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Abstract

When integrating hard, soft and non-real-time tasks in general purpose
operating systems, it is necessary to provide temporal isolation so that
the timing properties of one task do not depend on the behaviour of
the others. However, strict budget enforcement can lead to inefficient
use of the computational resources in the presence of tasks with variable
workload. Many resource reclaiming algorithms have been proposed in
the literature for single processor scheduling, but not enough work exists
for global scheduling in multiprocessor systems. In this paper we propose
two reclaiming algorithms for multiprocessor global scheduling and we
prove their correctness. We also present their implementation in the Linux
kernel and we compare their performance on synthetic experiments.

1 Introduction

The Resource Reservation Framework [20, 1] is an effective technique to inte-
grate the scheduling of real-time tasks in general-purpose systems, as demon-
strated by the fact that it has been recently implemented in the Linux kernel [14].
One of the most important properties provided by resource reservations is tem-
poral isolation: the worst-case performance of a task does not depend on the
temporal behaviour of the other tasks running in the system. This property can
be enforced by limiting the amount of time for which each task can execute in
a given period.
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In some situations, a strict enforcement of the executed runtime (as done
by the hard reservation mechanism that is currently implemented in the Linux
kernel) can be problematic for tasks characterized by highly-variable, or difficult
to predict, execution times: allocating the budget based on the task’ Worst Case
Execution Time (WCET) can result in a waste of computational resources; on
the other hand, allocating it based on a value smaller than the WCET can cause
a certain number of deadline misses. These issues can be addressed by using a
proper CPU reclaiming mechanism, which allows tasks to execute for more than
their reserved time if spare CPU time is available and if this over-execution
does not break the guarantees of other real-time tasks.

While many algorithms (e.g., [18, 15, 10, 17]) have been developed for re-
claiming CPU time in single-processor systems, the problem of reclaiming CPU
time in multiprocessor (or multicore) systems has been investigated less. Most
of the existing reclaiming algorithms (see [15] for a summary of some commonly
used techniques) are based on keeping track of the amount of execution time
reserved to some tasks, but not used by them, and by distributing it between
the various active tasks. In a multiprocessor system, this idea can be extended
in two different ways:

1. by considering a global variable that keeps track of the execution time not
used by all the tasks in the system (without considering the CPUs/cores
on which the tasks execute), and by distributing such an unused execution
time to the tasks. This approach will be referred to as parallel reclaiming
in this paper, because the execution time not used by one single task
can be distributed to multiple tasks that execute in parallel on different
CPUs/cores;

2. by considering multiple per-CPU/core (per-runqueue, in the Linux ker-
nel slang) variables each representing the unused bandwidth that can be
distributed to the tasks executing on the corresponding CPU/core. This
approach will be referred to as sequential reclaiming in this paper, because
the execution time not used by one single task is associated to a CPU/core,
and cannot be distributed to multiple tasks executing simultaneously.

This paper compares the two mentioned approaches by extending the GRUB
(Greedy Reclamation of Unused Bandwidth) [17] reclaiming algorithm to sup-
port multiple processors according to sequential reclaiming and parallel reclaim-
ing. The comparison is performed both from the theoretical point of view (by
formally analysing the schedulability of the obtained algorithm) and by running
experiments on a real implementation of this extension, named M-GRUB. Such
implementation of M-GRUB reclaiming (that can do either parallel or sequen-
tial reclaiming) is based on the Linux kernel and extends the SCHED DEADLINE

scheduling policy.
The paper is organised as follows: in Section 2 we recall the related work. In

Section 3 we present our system model and introduce the definitions and con-
cepts used in the paper. The algorithms and admission tests used as a starting
point for this work are then presented in Section 4. The two proposed reclaiming
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rules are described in Section 5. In Section 6 we discuss the implementation
details and in Section 7 we present the results of our experiments. Finally, in
Section 8 we present our conclusions.

2 Related work

The problem of reclaiming unused capacity for resource reservation algorithms
has been mainly addressed in the context of single processor scheduling.

The CASH (CApacity SHaring) algorithm [10] uses a queue of unused bud-
gets (also called capacities) that is exploited by the executing tasks. However,
the CASH algorithm is only useful for periodic tasks. Lin and Brandt proposed
BACKSLASH [15], a mechanism based on capacities that integrates four differ-
ent principles for slack reclaiming. Similar techniques still based on capacities
are used by Nogueira and Pinho [18].

The GRUB algorithm [17] modifies the rates at which servers’ budgets are
decreased so to take advantage of free bandwidth. The algorithm can be also
used by aperiodic tasks. We present the GRUB algorithm in Section 4 as it
is used as a basis for our multiprocessor reclaiming schemes. For fixed prior-
ity scheduling, Bernat et al. proposed to reconsider past execution so to take
advantage of the executing slack [6].

Reclaiming CPU time in multiprocessor systems is more difficult (especially
if global scheduling is used), as shown by some previous work [9] that ends
up imposing strict constraints on the distribution of spare budgets to avoid
compromising timing isolation: spare CPU time can only be donated by hard
real-time tasks to soft real-time tasks – which are scheduled in background
respect to hard tasks – and reservations must be properly dimensioned.

To the authors’ best knowledge, the only previous algorithm that explicitly
supports CPU reclaiming on all the real-time tasks running on multiple proces-
sors without imposing additional constraints (and has been formally proved to
be correct) is M-CASH [19]. It is an extension of the CASH algorithm to the
multiprocessor case, which additionally includes a rule for reclaiming unused
bandwidth by aperiodic tasks. The algorithm uses the utilisation based test by
Goossens, Funk and Baruah [12] as a base schedulability test for the servers. It
distinguishes two kinds of servers: servers for periodic tasks (whose utilisation
is reclaimed using capacity-based mechanism) and servers for aperiodic tasks,
whose bandwidth is reclaimed with a technique similar to the parallel reclaiming
that we propose in Section 5.1. However, M-CASH has never been implemented
in a real OS kernel. On the other hand, the GRUB algorithm [17] has been im-
plemented in the Linux kernel [2], after extending the algorithm to support
multiple CPUs, but the multiprocessor extensions used in this implementation
have not been formally analysed nor validated from a theoretical point of view.
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3 System model and definitions

We consider a set of n real-time tasks τi scheduled by a set of n servers Si

(i = 1, . . . , n).
A real-time task τi is a (possibly infinite) sequence of jobs Ji,k: each job

has an arrival time ai,k, a computation time ci,k and a deadline di,k. Periodic
real-time tasks are characterised by a period Ti, and their arrival time can
be computed as ai,k+1 = ai,k + Ti. Sporadic real-time tasks wait for external
events with a minimum inter-arrival time, also called Ti, so ai,k+1 ≥ ai,k + Ti.
Periodic and sporadic tasks are usually associated a relative deadline Di such
that di,k = ai,k +Di.

A server is an abstract entity used by the scheduler to reserve a fraction of
CPU-time to a task. Each server Si is characterised by the following parameters:
Pi is the server period and it represents the granularity of the reservation; Ui

is the fraction of reserved CPU-time, also called utilisation factor or bandwidth.
In each period, a server is reserved at least a maximum budget, or runtime,
Qi = UiPi.

The execution platform consists of m identical processors (Symmetric Multi-
processor Platform, or SMP). In this paper we use the Global Earliest Deadline
First (G-EDF) scheduling algorithm: all the tasks are ordered by increasing
deadlines of the servers, and the m active tasks with the earliest deadlines are
scheduled for execution on the m CPUs.

The logical priority queue of G-EDF is implemented in Linux by a set of
runqueues, one per each CPU/core, and some accessory data structures for
making sure that the m highest-priority jobs are executed at each instant (see
[13] for a description of the implementation).

4 Background

In this section we first recall the Constant Bandwidth Server (CBS) algo-
rithm [1, 4] for both single and multiprocessor systems. We then recall the
GRUB algorithm [17], an extension of the CBS. Finally, we present two schedu-
lability tests for Global EDF.

4.1 CBS and GRUB

As anticipated in Section 3, each server is characterised by a period Pi, a band-
width Ui and a maximum budget Qi = UiPi. In addition, each server maintains
the following dynamic variables: the server deadline di, denoting at every in-
stant the server priority, and the server budget qi, indicating the remaining
computation time allowed in the current server period.

At time t, a server can be in one of the following states: ActiveContending,
if there is some job of the served task that has not yet completed; ActiveNon-
Contending, if all jobs of the served task have completed, but the server has
already consumed all the available bandwidth (see the transition rules below
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for a characterisation of this state); Inactive, if all jobs of the server’s task have
completed and the server bandwidth can be reclaimed (see the transition rules
below), and Recharging, if the server has jobs to execute, but the budget is cur-
rently exhausted and needs to be recharged (this state is generally known as
“throttled” in the Linux kernel, or “depleted” in the real-time literature).

The EDF algorithm chooses for execution the m tasks with the earliest server
deadlines among the ActiveContending servers. Initially, all servers are in the
Inactive state and their state change according to the following rules:

1. When a job of a task arrives at time t, if the corresponding server is Inac-
tive, it goes in ActiveContending and its budget and deadlines are modified
as: qi ← UiPi and di ← t+ Pi

2a. When a job of Si completes and there is another job ready to be executed,
the server remains in ActiveContending with all its variables unchanged;

2b. When a job of Si completes, and there is no other job ready to be executed,
the server goes in ActiveNonContending.

2c. If at some time t the budget qi is exhausted, the server moves to state
Recharging, and it is removed from the ready queue. The corresponding
task is suspended and a new server is executed.

3. When t = di, the server variables are updated as di ← di + Pi and qi ←
UiPi. The server is inserted in the ready queue and the scheduler is called
to select the earliest deadline server, hence a context switch may happen.

4. If a new job arrives while the server is in ActiveNonContending, the server
moves to ActiveContending without changing its variables.

5. A server remains in ActiveNonContending only if qi < (di − t)Ui. When
qi ≥ (di − t)Ui the server moves to Inactive.

Only servers that are ActiveContending can be selected for execution by the
EDF scheduler. If Si does not execute, its budget is not changed. When Si is
executing, its budget is updated as dqi = −dt.

When serving a task, a server generates a set of server jobs, each one with
an arrival time, an execution time and a deadline as assigned by the algorithm’s
rules. For example, when the server at time t moves from Inactive to Active-
Contending a new server job is generated with arrival time equal to t, deadline
equal to di = t + Pi, and worst-case computation time equal to Qi. A similar
thing happens when the server moves from Recharging to ActiveContending, and
so on.

We say that a server is schedulable if every server job can execute the budget
Qi before the corresponding server job deadline. It can be proved that the
demand bound function dbf (see [5] for a definition) generated by the server
jobs of Si is bounded from above as follows: dbf(t) ≤ Uit for each t. Hence, for
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single processor systems it is possible to use the utilisation test of EDF as an
admission control test, i.e.,

n∑
i=1

Ui ≤ 1. (1)

It has been proved that if Equation (1) holds, then all servers are schedulable
(i.e. all servers jobs will complete before their scheduling deadlines). Based on
this result, it is possible to guarantee the respect of the deadlines of a task by
setting Pi ≤ Ti and Qi ≥ Ci (see the original paper [1] for a more complete
description).

The CBS algorithm has been extended to multiprocessor global scheduling
in [4]. The authors prove the temporal isolation and the hard schedulability
properties of the algorithm when using the schedulability test of Goossens, Funk
and Baruah [12], which we will recall next.

The GRUB algorithm [17] extends the CBS algorithm by enabling the re-
claiming of unused bandwidth, while preserving the schedulability of the served
tasks. The main difference between the CBS and GRUB algorithms is the rule
for updating the budget. In the original CBS algorithm, the server budget is
updated as dqi = −dt, independently of the status of the other servers. To
reclaim the excess bandwidth, GRUB maintains one additional global variable
Uact, the total utilisation of all active servers

Uact :=
∑

Si /∈Inactive

Ui

and uses it to update the budget qi as

dqi

dt
= −(1− (Usys − Uact)) (2)

where Usys is the utilisation that the system reserves to the set of all servers.
As in the original CBS algorithm, the budget is not updated when the server
is not executing. The executing server gets all the free bandwidth in a greedy
manner, hence the name of the algorithm. The GRUB algorithm preserves the
Temporal Isolation and Hard Schedulability properties of the CBS [16].

4.2 Admission control tests

When using the CBS or the GRUB algorithm it is important to run an admission
test to check if all the servers’ deadlines are respected. In single processor
systems, the utilisation based test of Equation (1) is used for both the CBS
and the GRUB algorithm. We now present two different schedulability tests
for the multiprocessor case: an utilisation-based schedulability test for G-EDF
by Goossens, Funk and Baruah [12] (referred to as GFB in this paper), and an
interference-based schedulability test for G-EDF proposed by Bertogna, Cirinei
and Lipari [8] (referred to as BCL in this paper).
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GFB and BCL are not the most advanced tests in the literature: in partic-
ular, as discussed in [7], more effective tests – i.e. tests that can admit a larger
number of task sets – are now available. The reason we chose these two in par-
ticular is their low complexity (so they can be used as on-line admission tests),
and the fact that currently we are able to prove the correctness of the reclaiming
rules with respect to these two tests in particular. In fact, we need to guarantee
that the temporal isolation property continues to hold even when some budget
is donated by one server to the other ones according to some reclaiming rule.

At the time of preparation of this paper, we have formally proved the cor-
rectness of the two reclaiming rules proposed in Section 5 with respect to the
GFB and the BCL test – the proofs are not reported here, due to space con-
straints, and can be found in a separate Technical Report [3]. Using some other,
more effective, admission control test may be unsafe, hence, for the moment we
restrict our attention to GFB and BCL.

The GFB test is based on the notion of uniform multiprocessor platform,
and it allows to check the schedulability of a task set based on its utilisation.

In practice, according to GFB, a set of periodic or sporadic tasks is schedu-
lable by G-EDF if:

U ≤ m− (m− 1)Umax (3)

where Umax = maxi{Ui}.
The maximum utilisation we can achieve depends on the maximum utili-

sation of all tasks in the system: the largest is Umax, the lower is the total
achievable utilisation. This test is only sufficient: if Equation (3) is not verified,
the task set can still be schedulable by G-EDF.

The authors of [12] also proposed to give higher priority to largest utilisation
tasks. In this paper we will not consider these further enhancements.

The BCL test was developed for sporadic tasks, and here we adapt the
notations to server context. We focus on the schedulability of a target server Sk;
particularly, we choose one arbitrary server job of Sk. Execution of the target
server job may be interfered by jobs from other servers with earlier absolute
deadlines. The interference over the target server job by an interfering server
Si, within a time interval, is the cumulative length of sub-intervals such that
the target server is in ActiveContending but cannot execute, while Si is running.

A problem window is the time interval that starts with the target server
job’s arrival time and ends with the target server job’s deadline. As a result,
the interference from an interfering server Si is upper bounded by its workload,
which is the cumulative length of execution that Si conducts within the problem
window. Let us denote the worst-case workload of a server Si in the problem
window as Ŵi,k.

The formulation of the workload used in this paper is the same as the one
proposed in [8]. In order not to compromise the schedulability when reclaiming
CPU time (see [3]), we need to add one additional term to this upper bound to
take into account the interference caused by the reclaimed bandwidth by servers
that may be activated aperiodically.
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Thus, in this paper the workload upper bound is defined as follows:

Ŵi,k =

⌊
Pk

Pi

⌋
Qi + min{Qi,∆}+ max{∆−Qi, 0}Ui (4)

where ∆ = (Pk mod Pi).
On the other hand, when Si and Sk execute in parallel on different processors

at the same time, Si does not impose interference on Sk. Thus, in case Sk is
schedulable, the interference upon the target job by Si cannot exceed (Pk−Qk).

In the end, according to the formulation of BCL used in this paper a task
set is schedulable if one of the following two conditions is true:

a)
∑
i 6=k

min{Ŵi,k, Pk −Qk} < m(Pk −Qk)

b)
∑
i 6=k

min{Ŵi,k, Pk −Qk} = m(Pk −Qk)

∧¬∃h 6= k, Ŵh,k ≤ Pk −Qk

(5)

Between the two tests presented so far (GFB and BCL) no one dominates
the other: there are task sets that are schedulable by GFB but not by BCL,
and vice versa. In general terms, BCL is more useful when a task has a large
utilisation, whereas GFB is more useful for a task set with many small tasks.

5 Reclaiming rules

In this section we propose two new reclaiming rules for G-EDF. The first one,
that we call parallel reclaiming equally divides the reclaimed bandwidth among
all executing servers. The second one, that we call sequential reclaiming assigns
the bandwidth reclaimed from one server to one specific processor.

Note that, when bandwidth reclaiming is allowed, served jobs within a server
may run for more than the server’s budget, as the bandwidth from other servers
may be exploited. Due to space constraints, the proofs of correctness are not
reported here. They can be found in [3].

5.1 Parallel reclaiming

In parallel reclaiming, we define one global variable Uinact, initialized to 0, that
contains the total amount of bandwidth in the system that can be reclaimed.
The rules corresponding to transitions 1 and 5 are modified as follows.

5. A server remains in ActiveNonContending only if qi < (di − t)Ui. When
qi ≥ (di − t)Ui the server moves to Inactive. Correspondingly, variable
Uinact is incremented by Ui.

1. When a job of a task arrives, if the corresponding server is Inactive, it goes
to ActiveContending and its budget and deadline are modified as in the
original rule. Correspondingly, Uinact is decremented by Ui.
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While a server Si executes on processor p, its budget is updated as follows:

dqi = −max

{
Ui, 1−

Uinact

m

}
dt. (6)

This rule is only valid for the GFB test. That is, if a set of servers are
schedulable by GFB without bandwidth reclaiming, it is still schedulable when
parallel reclaiming is allowed.

Initialization of Uinact While it is safe to initialise Uinact to be 0, we would
like to take advantage of the initial free bandwidth in the system. Therefore,
we initialise Uinact to the maximum initial value that can be reclaimed without
jeopardizing the existing servers. From Equation (3), we have:

U + Uinact ≤ m− (m− 1)Umax.

That is,
Uinact = m− (m− 1)Umax − U. (7)

This is equivalent to having one or more servers, whose cumulative bandwidth
is Uinact that are always inactive.

5.2 Sequential reclaiming

In sequential reclaiming, we define an array of variables Uinact[], one per each
processor. The variable corresponding to processor p is denoted by Uinact[p].
More specifically, Uinact[p] is the reclaimable bandwidth from inactive servers
that complete their executions in processor p, and Uinact[p] can only be used by
a server running on p. For any p, Uinact[p] can be safely initialised to be 0. Then,
we modify the rules corresponding to transitions 1 and 5 as follows.

5. A server remains in ActiveNonContending only if qi < (di − t)Ui. When
qi ≥ (di − t)Ui the server moves to Inactive. Correspondingly, one of
the variables Uinact[p] is incremented by Ui. The server remembers the
processor where its utilisation has been stored, so that it can recuperate
it later on.

1. When a job of a task arrives, if the corresponding server is Inactive, it goes
in ActiveContending and its budget and deadline are modified as in the
original rule. Correspondingly, Uinact[p] (where p is the processor where
the utilisation was stored before) is decremented by Ui.

While a server Si executes, its budget is updated as follows:

dqi = −max {Ui, 1− Uinact[p]} dt. (8)

Notice that, for the moment, we do not explore more sophisticated methods
for updating Uinact[p] when a server becomes inactive. In fact, there are several
possible choices: for example, we could use a Best-Fit algorithm to concentrate
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all reclaiming in the smallest number of processors, or Worst-Fit to distribute
as much as it is possible the reclaimed bandwidth across all processors. In the
current implementation, for simplicity we chose to update the variable Uinact[p]
corresponding to the processor where the task has been suspended.

This rule works for both the GFB test of Equation (3) and and for the
modified BCL test of Equation (5).

Initialization of Uinact[] Similarly to the parallel reclaiming case, we would
like to initialise each Uinact[p] to be an as large as possible value so to reclaim
the unused bandwidth in the system. Let us denote this value as Ux.

In case the GFB test is used, the maximum free bandwidth is computed as
in Equation (7). Then, to keep the set of servers still schedulable w.r.t. GFB,

we can initialise each variable to a value U ′x = m−(m−1)Umax−U
m .

When it comes to the BCL test, we can think of adding m servers to the
system, each one with infinitesimal period and bandwidth equal to U ′′x . To allow
each server to use free bandwidth as much as possible while still guaranteeing
the schedulability, the following condition should hold.

∀k,
∑
i 6=k

min(Ŵi,k, Pk −Qk) +mU ′′xPk < m(Pk −Qk)

U ′′x < min
k

{
Pk −Qk

Pk
−
∑

i6=kmin(Ŵi,k, Pk −Qk)

mPk

}

Finally we take the maximum between U ′x and U ′′x , since only one of the two
test needs to be verified.

Uinact[p] = max {U ′x, U ′′x } . (9)

6 Implementation

The parallel and sequential reclaiming techniques described in the previous sec-
tions have been implemented in the Linux kernel, extending the SCHED DEADLINE

scheduling policy [14]. The modified Linux kernel has been publicly released at
https://github.com/lucabe72/linux-reclaiming. These kernel modifica-
tions are based on a previous implementation of the GRUB algorithm [2], which
however did not guarantee schedulability of server jobs.

6.1 Parallel reclaiming implementation

Parallel reclaiming requires to keep track of the total inactive bandwidth in a
global (per-root domain) variable Uinact which is updated when tasks move from
an Active states to the Inactive state or vice-versa.

Then, the budget decrease rate of every executing server depends on this
global variable (see Equation (6)). For each executing SCHED DEADLINE task,
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the scheduler periodically accounts the executed time, decreasing the current
budget (called “runtime” in the Linux kernel) of the task at each tick (or when
a context switch happens). When a reclaiming strategy is used, the amount
of time decreased from the budget depends on the value of the global variable
Uinact. This means that, when a server changes its state to Inactive (or Active-
Contending) and the value of Uinact changes all the CPUs should be signalled
to update the budgets of the executing task before Uinact is changed. Such an
inter-processor signalling can be implemented using Inter-Processor Interrupts
(IPIs). However, this may substantially increase the overhead of the scheduler
and increase its complexity; furthermore the combination of global variables and
inter-processor interrupts may lead to race conditions very difficult to identify.

Therefore, parallel reclaiming has been implemented by introducing a small
approximation: we avoid IPIs and the value of Uinact is sampled only at each
scheduling tick. In this regard it is worth noting that every real scheduler imple-
ments an approximation of the theoretical scheduling algorithm: for example,
SCHED DEADLINE accounts the execution time at every tick (hence, a task can
consume up to 1 tick more than the reserved runtime / budget).

Despite of the approximations introduced when implementing parallel re-
claiming, during our experiments with randomly generated tasks we never ob-
served any server deadline miss, probably because the GFB schedulability test is
pessimistic and hence a certain amount of slack is available in the great majority
of cases. It is important to underline, however, that from a purely theoretical
point of view our current implementation of the parallel reclaiming rule cannot
guarantee the respect of every server deadline.

6.2 Sequential reclaiming implementation

Implementing sequential reclaiming is easier under certain assumptions. In par-
ticular, we need to make sure that the code executing on the p-th runqueue only
accesses variables local to the same runqueue.

In sequential reclaiming, we need to provide one variable Uinact for each
runqueue. When a server on the p-th runqueue becomes Inactive, we update
the corresponding variable; at this point, only the budget of the task executing
on this runqueue needs to be updated. When a server becomes Active, we
make sure that the corresponding handler is executed on the same processor
where the server was previously suspended and became Inactive (the task will
be migrated later, if necessary). Therefore, we just need to modify the local
Uinact and update the budget of the task executing on this CPU. While this may
not be the optimal way to distribute the spare bandwidth, we do not need any
IPI to implement the exact reclaiming rule (the only approximations are the
ones introduced by the SCHED DEADLINE accounting mechanism).

Notice that for both parallel and sequential reclaiming the transition between
ActiveNonContending and Inactive is handled by setting up an inactive timer that
fires when such a transition should happen (for more details, see [2], where such
a time is named 0-lag time).
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7 Experimental Evaluation

The effectiveness of the reclaiming algorithms has been evaluated through some
experiments with the patched Linux kernel described in the previous section.
The kernel version used for all the experiments is based on version 3.19 (in
particular, the global-reclaiming and refactored-reclaiming branches of
the linux-reclaiming repository have been used). All the tests were executed
on a 4-cores Intel Xeon CPU.

7.1 Randomly generated tasks

The first set of experiments has been performed by executing sets of randomly
generated real-time tasks with the rt-app application1.

A set of 100 task sets with utilisation U = 2.5 has been generated using the
taskgen [11] script, and the task sets that are schedulable according to the BCL
and GFB tests have been identified. Some first rt-app runs confirmed that these
task sets can actually run on the Linux kernel (using SCHED DEADLINE) without
missing any deadline. Then, the reclaiming mechanisms have been tested as
follows: for each schedulable task set γ = {(Ci, Ti)} generated by taskgen, a
task set Γ = {τ ′i} has been generated, where τ ′i has period Ti and execution time
uniformly distributed between αγCi and γCi (hence, the WCET of task τi is
γCi), and is scheduled by a server with parameters (Qi = Ci, Pi = Ti). Notice
that γ represents the ratio between the task’s WCET and the maximum budget
allocated to the task; hence increasing γ increases the amount of CPU time that
the task needs to reclaim to always complete before its deadline; on the other
hand, α represents the ratio between the BCET and the WCET of a task (so,
α ≤ 1). Decreasing α increases the amount of CPU time that a task can donate
to the other tasks through the reclaiming mechanism. When γ ≤ 1, the WCET
of each task is smaller than the maximum budget Qi used to schedule the task,
so all the tasks’ deadlines will be respected. The experiments confirmed this
expectation. When γ > 1, instead, the situation is more interesting because
some deadlines can be missed and enabling the reclaiming mechanism allowed
to reduce the amount of missed deadlines.

Figure 1 reports the percentage of missed deadlines for γ = 1.1 as a function
of α when using no reclaiming, parallel reclaiming and sequential reclaiming.
For parallel and sequential reclaiming, the results are reported both when ini-
tialising Uinact to 0 and when initialising it according to Equations (7) and (9)
(reclaiming the initial spare utilisation). From the figure, it can be seen that
both reclaiming algorithms allow to reduce the percentage of missed deadlines;
however, parallel reclaiming tends to perform better than sequential reclaiming.
When α increases, the average utilisation of the tasks increases, and the amount
of CPU time that can be reclaimed decreases; hence, the differences between
the efficiency of the various algorithms become more evident; however, parallel
reclaiming performance do not seem to depend too much on the value used to

1https://github.com/scheduler-tools/rt-app
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Figure 1: Percentage of missed deadlines when using rt-app with different
reclaiming strategies. α varies from 0.2 to 0.8, and γ = 1.1.

initialise Uinact. This happens because with a small value of γ = 1.1, the tasks
do not need to reclaim much execution time.

Increasing the value of γ to γ = 1.3 (Figure 2), the tasks need to reclaim
more execution time and the effect of Uinact initialisation becomes more evident.
In particular, with α = 0.8 the tasks cannot donate enough execution time, so
if Uinact is initialised to 0 (only the utilisation of the “existing tasks” can be
reclaimed) the two reclaiming algorithms (parallel and sequential) do not seem
to be very effective (the percentage of missed deadlines is similar to the “No
Reclaiming” case). If, instead, Uinact is initialised according to Equations (7)
and (9) the reclaiming algorithms are able to reclaim the spare utilisation and
are able to reduce the percentage of missed deadlines.

Some partial conclusions can be drawn from this set of experiments. In gen-
eral, the parallel reclaiming strategy performs better than sequential reclaiming.
This is probably due to the fact that parallel reclaiming tends to fairly distribute
the spare bandwidth across all processors, whereas in the current implementa-
tion of the sequential reclaiming we have no control on which server uses the
reclaimed bandwidth. In fact, with sequential reclaiming, in the worst-case all
reclaiming could go on one single processor and benefit only the tasks that by
chance execute on that processor.

On the other hand, using sequential reclaiming we can admit a larger number
of tasks sets, because the mechanism is valid both for the GFB and a modified
version of the BCL test. Furthermore, as previously discussed a precise imple-
mentation of the parallel reclaiming is more costly in terms of overhead and
programming effort. For the moment we conclude that sequential reclaiming
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Figure 2: Percentage of missed deadlines when using rt-app with different
reclaiming strategies. α varies from 0.2 to 0.8, and γ = 1.3.

seems to be preferable from an implementation point of view. However we
acknowledge that further investigation is needed to perform a full assessment.

7.2 Experiments on real applications

In the next set of experiments, the performance of a real application (the
mplayer video player2) has been evaluated. In particular, mplayer has been
modified to measure the “Audio/Video delay”, defined as the difference of the
presentation timestamps of two audio and video frames that are reproduced
simultaneously. A negative value of the Audio/Video delay means that video
frames are played in advance with respect to the corresponding audio frames,
while a positive value indicates that the video is late with respect to the audio
(probably because mplayer has not been able to decode the video frames in
time). When this value becomes too large, audio and video are perceived out of
synch, and the quality perceived by the user is badly affected.

When mplayer is executed as a SCHED DEADLINE task, it is pretty easy to
set the reservation period P = 1/fps, where fps is the frame rate (in frames
per second) of the video; however, correctly dimensioning the maximum bud-
get/runtime Q is much more difficult. If Q is slightly under-dimensioned (larger
than the average time needed to decode a frame, but smaller than the maximum
time), the Audio/Video delay can become too large affecting the quality, and a
reclaiming mechanism can help in improving the perceived quality.

2http://www.mplayerhq.hu
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Figure 3: Audio/Video delay experienced by mplayer reproducing a video when
scheduled with SCHED DEADLINE. The three plots indicate mplayer executing
alone or together with other real-time tasks without reclaiming, or with the
M-GRUB reclaiming mechanism.

For example, Figure 3 shows the evolution of the Audio/Video delay ex-
perienced by mplayer when reproducing a full-D1 mpeg4 video (with vorbis
audio) with Q = 4.5ms and P = 40ms (the video is 25 frames per second, so
P = 1s/25 = 40ms). The experiment has been repeated executing mplayer

alone on an idle 4-cores system (“No Reclaiming, idle system” line) or together
with other real-time tasks (implemented by rt-app, in the “No Reclaiming,
loaded system” line). In the “loaded system” case, the total utilisation was
about 2.2 and the task set resulted to be schedulable according to both BCL
and GFB. As it can be noticed, in both cases the Audio/Video delay continues
to increase, and becomes noticeable for the user. When the M-GRUB reclaim-
ing mechanism is activated, mplayer can use some spare time left unused from
the other tasks, and the Audio/Video delay is unnoticeable (see “Reclaiming,
loaded system”).

The experiment has been repeated with parallel and sequential reclaiming,
obtaining identical results. Hence, in this specific case using one policy instead
of the other does not bring any particular advantage.

Notice that the scheduling parameters (reservation period and maximum
budged) of the rt-app real-time tasks have been dimensioned so that no deadline
is missed. During the experiments, it has been verified that the number of missed
deadlines for such tasks is actually 0, even when the reclaiming mechanism is
enabled.
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8 Conclusions

In this paper, we proposed two different reclaiming mechanisms for real-time
tasks scheduled by G-EDF on multiprocessor platforms, named parallel and
sequential reclaiming. After proving their correctness, we described their im-
plementation on the Linux OS, and compared their performance on synthetic
experiments. Parallel reclaiming requires more approximations in its implemen-
tation, however, in average it performs better than the sequential reclaiming.
On the other hand, sequential reclaiming can guarantee the real-time schedu-
lability of a large number of tasks, as it allows to use a different admission
test, and is characterised by a simpler implementation. However, it performs
slightly worse in average. In the future we plan to conduct further investigations
comparing the two strategies, and to use more advanced admission tests.
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