David Sarrut Recalage déformable en radiothérapie Radiation therapy guidée par l'image

- A major cancer treatment (2/3 of patients)
- Use radiation to kill cancer cells.
 - High energy x-ray
 - Alternative with proton, carbon (in development)
- Challenge:

deliver maximum dose to target, while sparing healthy surrounding tissue

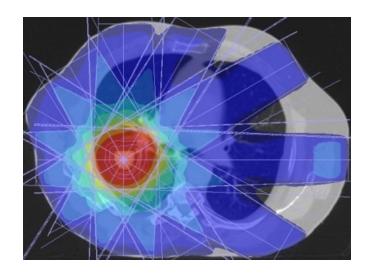


Image guided radiation therapy

Make heavy use of imaging

Treatment planning:

- Performed on CT
- Use fused MRI, PET
- Advanced development with 4D CT

In room image guidance

- O CBCT Cone Beam CT
- US image guidance
- Video, surface based
- O Future: embedded MRI

Image guided radiation therapy

Heavily computer based.

- Simulation to predict dose distribution on planning CT image
- Segmentation (atlas based)
- Registration, planning multimodality
- Reconstruction motion compensated (in room)
- Registration, in room

Deformable Image Registration

Deformable Image Registration: is an **iterative** algorithm

- Input = two images A & B
- Output = Deformation Vector Field (DVF)

Numerous method; Still active research field Useful in RT but in other domains also

Deformation Vector Field (DVF)

Deformable registration

Applications in radiation therapy

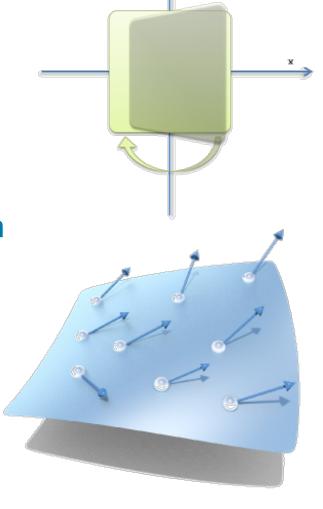
Automated segmentation by contours propagation

Inter – patient

4DCT breathing phases segmentation (lung, liver)

- Intra patient Intra – session
- Patient setup control for moving/ deformable organs (prostate, bladder ...)
- Intra patient Inter – session

- Patient follow-up
- Dose accumulation, warp dose map between time points (4D, re-irradiation)


Intra – patient Inter – session

...

In DIR we trust ...

- Rigid image registration
 - Find rotation and translation
 - 6 numbers for 3D images

- Deformable image registration
 - Find deformation
 - One vector at each pixel
 - Thousands of numbers

DIR is an ill-posed problem

- Well-posed = solution exists + the solution is unique + the solution depends continuously on the data
- If not: ill-posed. It means hard to solve, trade-off

Trade-off:

- Image similarity: can always match pixels
- Transformation regularity: is the deformation plausible?
 (e.g. prevent "crossing" pixels trajectories)

DIR is an optimisation process

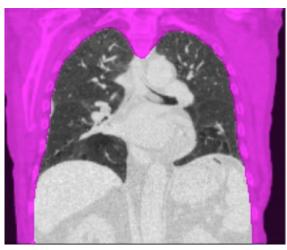
$$T_{opt} = \arg_{T} \max \left[\alpha E_{sim}(A, B, \Gamma) + (1-\alpha) E_{reg}(T) \right]$$

= the two images to register (reference & moving) = the optimal transformation to be find arg_T XETT = optimization algorithm = similarity measure E_{reg} = regularization, smoothing measure of T = tradeoff parameter α

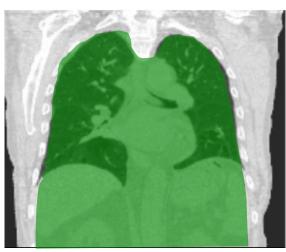
Sliding issue

Lung, liver

- Sliding causes discontinuities in the motion field
- However the DVF is artificially smooth" by the regularisation E_{reg}
- Estimated deformation is wrong around the sliding region



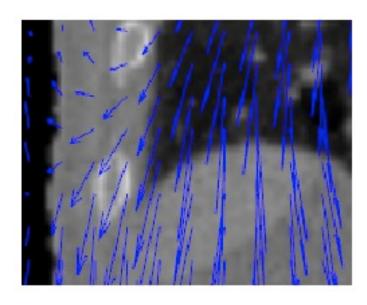
Motion mask


- Several approaches of dealing with discontinuities
 - Biomechanical modelling [Villard 2005, Al-Mayah 2008]
 - O Adapted regularisation [Wolthaus 2008, Ruan 2008]
- An approach with prior segmentation

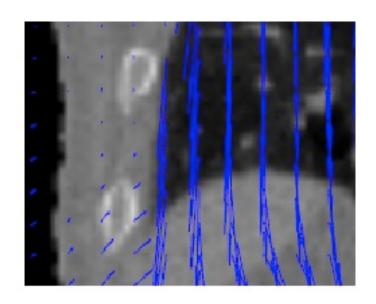
Lung mask: [Werner 2009, Kabus 2009]

Motion mask: [Wu 2008, Vandemeleubroucke 2012]

outside



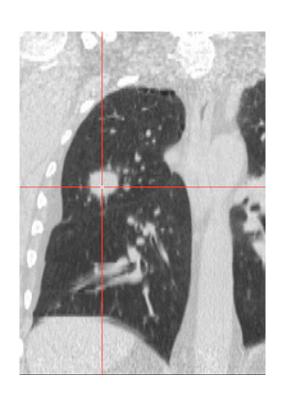
inside


Sliding results

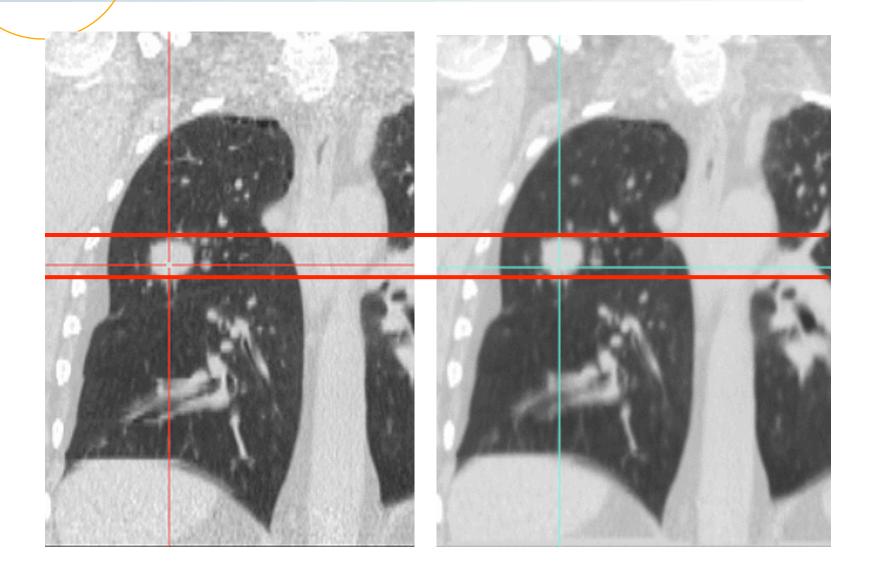
Masks provide interface where sliding occur

- Direction-dependent regularization:
 Near boundaries, regularize in the direction normal to the surface
- Optical-flow or B-Splines[Schmidt-Richberg 2011] [Delmon, 2013]

Without motion mask

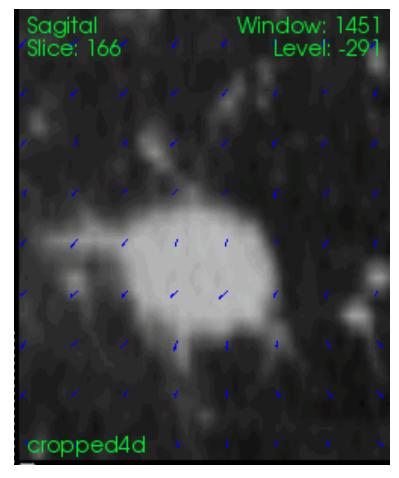


With motion mask

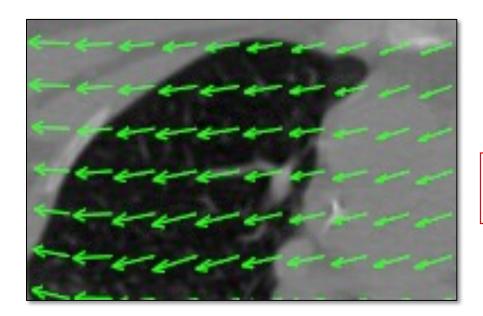

APPLICATION IN CLINIC

Lung cancer treatment strategy

- For locally advanced NSCLC (stage III)
 - Poor 5y survival (<20% France)</p>
 - Surgery impossible
 - RT 60-66 Gy, 30-33f (not hypofraction)
- Additional uncertainty: respiratory motion
- Consequences:
 - Safety margins are increased
 - Potential increased toxicity
 - Treatment less effective or patient excluded



Computation of "midp" image


4D DVF – pixels trajectories

Strategy

- Computation of midp with Deformable Image Registration with sliding correction (motion mask)
 [Sarrut et al 2006] [Vandemeleubroucke et al 2011] [Delmon et al 2013]
- Quantify amplitude from DVF
- Include in margin equation [Wolthaus et al 2008]

respiratory motion = additional random error

$$M = \alpha \Sigma + \beta \sqrt{\sigma^2 + \sigma_p^2} - \beta \sigma_p$$

Current status

Mono-centric (CLB), randomized, phase II trial, with two arms 35 patients included (December 2015)

Preliminary results:

- Clinical workflow is feasible (1 patient ex.):
 first time deformable registration is applied in clinical conditions
- O First dosimetric results are patient dependent:
 - Some with significant volume of healthy tissue spared
 - But some patient without dosimetric advantage
 - Large influence of initial segmentation

CONCLUSION

Conclusion

- Radiation therapy field
 - O Image guidance
 - Heavily use of computers (simulation, guidance etc)
- Deformable Image Registration
 - From methodological approaches...
 - ... to clinical trial
 - Also useful in other domains

Interested?

- vv.creatis.insa-lyon.fr
- O elastix.isi.uu.nl
- www.creatis.insa-lyon.fr/rio/popi-model

Acknowledgements

Myriam Ayadi

Line Claude

Simon Rit

Jef Vandemeulebroucke

Gauthier Bouilhol

Romulo Pinho

Vivien Delmon

Agata Krason

Thomas Baudier

Physique, Radiobiologie, Imagerie Médicale et Simulation