is easier to use flow rates instead of
velocities (therefore to use acoustic admittances and
impedances). For this purpose the impedances and
admittances need to be modified, and Equation (45)
becomes:

(coshΓ−A1 −
1

2
ȲpB1)(cosh Γ−A2 −

1

2
ȲpB2)

=
1

4
Ȳ 2
p B1B2, (46)

where B1 = B1/S1 B2 = B2/S2 and the acoustic
admittance Ȳp is given by:

Ys =
1

2

(
1

S1
+

1

S2

)
Ȳp (47)

The bars above the symbols indicate acoustic435

impedances or admittances. When the radius of the
perforation is very small, a simple formula can be cho-
sen:

1

Ȳp
=

jω(ρ1 + ρ2)

4rp
, (48)

where rp is the radius of a circular perforation or the
equivalent radius when the perforation is not circular.440

Another form of the dispersion equation is useful:

2

Ȳp
=

B1

coshΓ−A1
+

B2

coshΓ−A2
. (49)

For the calculation of the eigenvectors, we make the
choice of an asymmetric cell, and use Equations (A17)
and (A18). For the eigenvalue λ = exp(Γ), it is found:

W
(i)
L1 =

v0
γ1(cosh Γ−A1)

(
B1S1e

−Γ

1−A1e
−Γ

)
, (50)

and similarly for Guide 2 (with a change in sign).445

Using Equation (49), the pressure ratio is found to
be:

p1
p2

= 1 +
A2 − coshΓ

1
2 ȲpB2

. (51)
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5.3 Definition of the coupling coeffi-

cient

The discriminant ∆ of the quadratic equation in450

coshΓ (Equation (46)) can be written by exhibiting a
coupling coefficient C, as follows:

∆ = (A1 −A2)
2

[
1 + 2

B1 −B2

B1 +B2

C + C2 ,

]
(52)

where C =
1

2
Ȳp

B1 +B2

A1 −A2
. (53)

The coupling coefficient C is proportional to the per-
foration admittance Ȳp, and inversely proportional to
the difference between the coefficients A1 and A2 of455

the two guides, which are characteristic of the propa-
gation into each guide separately. For identical guides,
C is infinite; at low frequencies, the admittance is
large, so is C. Two extreme cases can therefore be
distinguished.460

5.3.1 The weak coupling limit

When the coupling coefficient C is small, the following
solution is found:

coshΓ = A1 +
1

2
ȲpB1 + C2 (A1 −A2)B1B2

(B1 +B2)2
+O(C3)

(54)

= A1 +
1

2
ȲpB1 +

1

4

Ȳ 2
p B1B2

A1 −A2
+O(C3).

p2
p1

= 2C2 (A2 −A1)B2

(B1 +B2)2Ȳp

+O(C3) (55)

= −C B2

(B1 +B2)
+O(C3).

The mode Γ′ is obtained by exchanging the subscripts
1 and 2. For a very weak coupling, the solution (54)465

can be interpreted, at the first order of C, as follows:
the medium 2 acts as an equivalent impedance Zeq =
Ȳ −1
p on the medium 1. The pressure becomes very

small in the medium 2.

5.3.2 The strong coupling limit; locally react-470

ing impedance

Strong coupling occurs when the media are not very
different or when the perforation effect is strong (large
opening of the perforation and/or low frequencies).
The solutions coshΓ and coshΓ′ of Equation (46) can475

be written as a series expansion with respect to C−1:

coshΓ =
A1B2 +A2B1

B1 +B2

(56)

− 1

C
B1B2(

B1 +B2

)2 (A1 −A2)

[
1 +O(

1

C )
]

,

coshΓ′ =
1

2
Ȳp(B1 +B2) +

A1B1 +A2B2

B1 +B2

(57)

+
1

C
B1B2(

B1 +B2

)2 (A1 −A2)

[
1 +O(

1

C )
]
.

The mode Γ is an average value of the two propaga-
tion constants given by coshΓ = A1 and coshΓ = A2.
The mode Γ′ is a generalization of the flute mode
(see [28]): it is strongly evanescent at low frequencies480

and for large perforations (large Ȳp ). This mode was
also given by Pierce [22] for the continuous case of
a perforated tube muffler. The pressure ratios corre-
sponding to the two modes Γ and Γ′ are:

[
p1
p2

]
= 1 +

1

C +
1

C2

B1

B1 +B2

[
1 +O(

1

C )
]

(58)

[
p1
p2

]′
= −B1 +B2

B2

+
1

C
B1

B2

− 1

C2

B1

B1 +B2

[
1 +O(

1

C )
]
.

The first solution corresponds to a modified planar485

mode while for the second, the two pressures are op-
posite in phase, at least at low frequencies. For the
case where the mode Γ′ is strongly evanescent, only
the first mode can be taken into account, and the
effect of the second medium on the first one (or vice-490

versa) can be represented by an equivalent impedance
Zeq, the second one being equivalent to a locally re-
acting medium. This impedance can be found from
the following dispersion equation:

coshΓ = A1 +
1

2
Z̄−1
eq B1 , (59)

obtained by searching for the eigenvalue of the peri-495

odic medium built with a cell described by the follow-
ing transfer matrix:

(
A1 B1

C1 A1

)(
1 0

Z̄−1
eq 1

)
.

From Equations (56, 59), the following equivalent
impedance Zeq is found to be:

Z̄eq =
B2

Ȳp(B1 +B2)

[
1 +O(

1

C )
]
+

B1 +B2

2(A2 −A1)
. (60)

Obviously this concept of equivalent impedance is es-500

pecially interesting if it does not depend on the first
medium: this situation occurs if B1 << B2, and
A1 << A2. As expected, it can be checked that these
conditions of local reaction are fulfilled in particular
when the cells of the second medium are uncoupled,505



Pachebat and Kergomard, p. 9

Nb of cells n 5
Cell length (2ℓ) (m) 2.17 10−1

Cross section S1 (m
2) 3.14 10−2

Cross section S2 (m
2) 3.46 10−2

Perf. radius rp (m) 3.9 10−2

Perf. open area ratio σp 3.5 10−2

Diaph. radius rd (m) (Fig.5) 0.105 and 0.104
Diaph. open area ratio σd (Fig.5) 1 and 0.98

Diaph. radius rd (m) (Fig.6) 0.018 and0
Diaph. open area ratio σd (Fig.6) 0.03 and0

Table 1: Geometrical parameters of the finite lattice

e.g. thanks to closed walls between them. If these
conditions are satisfied the equivalent impedance is
the sum of the perforation impedance and the half of
the input impedance of a cell of the second medium,
closed by a rigid wall:510

Z̄eq =
1

Ȳp
+

1

2

B2

A2 − 1
, (61)

and corresponds to Helmholtz resonators branched
on Guide 1.

6 Analysis of lattices with finite

length

6.1 Definition of the geometries con-515

sidered

We consider the geometries of finite length lattices
shown in Figure 3. In particular we focus on parame-
ters (see Table 1) that correspond to the strong cou-
pling case (see Section 5.3.2). Therefore Guide 2 is520

strongly coupled to Guide 1 and acts as an acoustic
wall treatment on Guide 1.
If the series impedance of the perforation is ignored,

the perforation matrix (Equation (4)) is completely
defined by choosing the specific shunt admittance Ys.525

A simple formula, sufficient for our purpose is chosen
for the acoustic admittance Ȳp, according to Equation
(48) as follows:

1

Ȳp
= R+ jωρ/2rp, (62)

where R = 2
√
2ηρω is a small resistive term [42]

describing viscous losses near the perforation and η530

is the shear viscosity of the fluid. This allows lim-
iting the resonance heights. Equation (62) is valid
for small perforations, and also for a length between
perforations sufficiently large in comparison with the
transverse dimensions of the guide. This issue, which535

is important for the understanding of the transition
between discrete and continuous descriptions, is dis-
cussed in [28]. For the sake of simplicity we consider
here that an equivalent radius exists (see e.g. [43]).

We define the radius rp of the perforation thanks to its540

open area ratio in one cell of Guide 1 σp = πr2p/(2ℓa1).

The shunt admittance Ȳp vanishes when the perfora-
tion is closed.
In air, the transfer matrix for the planar mode along

one uncoupled portion of length ℓ is:545

T =

(
cos(kℓ) jZc sin(kℓ)

j sin(kℓ)/Zc cos(kℓ)

)
. (63)

If propagation losses are ignored, Zc = ρc and k = ω/c
are the characteristic impedance and wavenumber of
the medium (air) filling the guides 1 and 2. For Guide
1, the transfer matrix along length ℓ is: T1R = T1L =
T, and T1 = T2 for the length 2ℓ (Equation (7)).550

Inside Guide 2, we write for the length ℓ on the left of
a perforation T2L = Dd T, and T2R = TDd on the
right. Therefore T2= TD2

d
T for the length 2ℓ . The

matrix

Dd =

(
1 Z̄d/2
0 1

)
(64)

corresponds to the presence of a diaphragm within555

Guide 2, and introduces the non-homogeneity be-
tween the two guides. For the sake of simplicity, the
(acoustic) impedance is Z̄d = jωρS2/2rd

(
1−√

σd

)
,

where rd is the opening radius of a diaphragm with-
out thickness, and σd = (rd/a2)

2 is its open area560

ratio. This is a crude simplification of Fock’s for-
mula [44]. In what follows, we first consider the tran-
sition between homogeneous lattices to slightly non-
homogeneous lattices, then the transition between
ducts with branched resonators and strongly non-565

homogeneous lattices.

6.2 From homogeneous to slightly

non-homogeneous lattices

Consider the homogeneous lattice shown in Figure 3c,
where the same medium fills the waveguides 1 and 2.
No diaphragm is placed in Waveguide 2. The lattice is
said to be homogeneous. The wavenumber and char-
acteristic impedance are identical for the two waveg-
uides, and A1 = A2 = A = cos(2kℓ). Equation (49)
gives the planar mode with constant Γ and the flute
mode with constant Γ′:

{
coshΓ = cos(2kℓ) ,

coshΓ′ = cos(2kℓ) + jȲpZc

[
1
S1

+ 1
S2

]
sin(2kℓ).

(65)

They correspond to the first term of Equations (56)
and (57), respectively (the coupling coefficient C is570

infinite). Their variation with frequency is shown in
Figure 5 (top and center). The planar mode, with
Γ = 2jkℓ, is not dispersive and is unaffected by the
perforation admittance Ȳp. The flute mode, with con-
stant Γ′, is evanescent at low frequencies, because575

Ȳp is high, yielding coshΓ′ > 1 (or Re(Γ) > 0 and
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Figure 5: Dispersion curves Γ(ω) (top and center).
Black lines: homogeneous lattice (σd = 1). Grey
lines: slightly non-homogeneous lattice (σd = 0.98).
Solid lines: mode with propagation constant Γ. Dot-
ted lines: mode with propagation constant Γ′ (notice
that Γ′ is mildly affected by the non-homogeneity).
Transmission coefficient |T (ω)| (bottom) for 5 cells.
Black line: homogeneous lattice (σd = 1) and Grey
line: slightly non-homogeneous lattice (σd = 0.98).

Im(Γ) = 0). The mode Γ′ is cut on at f = 247 Hz.
Above this frequency the two modes propagate within
the lattice.

Looking at frequencies below 797 Hz (this limit is580

explained later on), the transmission coefficient ob-
tained for the homogeneous lattice (Figure 5 (bot-
tom) is similar to the results presented in [1] (Insertion
Loss, Figure 12). The transmission coefficient curve
exhibits a low frequency behaviour similar to that of585

an expansion chamber (driven by the expansion ratio
S1/S2). At higher frequencies (between 247 and 797
Hz), transmission coefficient minima are observed.

As a first result of the present analysis, this be-
haviour change in transmission coefficient at 247 Hz590

can be associated to the number of propagating modes
(here 1 or 2) within the lattice. A second result is that
the frequencies at which the transmission coefficient
is minimum are given by Equation (43). It can be

Lattice mode
Freq.(Hz) Γ Γ′

247* - Eq.24
509 Eq.26 -
797* Eq.27 Eq.27
839 - Eq.26

Table 2: Cut-off frequencies of the slightly non-
homogeneous modes in Figure 5 (in grey). Symbol
* denotes a cut-off frequency that does not depend on
the diaphragm radius rd.

shown that the minimum of the transmission coeffi-595

cient is resonant (limited by losses) only if the two
terms of Equation (43) have the same order of mag-
nitude and if the lattice length is finite.

Above 797 Hz, a stop band of Bragg type appears
for the flute mode Γ′, with a low transmission co-600

efficient (Figure 5, bottom). In a Bragg stop band
(or Bragg resonance due to spatial periodicity) Im(Γ)
constant and equal to nπ, where n is an integer and
Re(Γ) is positive but remains finite [40]. Unlike Fig-
ure 5, this behaviour is not reported in [1], presumably605

because the spatial periodicity of the lattice that [1]
used makes the Bragg stop band out of the frequency
band presented (unfortunately this periodicity is not
mentioned in [1]).

Let us now consider a slightly non-homogeneous lat-610

tice. The diaphragms are now slightly closed (σd =
(rd/a2)

2 ≃ 0.98). The solution of the dispersion
Equation (49) for the mode Γ of the non-homogeneous
lattice is:

coshΓ =
1

2

(
A1 +A2 +

1

2
Ȳp

[
B1 +B2

]
−
√
∆

)
,

(66)
where ∆ is given by Equation (52). The second so-615

lution for the mode Γ′ is given by the same result,
changing the sign before ∆. The mode Γ′ is not re-
ally affected by the added mass. In particular, its first
cut-off frequency remains unchanged at 247 Hz, like
for the homogeneous lattice (the cut-off frequencies620

for the slightly non-homogeneous lattice are given in
Table 2). This is explained by symmetry properties
discussed in Section 3.2, which imply that the veloc-
ity within the diaphragms vanishes at that particular
frequency.625

However the mass added by the diaphragms
strongly modifies the mode Γ: the mode is now dis-
persive, with a phase velocity lower than that the pla-
nar mode of the homogeneous lattice (see Figure 5,
center). This slowdown of the mode Γ explains why630

the resonant minima of the transmission coefficient
are shifted towards the low frequencies, compared to
those of the homogeneous lattice. A Bragg stop band
also appears for the mode Γ between 509 and 797 Hz
(see Figure 5, top): only the mode Γ′ propagates and635

the transmission coefficient does not exhibit resonant
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peaks because the mode Γ is evanescent. For the mode
Γ′, the width of the the Bragg stop band is reduced
to the interval [797, 839]Hz, where the transmission
coefficient is close to 1. This issue could be further640

investigated.

In these simulations the number of cells of the lat-
tice is limited to n = 5 for the sake of readability of the
transmission coefficent curves. Indeed, increasing n
increases the number of resonant peaks, according to645

Equation (43). But it can be checked that the compu-
tation does not encounter numerical difficulties even
for high n (and/or highly evanescent modes), thanks
to the impedance matrix formalism.

Summarizing the effect of the non-homogeneity in-650

duced by the diaphragms, the width of frequency
bands where two modes propagate is reduced, and
therefore the possibility of resonant transmission co-
efficient minima as well.

6.3 From ducts with branched655

Helmholtz resonators to strongly

non-homogeneous lattices

Let us now start from another classical muffler config-
uration: the branched Helmholtz resonators (Figure
3b), which are locally reacting. There is only one660

mode in the lattice. The model at its strong coupling
limit (Equation (59)) tends to the following solution
of the dispersion equation :

coshΓh = cos(2kℓ) + j
ρc

2S1
Z̄−1
eq sin(2kℓ) (67)

where, according to Equation (61), the input
impedance of one resonator is Z̄eq = 1/Ȳp −665

j(ρc/2S2) cot(kℓ). Γh is the classical Helmholtz
mode. It is strongly dispersive (see Figure 6) and
exhibits a stop band within the band [fh

1 , f
h
2 ] =

[162, 247] Hz, which can be called “Helmholtz stop
band”. This band is a resonance stop band (indeed,670

the Helmholtz resonance frequency fr is given by
Z̄eq = 0). Im(Γ) = mπ below fr , and Im(Γ) = m′π
above fr, m being an even integer and m′ an odd in-
teger (or vice versa) [40]. Moreover, if there are no
losses, Re(Γ) is infinite at fr. The lower bound of the675

stop band fh
1 , given by coshΓh = −1 or

2

Ȳp
= jZc

(
− 1

S1
tan(kℓ) +

1

S2
cot(kℓ)

)
. (68)

The upper bound is fh
2 , given by coshΓh = 1 or

2

Ȳp
= jZc

(
1

S1
+

1

S2

)
tan(kℓ) . (69)

Notice that this cut-off frequency fh
2 defined by

Equation (69) is the the first cut-off frequency of the
mode Γ′ defined by Equation (24). In particular, fh

2680

Figure 6: Dispersion curves Γ(ω) (top and center).
Black line: branched Helmholtz resonators (σd = 0,
notice that for non-coupled resonators, there is only
one mode). Grey lines: strongly non-homogeneous
lattice (σd = 0.03). Grey, solid line: mode with
constant Γ. Grey, dotted line: mode with constant
Γ′. Transmission coefficient |T (ω)| (bottom) for 5
cells. Black line: branched Helmholtz resonators
(σd = 0). Grey line: strongly non-homogeneous lat-
tice (σd = 0.03).

remains unchanged when a diaphragm is open be-
tween resonators, because the velocity within the di-
aphragms vanishes at this particular frequency (Sec-
tion 3.2).

Consider now Figure 6, which shows the effect of685

a strong inhomogeneity of the lattice. It appears
that the mode Γ′ (σd = (rd/a2)

2 ≈ 0.03), is cut off
exactly at the upper bound of the Helmholtz stop
band fh

2 . The cut-off frequencies for the strongly
non-homogeneous lattice are given in Table 3. The690

mode Γ propagates at low frequencies and is evanes-
cent for f lying within [284, 797] Hz. This implies
that even a small opening of the diaphragms between
resonators entails that the stop band of the branched
Helmholtz resonators disappears. In particular, the695

singularity of Re(Γh) at fr, which is a characteristic
of the Helmholtz stop band, is lost.
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Lattice Mode
Freq.(Hz) Γ Γ′

247* - Eq.24
284 Eq.26 -
797* Eq.27 Eq.27
839 - Eq.26
861 Eq.25

Table 3: Cut-off frequencies of strongly non-
homogeneous modes in Figure 6 (in grey). Symbol
* denotes a cut-off frequency that does not depend on
the diaphragm radius rd.

Summarizing the effect of the coupling of the
branched resonators, the two modes have very differ-
ent behaviours for all the frequencies considered. This700

tends to increase the transmission coefficient of the
strongly non-homogeneous lattice compared to that
of branched resonators.

7 Conclusion

The analytical approach proposed is able to describe705

a wide variety of periodically coupled waveguides.
For two classical examples of applications (homoge-
neous lattices and branched Helmholtz resonators),
the model shows how the frequency behaviour of the
transmission coefficient, can be attributed either to710

the properties of the medium (dispersion within the
lattice), or to the boundary conditions and the fi-
nite length. Moreover, the introduction of a non-
homogeneity within the lattice, by means of an added
mass in one of the waveguides, illustrates how the715

properties (dispersion and transmission coefficient) of
the two classical examples are modified, and how this
can be interpreted.
A coupling coefficient is useful for the study of the

transition between local and non-local reaction of one720

waveguide to the other. In practice, the model have
shown that a very small coupling between (locally re-
acting) Helmholtz resonators is sufficient to obtain a
lattice where the local reaction vanishes. A particular
situation is encountered when an interaction between725

Bragg and Helmholtz stop bands occurs. How this
could be combined with finite length effects for sound
attenuation purpose could be further investigated.
Other types of non-homogeneity, like the presence

of dissipative media (porous materials described as730

equivalent fluids) or varying cross sections are in the
scope of the method, provided that coupling of the
evanescent modes created by two singularities does
not occur, i.e., perforations are sufficiently spaced.
Arguments can be found for ignoring the series735

impedance of the perforation, but this restricts ap-
plications to cases where the frequency is low and the
perforation radius is small compared to the waveg-
uides radii. The knowledge of appropriated expres-

sions for series impedance and shunt admittance of740

the perforation would be required for practical appli-
cation of the model to a particular geometry. An issue
of interest could be the effects of the series impedance
Za on the properties of a finite lattice at higher fre-
quencies. Precise values of the perforation admittance745

and impedance remain a topic of further investigation,
in particular when the frequency increases. This can
be done either with numerical methods or with mea-
surements.

Application can be done to different kind of devices,750

such a silencers or sample of 1D metamaterials of fi-
nite length. To a certain extent, it could be possible
to divide their design into two steps: first an opti-
mization of the transmission coefficient with respect
to given values of the perforation parameters, then a755

determination of the geometry corresponding to these
parameters.

With the same model, further investigation could
be done on dissipation effects, either in the perfora-
tions or in the waveguides. Mean flow or nonlinear760

effects would require different models.

Appendix A : Derivation of the

eigenvalues and eigenvectors of

the transfer matrix

A1 Eigenvalues, dispersion equation765

For the sake of simplicity, the eigenvalues λ and eigen-
vectors, denoted WL, are first sought for a generic,
asymmetric cell. They are solutions of the 4th-order
equation:

(PFT − λI)WL=O, (A1)

where O is the zero matrix of 4th-order. Using Equa-
tions (2) and (7), and a calculation based upon sub-
matrices, Equation (A1) can be rewritten as follows:

{
[(γ1 + γ2M)T1 − λI]WL1 + γ2(I−M)T2WL2 = 0 ,

γ1(I−M)T1WL1 + [(γ2 + γ1M)T2 − λI]WL2 = 0

(A2)

if WL
def
= t

(
WL1 WL2

)
. (A3)

Subtracting the two Equations (A2) leads to a new770

equation:

(MT1 − λI)WL1 = (MT2 − λI)WL2. (A4)

Then, multiplying in System (A2) the first equation
by γ1 and the second equation by γ2, and adding
the resulting equations, the following equation is ob-
tained:775

γ1(T1−λI)WL1 = −γ2(T2−λI)WL2
def
= W0. (A5)
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Then, writing for i = 1 and 2:

MTi − λI = M(Ti − λI) + λ(M − I) ,

and substituting in Equation (A4) the values of W0

given by Equation (A5), Equation (A4) can be written
as follows:

(M − I) + I+

λ(M − I)
[
γ2(T1 − λI)−1 + γ1(T2 − λI)−1

]
W0 = 0.

(A6)

Finally, multiplying Equation (A6) by the matrix

2(M − I)−1 = K − I, where K is given by Equa-
tion (4), it is found that the 4th-order Equation (A1)
is equivalent to the following 2nd-order equation:

T0W0 = 0 , where (A7)

T0= I+K+2λ
[
γ2(T1 − λI)−1 + γ1(T2 − λI)−1

]
.

(A8)

Consequently, each eigenvalue λ(i) (i = 1..4) is solu-
tion of the general dispersion equation:

detT0 = A0D0 −B0C0 = 0. (A9)

Here the coefficients of the matrix T0 are denoted A0,
B0, C0, D0. Equation (A8) gives their expression,780

which depends on the eigenvalue λ:

A0 = 1 + 2λ

[
γ2(D1 − λ)

∆1
+

γ1(D2 − λ)

∆2

]
,(A10)

D0 = 1 + 2λ

[
γ2(A1 − λ)

∆1
+

γ1(A2 − λ)

∆2

]
,(A11)

B0 =
1

Ys
− 2λ

[
γ2

B1

∆1
+ γ1

B2

∆2

]
, (A12)

C0 =
1

Za
− 2λ

[
γ2

C1

∆1
+ γ1

C2

∆2

]
, (A13)

where the coefficients A1,2 , B1,2 , C1,2 , D1,2 of matri-
ces T1,2 correspond to the diagonal blocks of the 4th-
order transfer matrix T (see Equations (6) and (7),
and where785

∆1,2 = det(T1,2−λI) = λ
2−λ(A1,2+D1,2)+detT1,2.

(A14)
Equation (A9) is a simplification of the dispersion
equation (46) given in [28] (see Equation of this ref-
erence). In the same reference, the expression of the
4th-order equation for the unknown λ is given (see
Equation (43) of this reference).790

A2 Eigenvectors for an asymmetric

cell

The eigenvectors of the matrix PFT (see Equation
(15)) can be obtained thanks to Equation (A5) by de-
termining the 2nd-order vector W0 (Equation (A7)).795

For each eigenvalue, this vector is defined apart from

a constant multiplicative value. The following general
form is chosen:

W
(i)
0 = v0

(
w

(i)
0

−1

)
, (i = 1..4) (A15)

where v0 is an arbitrary constant having the dimen-

sion of a velocity, and w
(i)
0 are impedances associ-800

ated to eigenvalues λ(i). By construction, Expression
(A15) fulfils Equation (A7), which means that for each
eigenvalues λ(i) we have:

w
(i)
0 =

B
(i)
0

A
(i)
0

=
D

(i)
0

C
(i)
0

(i = 1..4)). (A16)

Introducing the general form ofW0 (Equation (A15))
into Expression (A5) gives the eigenvectors of an805

asymmetric cell of the lattice. For the upper and
lower rows, each column i (i = 1..4) of the matrix
EL (Equation (15)) can be written as:

W
(i)
L1 =

v0
γ1∆1

(
w

(i)
0

[
D1 − λ(i)

]
+B1

−w
(i)
0 C1 −

[
A1 − λ(i)

]
)

, (A17)

W
(i)
L2 = − v0

γ2∆2

(
w

(i)
0

[
D2 − λ(i)

]
+B2

−w
(i)
0 C2 −

[
A2 − λ(i)

]
)

.(A18)

Finally each column i (i = 1..4) of the matrix EL is

obtained by assembling the 2nd-order vectors W
(i)
L1810

and W
(i)
L2 by Equation (A3).

A3 Eigenvectors for a symmetric cell

The dispersion equation (A9) and the expression
(A17,A18)) of the eigenvectors are general. A more
useful expression can be obtained if the propagation815

matrix T is splitted into two matrices in order to get
a symmetric cell (see Section 2.4 and Figure 2). Con-
sequently A0 = D0.
The transfer matrix of a symmetric cell (Equa-

tion (9)) is written in the diagonal form (Equation820

(13)):comparing this equation and Equation (13), the
columns of the eigenvector matrix E (Equation (15))
can be obtained from the eigenvectors of the anti-

symmetric cell W(i)
L (Equations (A17,A18)) by:

W(i) =

(
W

(i)
1

W
(i)
2

)
= TLW(i)

L . (A19)

Therefore, using Equation (A5), W
(i)
1 is given by:825

W
(i)
1 =

1

γ1
(TR1 − λT−1

L1 )
−1W

(i)
0 or (A20)

W
(i)
1 =

v0
∆1γ1

(
w

(i)
0 DR1

(
δ1 − λ(i)

)
+BR1(δ1 + λ(i))

−w
(i)
0 CR1(δ1 + λ(i))−AR1(δ1 − λ(i))

)

with δ1 = det(TL1) = det(TR1). A similar expression
holds for the guide 2, with a sign − before v0. When
the determinants are unity, the eigenvectors are given
by Equation (18).



Pachebat and Kergomard, p. 14

Appendix B: Transfer matrix of830

a lattice of n cells

B1 First form of the transfer matrix

In order to simplify the calculation of the invert ma-
trix of E (Equation (18)), it is convenient to write its
first up-left quarter in the form of a matrix product:835

(
W

(1)
1 W

(2)
1

)
= v0H1FD

−1/2 (B1)

where H1 =

(
z1 0
0 h1

)
, F =

(
1 1
1 −1

)
and

D =

(
eΓ 0
0 e−Γ

)
. Using similar notations, the three

other quarters of the matrix E are:

(
W

(3)
1 W

(4)
1

)
= v0H

′

1FD
′−1/2, (B2)

(
W

(1)
2 W

(2)
2

)
= −v0H2FD

−1/2, (B3)
(
W

(3)
2 W

(4)
2

)
= −v0H

′

2FD
′−1/2 . (B4)

By assembling expressions (B1-B4), the eigenvector
matrix E =

(
W(1) W(2) W(3) W(4)

)
is written as:840

E =v0

(
H̃1 H̃′

1

−H̃2 −H̃′
2

)(
F 0
0 F

)(
D 0
0 D′

)−1/2

. (B5)

Thanks to this particular form for E , that results from
reciprocity, the 4th-order transfer matrix for a lattice
of n symmetric cells (TLPFTR)n = (EDnE−1) is ob-
tained as:

(TLPFTR)n = EDnE−1 =

(
H1 H′

1

−H2 −H′
2

)(
F 0
0 F

)

×
(
D 0
0 D′

)n (
F 0
0 F

)−1(
H1 H′

1

−H2 −H′
2

)−1

(B6)

B2 Second form of the transfer matrix845

In order to derive the impedance matrix, a second
form of the transfer matrix is useful. The vector V
(Equation (1)) is replaced by a vector Ṽ defined as
follows:850

Ṽ =

(
P
U

)
where P =

(
p1
p2

)
and U =

(
u1

u2

)
,

(B7)
where ui = Sivi (i = 1, 2) are the flow rates. Consid-
ering the eigenvector matrix E (Equation (18)), a per-
mutation of the second and third rows and columns is
required, as well as a permutation of the second and

third eigenvalues (see e.g. [45]). The following result
is obtained:

Ẽ=v0




z1 z′1 z1 z′1
−z2 −z′2 −z2 −z′2
g1 g′1 −g1 −g′1
−g2 −g′2 g2 g′2


 D̃−1/2;

D̃ =




eΓ 0 0 0

0 eΓ
′

0 0
0 0 e−Γ 0

0 0 0 e−Γ′




(B8)

if gi = Sihi, or equivalently:

Ẽ = v0

(
Z 0
0 G

)(
I I
I −I

)
with (B9)

Z =

(
z1 z′1
−z2 −z′2

)
,G =

(
g1 g′1
−g2 −g′2

)
. (B10)

Finally the second from of the transfer matrix is:

Ṽ0 =

(
Z 0
0 G

)(
Cn Sn

Sn Cn

)(
Z 0
0 G

)−1

Ṽn , (B11)

with Cn =

(
coshnΓ 0

0 coshnΓ′

)
, and Sn =

(
sinhnΓ 0

0 sinhnΓ′

)
.

Appendix C: Reciprocity rela-855

tionships

Reciprocity is related to the choice of matrices T1, T2

and M, with a determinant equal to unity. In order
to find the consequences on the eigenvectors of a cell,
we start from the classical reciprocity equation valid860

for guides without flow. We write it on the surface Σ
of a cell (e.g., a symmetric cell):

ˆ ˆ

Σ

(
p(i)

−−→
v(j) − p(j)

−→
v(i)
)
d
−→
Σ = 0. (C1)

The superscripts i and j correspond to two different
situations. For instance two situations where only
one eigenmode exists can be chosen. The integral865

vanishes on all rigid walls, therefore it is limited to
the input and output of a cell. The term in paren-
thesis in Equation (C1) is the same for the output
surface and the input surface, apart from the fac-
tor − exp(Γ(i)) exp(Γ(j)). Therefore it is possible to870

factorize the term
[
1− exp(Γ(i)) exp(Γ(j))

]
, and for

the eigenmodes corresponding to Γ and −Γ, Equation
(C1) is trivial because this term vanishes. It remains
to solve the following equation:

ˆ ˆ

S1+S2

(
p
−→
v′ − p′−→v

)
d
−→
Σ = 0 (C2)
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for the modes corresponding to Γ and Γ′, and to Γ and875

−Γ′. Using the expressions (18) of the eigenvectors,
the following equations are obtained:

γ1z1h
′

1 = −γ2z2h
′

2 ; γ1z
′

1h1 = −γ2z
′

2h2. (C3)

A direct checking of these equations is heavy. Reci-
procity implies also the symmetry of the impedance
matrix, as shown in Section 4.1.880
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