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Abstract. We introduce the property of pre-expansivity for cellular automata (CA):

it is the property of being expansive on asymptotic pairs of configurations (i.e.

configurations that differ in only finitely many positions). Pre-expansivity therefore

lies between expansivity and pre-injectivity, two important notions of CA theory.

We show that there exist one-dimensional pre-expansive CAs which are not

(positively) expansive and they can be chosen reversible. We show however

that no bi-dimensional CA which is linear over an Abelian group can be pre-

expansive. We also consider the finer notion of k-expansivity (expansivity over

pairs of configurations with exactly k differences) and show examples of linear CA

in dimension 2 and on the free group that are k-expansive depending on the value

of k, whereas no (positively) expansive CA exists in this setting.

1. Introduction

The model of cellular automata is at the crossroads of several domains and is

often the source of surprisingly complex objects in several senses (computationally,

dynamically, etc).

From the dynamical systems and symbolic dynamics points of view, the theory

of cellular automata is very rich [1, 2, 3, 4] and tells us, on the one hand, that

CA are natural examples of chaotic systems that can perfectly fit the standard

notions developed in a general context, and, on the other hand, that they have

special properties allowing and justifying the development of a refined and dedicated

theory. For instance, the structure of the space of configurations allows to define

the notion of an asymptotic pair configurations: two configurations that differ only

on finitely many positions of the lattice. The Garden of Eden theorem, which has

a long history [1, 5, 6, 7, 4] and is emblematic of this CA specific theoretical
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development, then says that surjectivity is equivalent to pre-injectivity (injectivity

on asymptotic pairs) if and only if the lattice is given by an amenable group.

Two important lines of questioning have been particularly developed and provide

some of the major open problems of the field [8]:

• surjective CA and their dynamics;

• how does CA theory change when changing the lattice.

In particular, the classical notion of (positive) expansivity has been applied to CA

giving both a rich theory in the one-dimensional case [9, 2, 10] and a general

inexistence result in essentially any other setting [11, 12]. Even in the one-

dimensional case where positive expansivity is equivalent to being conjugated to a

one-sided subshift of finite type [13], it is interesting to note that outside the linear

and bi-permutative examples, few construction techniques are known to produce

positively expansive CA [14]. On the other hand, it is still unknown whether

positive expansivity is a decidable property, although it is indeed decidable for

some algebraic cellular automata [15, 16].

In this paper, we introduce a new dynamical property called pre-expansivity that

both generalizes expansivity and refines pre-injectivity: it is the property of being

expansive on asymptotic pairs. Our motivation is to better understand surjective

CA and expansive-like dynamics, in particular in higher-dimensional case or lattices

where the classical notion of (positive)expansivity cannot be satisfied by any CA

[11, 12].

The paper is organized as follows. In section 2 we give the main definitions and

results we need to work on cellular automata on groups. In section 3, we introduce

pre-expansivity and k-expansivity, and we give some preliminary results which do

not depend on the group defining the space. We also consider the particular case

of linear cellular automata. In section 4, we restrict to the group Z and give

examples of cellular automata which are pre-expansive but not positively expansive.

In section 5, we consider the free group and show that k-expansivity is possible for

infinitely many values of k although positive expansivity is impossible. Finally, in

section 6, we restrict to the group Z2 and we study some k-expansive examples

for particular values of k but also show that there is no pre-expansive cellular

automaton which is linear for a structure of Abelian group on states.

2. Definitions, notations and classical results

We will work on cellular automata defined over a finitely generated group G. We

will consider abelian and non abelian groups, but since most of our examples are

given for abelian groups, we will prefer the additive notation for G.

Fixing a generator set G, that is closed under inversion, a norm can be defined

in G: given z ∈ G, ||z|| is the length of the shortest sequence g1g2...gn of elements

in G such that z = g1 + g2 + ... + gn. This norm induces a metric in G naturally,

and given a non-negative integer r we can define also the ball of radius r and center
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z as the set Br(z) = {x ∈ G | || − x + z|| ≤ r}. Given a point z ∈ G and two sets

X , Y ⊆ G, we accept the following notation.

z + S = {z + x | x ∈ S}, and X + Y = {x+ y | x ∈ X, y ∈ Y }

Cellular automata are functions defined on the symbolic space QG = {c : G →

Q | c is a function}. An element c, called configuration, assigns a symbol of Q to

each element of the group G. We will use both c(z) and cz to denote the value

of c at the cell z. A G-action is defined on QG: given z ∈ G, the shift function:

σz : QG → QG is defined by σz(c)(x) = c(z + x) for every x ∈ G. The Cantor

distance in QG is defined for any two configurations c, d as follows.

∆(c, d) =

{

2−min{||z||:c(z) 6=d(z)} if c 6= d

0 if c = d

Definition 1. Two configurations c, d are asymptotics, denoted c
∞
= d, if they

differ only in finitely many positions: {z ∈ G : c(z) 6= d(z)} is finite.

A cellular automaton (CA) is an endomorphism of QG, compatible with the

shift G-action and continuous for the Cantor metrics. From Curtis-Hedlund

theorem [1, 4], every cellular automaton F is characterized by a local function

f : QV → Q, where V ⊂ G is finite and called neighborhood of F , as follows:

∀c ∈ QG, ∀z ∈ G, F (c)(z) = f(σ−z(c|z+V ))

Every function defined in this way is a cellular automaton.

Basic properties of F as surjectivity and injectivity have been considered. The

weaker notion of pre-injectivity says that, for every pair of different asymptotics

configurations c and d, their image by F are different:

c
∞
= d and c 6= d⇒ F (c) 6= F (d).

The so-called Garden-of-Eden theorem establishes that surjectivity is equivalent to

pre-injectivity, which in particular implies that injective CAs are also bijective

(equivalently reversible by Curtis-Hedlund theorem). It was first proved in

particular cases [1, 5, 6] and later it was shown that it holds exactly when the

group G is amenable, i.e. when it admits a finitely additive measure which is

invariant under its action [4].

The pair (QG, F ) is a dynamical system and can be studied from the point of

view of topological dynamics. One of the important properties a CA can have is

expansivity, which is a notion of strong sensitivity to initial conditions.

Given T be equal to either N or Z, a CA F is called T-expansive if there exists a

number δ > 0, called expansivity constant, such that for every c 6= d there exists an

instant t ∈ T such that ∆(F t(c), F t(d)) ≥ δ. In this work we will frequently omit

the prefix T, assuming by default that T = N (positive expansivity).

In G = Z, given a one-dimensional CA with local rule f : Q[−l,r] → Q with

l, r > 0, we say that it is LR-permutif when for any q−l, . . . , qr ∈ Q the two following
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maps are bijective:

a 7→ f(a, q−l+1, . . . , qr)

a 7→ f(q−l, . . . , qr−1, a)

Definition 2. Let (Q, ⊕ ) be a finite group and denote by ⊕ the component-wise

extension of ⊕ to QG and by 0 the configuration identically equal to 0. A CA F

over QG is linear if

∀c, d ∈ QG : F (c⊕ d) = F (c)⊕F (d)

The following lemma shows that linear CA over Abelian groups can be

decomposed according to the structure of the group. It is a folklore knowledge

that appears often in the particular case of cyclic groups [17, 18], and also in the

more general Abelian case [19].

Recall that the product F ×G of two CA F and G is the CA defined on the

product alphabet and applying F and G on each component independently.

Lemma 1. Let Q = Qp ×Q′ be an Abelian group (law + and neutral element (0, 0))

where Qp is a p-group (the order of every element is a power of p) for some prime

p and the order of Q′ is relatively prime with p.

Then, any linear CA F over Q is isomorphic to Fp × F ′ where Fp is a linear

CA over Qp and F ′ is a linear CA over Q′.

Proof. By linearity of F , if a configuration c is such that n · c = c+ · · ·+ c
︸ ︷︷ ︸

n

= (0, 0),

then F (c) must be such that n · F (c) = (0, 0). We deduce that the subset of

states Q1 = Qp × {0Q′} induces a subautomaton F1 of F because any configuration

c ∈ QG
1 is such that pk · c = (0, 0) for some k and no configuration in

(
Q \Q1

)G
has

this property. Moreover if n · c = (0, 0) for n relatively prime with p, it implies that

c ∈ QG
2 =

(
{0Qp

} ×Q′
)G

(because the order of an element must divide the order of

the group it belongs to). Therefore Q2 induces a subautomaton F2 of F .

Now, any c ∈ QG can be written c = c1 + c2 where c1 ∈ QG
1 and c2 ∈ QG

2 through

cellwise and componentwise decomposition, and F (c) = F1(c1) + F2(c2). F1 is

isomorphic to a linear CA Fp over Qp and F2 to a linear CA F ′ over Q′, and

then F is isomorphic to Fp × F ′. 2

3. Pre-expansivity

Pre-expansivity is the property of expansivity restricted to asymptotic pairs of

configurations.

Definition 3. Let T be either N or Z and let F be a cellular automaton over QG,

supposed reversible in the case T = Z. F is T-pre-expansive if:

∃δ > 0 : ∀c, d ∈ QG, c 6= d and c
∞
= d⇒ ∃t ∈ T,∆(F t(c), F t(d)) > δ.

The value δ is the expansivity constant.
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In the sequel, when T is not explicitly mentioned, we will always refer to T = N.

In particular this choice does not require the hypothesis of reversibility on the

cellular automaton considered.

The notion of pre-expansivity can be further refined by considering only pairs of

configurations with a fixed finite number of differences. Given c, d ∈ QG, we denote

c 6=k d if #
{
z ∈ G : c(z) 6= d(z)

}
= k, i.e. if c and d differ in exactly k positions.

Definition 4. Let T be either N or Z, let F be a cellular automaton over QG

(supposed reversible in the case T = Z) and let k > 0. F is T-k-expansive if:

∃δ > 0 : ∀c, d ∈ QG, c 6=k d⇒ ∃t ∈ T,∆(F t(c), F t(d)) > δ.

Denote by Tm : QG → (QBm(0))N the trace function which to any configuration

associates its orbit restricted to Bm(0):

Tm(c) =
(
t 7→

(
F t(c)

)
|Bm

)
.

Proposition 1. Let F be any CA over QG where G is amenable. It holds:

• F is pre-expansive ⇒ ∀k > 0 F is k-expansive,

• F is k-expansive ⇒ F is sensitive to initial configurations,

• F expansive ⇒ F pre-expansive ⇒ F pre-injective ⇒ F surjective,

• F is pre-expansive ⇔ Tm is pre-injective for some m.

• If L is a CA over Q̃G, then F ×L is k′-expansive for every k′ ≤ k if and only

if L and F are k′-expansive for every k′ ≤ k.

Proof.

• The first item follows directly from definitions.

• For the second item it is sufficient to note that for any configuration c, any

δ > 0 and any k ≥ 1 there always exist a configuration c′ with c 6=k c
′ and

∆(c, c′) ≤ δ.

• For the third item, it is clear that expansivity implies pre-expansivity

(restriction of the universal quantification). Then pre-expansivity implies

pre-injectivity because if there is a pair of configurations c, c′ with c
∞
= c′ and

F (c) = F (c′) then, eventually applying a translation, we can also suppose

them such that ∆(c, c′) is arbitrary small. Finally, since G is amenable we

have that pre-injectivity implies surjectivity by Garden of Eden Theorem [4].

• For the fourth item, it is sufficient to note that the existence of some time t

such that ∆
(
F t(c), F t(c′)

)
> δ is equivalent to Tm(c) 6= Tm(c′) for a suitable

choice of m.
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• Finally, if F ×L is k′-expansive, it is enough to take two configurations with

their differences in only one of their components, since both automata act

independently, k′ expansivity of F × L, imply that the perturbations will

arrive to the center at the same component, proving the k′-expansivity of the

corresponding automaton.

If now L and F are k′-expansive for every k′ ≤ k, we take two configurations

with k′ differences. They may lay in one or both of their components, in

any way there will be 0 < k′′ ≤ k′ differences in one of the components of

F × L. By the k′′-expansivity of the corresponding automaton, we show the

expansivity of F × L.

2

Note however that k-expansivity does not generally imply pre-injectivity or

surjectivity as shown by the following example.

Proposition 2. For any k ≥ 1 there exists a CA which is not surjective but k′-

expansive for any k′ ≤ k.

Proof. Consider any pre-expansive one-dimensional CA F of radius 1 over state set

Q = {0, 1} (for instance a bi-permutative CA), and define a CA Ψ over state set

Qk+1 as follows. It has k + 1 “layers” and to any configuration c we associate its

projection πi(c) on the ith layer. Intuitively it behaves on the k first layers as k

independent copies of F , except that the (k + 1)th layer induce a state flip in the

image in the following way: if it has a 1 at position z then, in the image, layer i is

flipped at position z + 3i. Moreover, (k + 1)th layer is uniformly reset to 0 after

one step. Formally, Ψ is defined by:

Ψ(c)z =
(
F (π1(c))z + πk+1(c)z−3 mod 2, . . . , F (πk(c))z + πk+1(c)z−3k mod 2, 0

)

First it is clear from the definition that it is not surjective since the image of any

configuration is always 0 on layer k + 1. Note also that, when reduced to state set

{0, 1}k × {0}, Ψ is isomorphic to F k which is pre-expansive. Therefore, to show

that Ψ is k′-expansive for any 1 ≤ k′ ≤ k, it is sufficient to show that for any pair

of configurations c and d with c 6=k′ d we have Ψ(c) 6= Ψ(d).

So consider such a pair (c, d). Ψ was defined such that, if c and d differ on

the (k + 1)th layer at position z, then, on the ith layer, F (c) and F (d) will differ

at position z + 3i as soon as c and d are the same on the ith layer at positions

z + 3i− 1, z + 3i and z + 3i+ 1. Therefore, supposing that c and d indeed differ

on the (k + 1)th layer at position z, it implies that F (c) and F (d) differ because

c and d having only k′ ≤ k differences, they can not differ at z and at one of the

positions z + 3i− 1, z + 3i or z + 3i+ 1 for each 1 ≤ i ≤ k.

Finally, suppose that c and d are equal on the (k + 1)th layer. Then they must

differ on some layer i with 1 ≤ i ≤ k. Therefore, we must have F (πi(c)) 6= F (πi(d)).

We deduce that Ψ(c) 6= Ψ(d) because their respective ith layers are F (πi(c)) and

F (πi(d)) up to some modification by the (k + 1)th layer which are identical in c

and d. 2
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The next lemma talks about linear CA. When F is supposed to be linear (for

law ⊕ ), then Tm is also linear, i.e. Tm(c⊕ d) = Tm(c)⊕Tm(d) where ⊕ denotes

the component-wise application of ⊕ either on QG or on
(
QBm

)N
.

Proposition 3. Let F be a linear CA for law ⊕ and neutral element 0. Let I be

the set

I = {k ∈ N : F is not k-expansive}

• if k1, k2 ∈ I then k1 + k2 ∈ I,

• F is pre-expansive if and only if for some m > 0 there is no finite non empty

set {c1, . . . , cn} ⊆ X such that

Tm(c1)⊕ · · · ⊕Tm(cn) = 0

where X = {c : c 6=1 0} is the set of configurations with a single non-0 cell.

Proof. First, by linearity of the trace functions Tm, we have that Tm(c) = Tm(c′)

if and only if Tm
(
c′ ⊕ (−c)

)
= Tm(0) where −c is the configuration such that

c⊕ (−c) = 0. Moreover we also have c 6=k c
′ if and only if c′ ⊕ (−c) 6=k 0. Hence

F is pre-expansive (resp. k-expansive) if and only if there is m such that no c 6= 0

with c
∞
= 0 (resp. c 6=k 0) can verify Tm(c) = Tm(0).

From this we deduce the second item of the Proposition.

For the first item, consider k1 and k2 in I. From what we said above, for any m1

there is c1 such that c1 6=k1
0 and Tm1(c1) = Tm1(0). Now choose m2 large enough

so that any non-zero state of c1 appears at distance at most m2 from the center.

Let us remark that the differences between c1 and 0 are outside Bm1 , otherwise

Tm1(c1) 6= Tm1(0), thus m2 > m1. Since k2 ∈ I we deduce from what we said

earlier that there is c2 such that c2 6=k2
0 and Tm2(c2) = Tm2(0). By choice of m2,

this implies that Tm1(c1 ⊕ c2) = Tm1(0). Moreover c1 ⊕ c2 6=k1+k2
0. Since m1 was

arbitrary, we deduce that F is not (k1 + k2)-expansive. 2

4. 1-dimensional Cellular Automata

The main goal of this section is to show that the notion of k-expansivity, pre-

expansivity and expansivity all differ. More precisely we will show the following

existential result.

Theorem 1. For each item in the following list, there exists a CA having the given

properties:

• N-pre-expansive and reversible and not N-expansive,

• N-pre-expansive and irreversible and not N-expansive,

• 1-pre-expansive and reversible and not N-pre-expansive, and

• 1-pre-expansive and irreversible and not N-pre-expansive.
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For this purpose it will be sufficient to focus on linear cellular automata.

Nevertheless, before the study of the (linear) examples involved in Theorem 1,

we give some additional results which hold in dimension 1 for (non) linear CA.

First, the expansivity constant can be fixed canonically as we will in lemma 3. The

next lemma is direct and it expresses the locality of CAs.

Lemma 2. Let F be a CA in Z with neighborhood [−l, r] the next assertions hold.

• If c]−∞,n] = d]−∞,n] and there exists an iteration t such that F t(c)]−∞,n] 6=

F t(d)]−∞,n], then there is an iteration t′ ≤ t such that F t′(c)[n−r,n] 6=

F t′(d)[n−r,n].

• If c[n,∞[ = d[n,∞[ and there exists an iteration t such that F t(c)[n,∞[ 6=

F t(d)[n,∞[, then there is an iteration t′ ≤ t such that F t′(c)[n,n+l] 6=

F t′(d)[n,n+l].

Proof. We will only prove the first assertion, the second one is completely analogous.

Let t′ be the first time such that F t′(c)]−∞,n] 6= F t′(d)]−∞,n], and let i ∈] −∞, n]

be a position such that F t′(c)i 6= F t′(d)i. Since F t′−1(c)]−∞,n] = F t′−1(d)]−∞,n],

and only the cells in ]n− r, n] depend on cells in ]n,∞[, i ≥ n− r. 2

This lemma shows a particularity of dimension 1: expansivity properties can

be understood through left/right propagation of information. Let us precise this

notion.

Definition 5. Given two configurations c 6= d, and a CA F , we define the left and

right propagation sequences as follows.

ldt (c) = min{z ∈ Z :
(
F t(c)

)
(z) 6=

(
F t(d)

)
(z)}

rdt (c) = max{z ∈ Z :
(
F t(c)

)
(z) 6=

(
F t(d)

)
(z)}

Lemma 3. Given a CA F of neighborhood [−l, r] and k ∈ N, the next assertion

hold.

1. If F is k-expansive, then ∀c 6=k d, (l
d
t (c))t∈N is not lower bounded and

(rdt (c))t∈N is not upper bounded.

2. If ∀k′ ≤ k, ∀c 6=k′ d, (ldt (c))t∈N is not lower bounded and (rdt (c))t∈N is not upper

bounded, then F is k-expansive with expansivity constant 2−max{l,r}.

Proof.

1. Let us suppose that F is k-expansive with expansivity constant m. Let

c 6=k d be two configurations, and let us assume that ldt (c) > n for some

n ∈ Z; this means that F t(c)]−∞,n] = F t(d)]−∞,n] for every t ∈ N. Thus

Tm(σn−m(c)) = Tm(σn−m(d)), which is a contradiction. The analogous

happens if (rdt (c))t∈N is upper bounded.

2. We need to prove that F is k-expansive with expansivity constant 2−m =

2−max{l,r}. Let c 6=k d be two configurations, and let us define the next two

additional configurations.
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cl(i) =

{
c(i) if i < 0

d(i) if i ≥ 0

cr(i) =

{
d(i) if i < 0

c(i) if i ≥ 0

If c[−m,m] 6= d[−m,m], Tm(c) 6= Tm(d) and we are done, so let us suppose

that c[−m,m] = d[−m,m]. Let k′ and k′′ be such that cr 6=k′ d, cl 6=k′′ d and

k′ + k′′ = k.

If k′ 6= 0, (ldt (c
r))t∈N is not lower bounded, thus by lemma 2 and the fact that

cr is equal to d below position m, there is a minimal iteration tr such that

F tr (cr)[m−r,m] 6= F tr (d)[m−r,m]. Analogously, if k′′ 6= 0 there is a minimal

iteration tl such that F tl(cl)[−m,−m+l] 6= F tl(d)[−m,−m+l].

Let us take t = min{tr, tl}, by the choice of m we have that F t(c)[0,m] =

F t(cr)[0,m] and F
t(c)[−m,0] = F t(cl)[−m,0], and at least one of them is different

from F t(d) between [−m,m], thus Tm(c) 6= Tm(d).

2

The last lemma establishes that the expansivity constant is uniform in dimension

one (it does not depends on k), thus we can conclude the next corollary.

Corollary 1. If F is k-expansive for every k ∈ N then it is pre-expansive.

Lemma 4. F is pre-expansive if and only if for all c
∞
= d, (ldt (c))t∈N is not lower

bounded and (rdt (c))t∈N is not upper bounded.

Proof.

(⇒) Let c 6=k d be two asymptotics configurations. Since F is pre-expansive, it

is also k-expansive, thus by lemma 3, (ldt (c))t∈N is not lower bounded and

(rdt (c))t∈N is not upper bounded.

(⇐) If for every k ∈ N and every pair c 6=k d we have that (ldt (c))t∈N is not lower

bounded and (rdt (c))t∈N is not upper bounded, then by lemma 3, F is k-

expansive, and by corollary 1, we conclude that F is pre-expansive.

2

Left and right propagation determines also expansivity. The next lemma can be

proven by using the techniques from the last lemmas.

Lemma 5. F is expansive if and only if for any pair of different configurations c, d,

if c]−∞,0] = d]−∞,0] then (ldt (c))t∈N is not lower bounded, and if c[0,∞[ = d[0,∞[ then

(rdt (c))t∈N is not upper bounded.

The following proposition shows that the simplest form of linearity is not

sufficient to achieve the separation between expansivity and pre-expansivity. Let

us first introduce some notation. Given a ∈ Q, we denote by ca the configuration

that is equal to 0 everywhere except at cell 0 where its value is a.
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Proposition 4. Let Zn be the the group of integers modulo n with addition, and

let F be a one-dimensional linear CA over Zn. Then F is 1-expansive if and only

if it is expansive.

Proof. First by Proposition 1 if F is expansive it is in particular 1-expansive.

For the other direction, it is sufficient to consider the case n = pk with p a prime

number by lemma 1 because if some F1 × F2 is 1-expansive then both F1 and F2

must be 1-expansive.

By commutation with shifts we have l0t (σn(c
a)) = −n+ l0t (c

a) and the analogous

for rt. Moreover ca = a · c1 because we are on a cyclic group.

Let us define lUt (c
a) = min{i ∈ Z | gcd(F t(ca)i, p) = 1}. The next properties

hold.

1. If gcd(a, p) 6= 1, then lUt (c
a) = ∞ (respectively rUt (c

a) = −∞). In fact, in this

case the entire evolution of F over ca is composed by multiples of a, which

are multiples of p too.

2. If gcd(a, p) = 1, then lUt (c
a) = lUt (c

1) (respectively rUt (c
a) = rUt (c

1)). In fact,

in this case F t(ca)i = aF t(c1)i is coprime with p if and only if F t(c1)i does.

3. l0t (c
a) ≤ lUt (c

1) (respectively r0t (c
a) ≥ rUt (c

1)). In fact, if F t(c1)i is coprime

with p, then F t(ca)i = aF t(c1)i is not null.

4. l0t (c
pk−1

) = lUt (c
1) (respectively r0t (c

pk−1

) = rUt (c
1)). In fact, F t(cp

k−1

)i =

pk−1F t(c1) = 0 ⇔ gcd(F t(c1)i, p) 6= 1.

From the last assertion and lemma 3 (first item) we have that lUt (c
1) is not lower

bounded and rUt (c
1) is not upper bounded.

Now let us take a configuration v ∈ (Zpk)Z, such that vi = 0 for every i < 0 and

v0 6= 0. Let us define j = max{i ∈ {0, ..., k} | ∀x ∈ Z, pi|v(x)}, and let us consider

u = v/pj. In this way, there is y ≥ 0 with u(y) 6= 0 and gcd(p, u(y)) = 1. Let y be

the smallest integer with this property.

F t(u)lUt (c1)+y =

lUt (c1)+y+rt
∑

x=0

F t(cux)lUt (c1)+y−x

But u(x) is a multiple of p when x < y, thus F t(cux)i = 0 mod p for any i. For

x > y, F t(cux)lUt (c1)+y−x is also a multiple of p because the smallest index for which

F t(cux) is coprime with p is lUt (c
ux) which is greater than or equal to lUt (c

1). In

this way we conclude that

F t(u)lUt (c1)+y = F t(cuy )lUt (c1) mod p

is coprime with p and is non null. Therefore F t(v)lUt (c1)+y is non null as well. This

imply that l0t (v) is not lower bounded. Symmetrically, r0t (w) is not upper bounded

when w is any configuration equal to zero on positive coordinates. Lemma 5

concludes that F is (positively) expansive. 2

To establish a separation between expansivity and pre-expansivity, we will focus

on linear CA obtained by what is often called “second order method” in the

literature [20]. The idea is to turn any CA into a reversible one by memorizing one
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step of history and combining, in a reversible way, the memorized past step into

the produced future step. The interest of this construction for our purpose is that

expansivity is excluded from the beginning because no CA can be N-expansive and

reversible at the same time [21].

Let Q = {0, . . . , n− 1} be equipped with some group law ⊕ and consider some

CA F over state set Q. The second-order CA associated to F and ⊕ , denoted

SO
(
F, ⊕

)
is the CA over state set Q ×Q, which is conjugated through the natural

bijection QZ ×QZ → (Q ×Q)Z to the map:

(c, d) 7→
(
d, F (d)⊕ c

)

The following proposition shows that second order construction is useful to

separate expansivity from 1-expansivity. Some of the results in the next proposition

can be deduced from more general results in [16, 22, 23], but we develop a new

specific proof here.

Proposition 5. Let ⊕ be a group law over Q with neutral element 0 and F be a

CA over Q which is linear for ⊕ . It holds:

• SO
(
F, ⊕

)
is bijective and linear for the law ⊕ × ⊕ ;

• if F is LR-permutive then SO
(
F, ⊕

)
is Z-expansive and 1-expansive;

• if F is LR-permutive then for any m > 0 the subshift of traces Tm
(
(Q ×Q)Z

)

is an SFT.

Proof. For the first item it is sufficient to check that the CA over the state set

Q×Q is conjugated to the following map:

(c, d) 7→
(
ι(F (c))⊕ d, c

)

is the inverse of SO
(
F, ⊕

)
, where ι denotes the inverse function for the group law

⊕ . Moreover SO
(
F, ⊕

)
is linear for ⊕ × ⊕ because it is component-wise linear

for ⊕ .

For the second item, suppose that F is LR-permutive with neighborhood

{−l, ..., r} and denote Ψ = SO
(
F, ⊕

)
. To prove Z-expansivity of Ψ it is sufficient

to notice that Ψ propagates to left and right when the second Q-component is non-

null and Ψ−1 propagates to left and right when the first Q-component is non-null.

In fact, let us consider a configuration c ∈ (Q × Q)Z equal to (0, 0) on negative

coordinates but such that c(0) 6= (0, 0). If the second Q-component of c(0) is

non-null then, and since F (0, ..., 0) = 0, the leftmost non-null cell of Ψ(c) is at

position −r and it is its second Q-component which is non-null, i. e., if the leftmost

difference from (0,0) is in the second Q-component, this will be always like this

and the difference will propagate to the left. The same holds symmetrically for

propagation to the right. In the same way, and given the form of Ψ−1, differences

in the first Q-component will propagate to the left and right through Ψ−1, thus by

lemma 5, Ψ is Z-expansive.
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Now let us take c(a,b) as a configuration equal to (a, b) at 0 and (0, 0) everywhere

else. By the previous arguments, if b 6= 0, (l
(0,0)
t (c(a,b)))t∈N is not lower bounded

and (r
(0,0)
t (c(a,b)))t∈N is not upper bounded. But if b = 0 and a 6= 0, then

(Ψ(c))(0) = (0, a) and null everywhere else, then again (l
(0,0)
t (c(a,b)))t∈N is not lower

bounded and (r
(0,0)
t (c(a,b)))t∈N is not upper bounded. Therefore, Ψ (and Ψ−1) is

1-expansive.

The proof of the third item will be performed in two steps. To simplify notations,

for any pair of words u, v ∈ Q∗ of the same length, we will denote by
(
u
v

)
the word

over alphabet Q×Q whose projection on the first (resp. second) component is u

(resp. v).

Assertion 1L: For every word u ∈ Qr there exists a configuration c such

that Ψt(c)|[0,r−1] =
(
u
0r

)
and Ψk(c)i = (0, 0) for every 0 ≤ k ≤ t and

0 ≤ i < (t− k)r.

Proof of Assertion 1L. By induction on t. If t = 0 it is obvious, we just

take c equal to
(
u
0r

)
at [0, r − 1] and (0, 0) everywhere else. Now, since

F is LR-permutive, given a word w ∈ Ql+r, let us define the permutation

τw(a) = f(wa) for every a ∈ Q. Given a word u ∈ Qr, we inductively define

another word v ∈ Qr as follows: v0 = τ−1
0l+r (u0), vi+1 = τ−1

0l+r−iv[0,i]
(ui+1). In

this way, f(0l+rv) = u. By induction hypothesis, there exists a configuration

c such that Ψt(c)|[0,r−1] =
(
v
0r

)
and Ψk(c)i = (0, 0) for every 0 ≤ k ≤ t and

i < (t − k)r. We take d = σ−r(c), then Ψt(d)|[r,2r−1] =
(
v
0r

)
, and (0, 0) to

the left of r; and Ψt+1(d)|[0,r−1] =
(
u
0r

)
, and (0, 0) to the left of 0. Moreover,

Ψk(d)i = (0, 0) for every 0 ≤ k ≤ t+ 1 and 0 ≤ i < (t+ 1− k)r.

Assertion 1R: For every word u ∈ Ql there exists a configuration c such that

Ψt(c)|[−l+1,0] =
(
u
0l

)
and Ψk(c)i = (0, 0) for every 0 ≤ k ≤ t and i > (k − t)l.

The proof of Assertion 1R is analogous to the proof of Assertion 1L.

Assertion 2: A sequence
(
wt

)n

t=0
, with wt ∈ (Q×Q)2m+1, is a finite subsequence

of a trace in Tm
(
(Q × Q)Z

)
if and only if for any t, there are extensions

wR ∈ (Q×Q)r and wL ∈ (Q ×Q)l verifying

ψ(wL · wt · wR) = wt+1

where ψ denotes the action of Ψ over finite words.

Proof of Assertion 2. In one direction, it is clear, so let
(
wt

)n

t=0
be a sequence

such that for any t, there are extensions wR ∈ (Q ×Q)r and wL ∈ (Q ×Q)l

verifying ψ(wL · wt · wR) = wt+1, and let us prove that it is a subsequence

of a trace of Ψ. We perform the proof by induction on n. If n = 0 there

is nothing to prove, of course any sequence of length 1 can be part of a

trace. Now let c be a configuration such that Ψk(c)|[−m,m] = wk, for every

k ∈ {0, ..., n − 1}. By locality, only the values of c between −m − nl and

m+nr are relevant to this hypothesis, and we take c(i) = (0, 0) outside these
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limits. Let wR and wL be such that ψ(wL · wn−1 · wR) = wn. Let us remark

that the first Q-component of wL and wR can be chosen arbitrarily, given

the form of Ψ. We will suppose that π1(wL) = π1(Ψ
n−1(c)[−m−l,−m−1])

and π1(wR) = π1(Ψ
n−1(c)[m+1,m+r]), thus we can take

(
uL

0l

)
= wL −

Ψn−1(c)|[−m−l,−m−1] and
(
uR

0r

)
= wR − Ψn−1(c)|[m+1,m+r]. We take from

Assertion 1L a configuration cR that produces the word
(
uR

0r

)
at time n − 1

at position [m+ 1,m+ r] and (0, 0) to the left of the light cone that starts

at m + nr with slope −1/r. From Assertion 1R we take a configuration

cL that produces the word
(
uL

0r

)
at time n − 1 at position [−m− l,−m− 1]

and (0, 0) to the right of the light cone that starts at −m − nl with slope

1/l. By linearity, Ψn−1(cL ⊕ cR ⊕ c)|[−m−l,m+r] = wLwn−1wR, and then

Ψn(cL ⊕ cR ⊕ c)|[−m,m] = wn, moreover Ψk(cL ⊕ cR ⊕ c)|[−m,m] = wk, for

every 0 ≤ k < n, which completes the proof.

2

We will now give an example of pre-expansive CA which is not expansive.

Example 1 (Ψ) Let Q = {0, 1, 2}, + be the addition modulo 3, and F3 be the CA

defined over QZ by F3 = σ+σ−1. We define Ψ as the second order construction

applied to F3:

Ψ = SO
(
F3,+

)
.

To establish the pre-expansivity of Ψ we will study its dependency structure,

i.e. how the value of the cell at position z and time t depends on value of cells

at other positions and earlier times. To express these space-time relations we

denote by Ψt
z the map σz ◦ Ψt and by ⊕ the component-wise addition modulo

3 over {0, 1, 2} × {0, 1, 2} naturally extended to configurations of (Q × Q)Z and

then naturally extended to functions on such configurations.

Lemma 6. Let c be a configuration in (Q × Q)Z.Then, for any k ≥ 0, any t ≥ 0

and any z ∈ Z we have:

Ψ2·3k+t
z (c) = Ψt

z ⊕Ψ3k+t
z−3k

⊕Ψ3k+t
z+3k

(c).

Proof. First it is straightforward to check that

Ψ2
0(c) = Ψ1

−1 ⊕ Id⊕Ψ1
1(c).

Then, by Lucas’ lemma, we have (a+ b)3
k

= a3
k

+ b3
k

when doing the arithmetics

modulo 3. This identity naturally extends to ⊕ and therefore we have:

Ψ2·3k

0 (c) = Ψ3k

−3k ⊕ Id⊕Ψ3k

3k(c).

Finally, by linearity of both σ and Ψ with respect to ⊕ we can compose both sides

of the above equality by Ψt
z and the lemma follows. 2

Using the above lemma, we can show that Ψ has a simple dependency structure

at some space-time locations.
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Figure 1. Some space-time diagrams of Ψ (state (0, 0) is represented by empty space)
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Lemma 7. Let us consider a configuration c = c(a,b) for some pair (a, b) ∈ Q×Q.

For any k ≥ 0, let dk = Ψ3k+1

(c). Then we have:

• dk(−3k) = dk(3
k) = φ(a, b)

• dk(i) = (0, 0) for −3k < i < 3k

where φ is an automorphism of Q×Q which does not depend on k.

Proof. Denote by ctz the state
(
Ψt(c)

)
(z). First, by a simple recurrence we can show

that cn−n = cnn = π(a, b) where π is the projection π(a, b) = (0, b). Then, applying

lemma 6 on Ψ2·3k+3k

−3k
, we obtain:

dk(−3k) = c2·3
k

−2·3k + c3
k

−3k + c2·3
k

0 .

Applying lemma 6 on Ψ2·3k+0
0 we then have:

dk(−3k) = c2·3
k

−2·3k + 2 · c3
k

−3k + c3
k

3k + c00

= (0, b) + 2(0, b) + (0, b) + (a, b)

= (a, 2b)

where φ(a, b) = (a, 2b) is an automorphism. The same equality holds for dk(3
k) by

symmetry and the first item of the lemma is shown.

For the second item, first note that ctz = (0, 0) whenever z < −t or z > t because

Ψ has radius 1. Consider any i with −3k < i < 3k. Applying lemma 6 on Ψ2·3k+3k

i ,

we obtain:

dk(i) = c2·3
k

i−3k + c3
k

i + c2·3
k

i+3k .

Applying lemma 6 on Ψ2·3k+0
i−3k

and Ψ2·3k+0
i+3k

we further get:

dk(i) = c3
k

i−2·3k + c0i−3k + 3 · c3
k

i + c0i+3k + c3
k

i+2·3k .

From what we said before and doing the arithmetics modulo 3 we deduce

dk(i) = (0, 0) and the lemma follows. 2

Proposition 6. Ψ is pre-expansive.

Proof. Let c be any configuration with c
∞
= (0, 0). Denote l = l

(0,0)
0 (c) and

r = r
(0,0)
0 (c) and consider any k such that 3k > max(|l|, |r|). By a finite number of

applications of Lemma 7, and by linearity and translation invariance of Ψ, we have:
(
Ψ3k+1

(c)
)
(r − 3k) = φ

(
c(r)

)

(
Ψ3k+1

(c)
)
(l + 3k) = φ

(
c(l)
)
.

Since φ is a permutation of Q sending (0, 0) to itself and since c(r) and c(l) are

both different from (0, 0) we deduce that l
(0,0)

3k+1(c) < r − 3k and r
(0,0)

3k+1(c) > l + 3k for

any k large enough. This shows that L(c) is not lower-bounded and R(c) is not

upper-bounded and concludes the proof by Lemma 4. 2
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Figure 2. Some space-time diagrams of Υ (state (0, 0) is not represented)

We now give an example of CA that is 1-expansive but not pre-expansive.

Example 2 (Υ) Let Q = {0, 1}, + be the addition modulo 2, and F2 be the CA

defined over QZ by F2 = σ+σ−1. We define Υ as the second order construction

applied to F2:

Υ = SO
(
F2,+

)
.

Proposition 7. Υ is not k-expansive when k ≥ 2 and in particular Υ is not pre-

expansive.

Proof. Let k ≥ 2 be fixed and for each z ∈ Z define the configuration cz by:

cz(z′) =







(0, 0) if z′ < z,

(0, 1) if z′ = z,

(1, 1) if z < z′ ≤ z + k − 2,

(1, 0) if z′ = z + k − 1,

(0, 0) if z′ ≥ z + k.

We have cz 6=k (0, 0) and it is straightforward to check that Υ(cz) = cz−1. We

conclude that Υ is not k-expansive by lemma 4.

2

We are now ready to prove the main result announced at the beginning of this

section.
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Proof. [Proof of Theorem 1] Let F be any irreversible and expansive CA. It holds:

• Ψ is N-pre-expansive (by proposition 6) and it is reversible and not N-

expansive (by proposition 5 and [21]);

• therefore Ψ× F is N-pre-expansive and irreversible and not N-expansive;

• Υ is 1-pre-expansive and reversible (by proposition 5) but it is not N-pre-

expansive (by proposition 7);

• therefore Υ× F is 1-pre-expansive and irreversible and not N-pre-expansive.

2

5. Cellular automata over the free group

Some of the properties proved in the last section come from the fact that

(Z, {(i, i + j) | j ∈ V }) can be always disconnected by extracting a finite part

from Z. Any free group with any finite neighborhood has this property, and we

would be able to extend some of the previous properties to the case of a cellular

automaton over the free group. In particular, the expansivity constant is strictly

related with the neighborhood size, as in Z, and it does not depend on k for a

k-expansive CA. We denote by Fn the free group with n generators (F1 is Z).

Proposition 8. If F is a cellular automaton with a neighborhood V ⊆ Br(0) of

radius r over the free group Fn and it is k′-expansive for all k′ ≤ k, then F is

k-expansive with expansivity constant equal to 2−r.

Proof. The proof takes the ideas of lemma 3. Let c 6=k d be two configurations in Fn.

Let us call S the set of generators of Fn, including their inverses (i. e. |S| = 2n),

and for each s ∈ S, let us call Rs the branch of Fn that hangs from s; we mean the

set of elements whose shortest description in terms of S start with s. In this way

Fn = {0} ⊔ (⊔s∈SRs).

Now let us define D = {i ∈ Fn | c(i) 6= d(i)} and Ds = D∩Rs. We want to prove

that Tr(c) 6= Tr(d) so let us suppose the opposite. This imply that D = ⊔s∈SDs,

and we can consider ks = |Ds| ≤ |D| = k. As in the case of lemma 3, we define

configurations cs which are equal to d everywhere except on branch s, as follows.

cs(i) =

{
c(i) if i ∈ Rs

d(i) otherwise

At the beginning, cs differs from d only on branch Rs. We will see that this will

be always the case. Let us suppose that, for some t ∈ N, F t(cs)i = F t(c)i for all

i ∈ Rs and F t(cs)j = F t(d)j , for all j 6∈ Rs. We remark that, we assumed that if

j ∈ Br(0), F
t(cs)j = F t(d)j = F t(c)j . Since Fn is a tree and F is a CA of radius r,

if i ∈ Rs, Br(i) ⊂ Rs∪Br(0), thus F
t+1(cs)i = F t+1(c)i.If j ∈ {0}⊔

(
⊔s′∈S\{s}Rs′

)
,

Br(j) ⊂
(
⊔s′∈S\{s}Rs′

)
∪Br(0), then F

t+1(cs)j = F t+1(d)j .

We conclude that Tr(c
s) = Tr(c) = Tr(d), for every s ∈ S.
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But we know, by hypothesis, that F is k′-expansive, let us take its expansivity

constant as ǫ = 2−m. Let us consider now the configuration σ−ms(c
s), the shift of

cs by ms ∈ Fn. By construction, σ−ms(c
s) and σ−ms(d) are equal over Bm(0).

By the k′-expansivity of F , there exists a time t and j ∈ Bm(0) such that

F t(σ−ms(c
s))j 6= F t(σ−ms(d))j . But, as shown before, F t(cs) and F t(d) differ

only on branch Rs. Therefore F
t(σ−ms(c

s)) and F t(σ−ms(d)) differ only on branch

Rms which is disjoint from Bm(0): this is a contradiction. 2

Not all the properties survives from F1 = Z to Fn, when n > 1; k-expansivity

is possible for infinitely many k’s in Fn even without pre-expansivity, as the next

example shows.

Example 3 (Λn) Let Q = {0, 1}, + be the addition modulo 2, and Λn be the CA

defined over QFn by

Λn(c)i = c(i) +
∑

j∈S

c(i+ j).

Lemma 8. If ||x|| = ||y||, then for every t ∈ N Λt
n(c

1)x = Λt
n(c

1)y, moreover

Λ
||x||
n (c1)x = 1.

Proof. We prove by induction on l that for every t ≤ l and every x, y ∈ Bl(0),
[
||x|| = ||y|| ⇒ Λt

n(c
1)x = Λt

n(c
1)y
]
and that Λl

n(c
1)x = 1 if ||x|| = l.

For l = 0 is clear since in this case x = 0 = y and Λ0
n(c

1)0 = 1. Now let us

suppose it true for some l, and let us prove it for l + 1.

Case 1, t ≤ l. By the induction hypothesis, we only need to verify the property

for x, y ∈ Bl+1(0)− Bl(0), but Λ
t
n(c

1)x = 0 = Λt
n(c

1)y because at time t ≤ l

no perturbation at 0 has the time to arrive to these cells.

Case 2, t = l + 1. We first remark that any cell x in Fn has exactly 2n − 1

neighbors farther and exactly one neighbor closer than x to 0; we also remark

that the local rule of Λn is totalistic, only the quantity of neighbors at a

given state counts. If x, y ∈ Bl(0), all of their neighbors are in Bl+1(0), thus

by Case 1, their state at time l depends only on their distance to 0, thus

Λl+1
n (c1)x = Λl+1

n (c1)y . If x, y ∈ Bl+1(0) \Bl(0), then their neighbors outside

Bl(0) and themselves have all state 0 at time l; their unique neighbors in

Bl(0) have both state 1, by induction hypothesis. Thus, by the definition of

Λn, Λ
l+1
n (c1)x = Λl+1

n (c1)y = 1.

2

Proposition 9. Λn is k-expansive for every k odd and it is not 2-expansive if

n ≥ 2.

Proof. Let c 6=k 0. Let D = {i | c(i) 6= 0} and let Dl = D ∩ (Bl(0) \ Bl−1(0)).

It is clear that c =
∑

i∈D σ−i(c
1). Since |D| = k is odd, there exists some l
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such that |Dl| is odd, let us take l as the smallest one. For every x, y ∈ Dl,

T0(σ−x(c
1)) = T0(σ−y(c

1)), thanks to lemma 8. Therfore, given a cell y ∈ Dl,

Λl
n(c)0 = Λl

n(
∑

l∈N

∑

x∈Dl

σ−x(c
1))0

= Λl
n(

l∑

l=0

∑

x∈Dl

σ−x(c
1))0

=

l∑

l=0

Λl
n(
∑

x∈Dl

σ−x(c
1))0

= Λl
n(
∑

x∈Dl

σ−x(c
1))0

= Λl
n(σ−y(c

1))0.

By lemma 8, this last term is equal to 1 which proves the k-expansivity when k is

odd.

The second part of the proposition is almost direct from lemma 8. In fact, let

m ∈ N be any natural number and let us take z = ms for some fixed generator s.

Now let s′ be another generator, different from s and −s and define x = z+ s′ and

y = z − s′. This imply that ||x|| = ||y|| = ||z|| + 1 = m + 1. Lemma 8 says that

T0(σx(c
1)) = T0(σy(c

1)), but also that Tm(σx(c
1)) = Tm(σy(c

1)), because x and y

are equidistant from z, as well as from all the other members of Bm(0). 2

6. Cellular Automata on Zn, with n ≥ 2

Expansivity is not possible in dimension n ≥ 2 or more, due to combinatorial

reasons: the number of possible n-dimensional patterns grows too quickly to be

uniformly conveyed into a 1-dimensional array without loss (see [12] for a general

result of innexistence of expansive CA).

This argument does not apply to pre-expansivity because the definition allows

loss of information in some cases: only finite differences should be propagated, but

nothing is required for non-asymptotic pairs of configurations.

Nevertheless, in linear CA over abelian groups, the information propagates in a

very regular way, and pre-expansivity is impossible as we will show.

6.1. No pre-expansivity for linear CA in dimension 2 or higher Given a linear

CA F , spot configurations (i.e. configurations c with c 6=1 0) form a basis of the

whole set of configurations and we get a complete knowledge on the orbit of any

configuration from the orbits of spot configurations. The main argument of this

section comes from the fact that the space time diagram of spot configurations in

a linear CA is substitutive.

Lemma 9 (Main Theorem of [19]) Let F be any d-dimensional linear CA on

a p-group Q. Then there exists a substitution of factor M describing space-time

dependency, that is to say, there exists:
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• M ≥ 2,

• a finite set E,

• e : Zd × N → E,

• Ψ : E → (Q→ Q),

• for any 0 ≤ a1, .., ad, s < M , a function Φs
~a : E → E, such that,

e(M~z + ~a,Mt+ s) = Φs
~a

(
e(~z, t)

)

• Γt
~z = Ψ(e(~z, t))

where Γt
~z is the space-time dependency function given by:

Γt
~z : q 7→ σ~z ◦ F

t(cq).

Proof. [Proof sketch] We review the proof of [19] written in the one-dimensional

setting to show that it works straightforwardly for CA over Zd.

First, as shown by proposition 1 of [19], it is sufficient to consider Q a p-group of

the form Q = ZD
pl since any linear CA on a p-group can be embedded in a linear CA

on a group of this form. Then, a linear CA in that case can be viewed as a D ×D

matrix whose coefficients are Laurent polynomials with d variables u1, . . . , ud and

coefficients in Zpl .

Formally, we denote by Zpl [ui, u
−1
i ]1≤i≤d the Laurent polynomials with variables

u1, . . . , ud, i.e. the ring of linear combinations of monomials made with positive

or negative powers of the variables. A monomial corresponds to a vector of Zd,

hence we use the notation u
~i for any ~i = (i1, . . . , id) ∈ Zd to denote the monomial

ui11 · · ·uidd . A linear CA is identified with some T ∈ MD

(
Zpl [ui, u

−1
i ]1≤i≤d

)
where

the coefficient a~z ∈ Zpl of the monomial u~z of the coefficient Ti,j of the matrix T

means intuitively that, when applying the CA, the layer j of cell ~z0 receives a~z
times the content of the layer i of cell ~z+ ~z0, and all these individual contributions

are summed-up. This matrix representation works well with the powers of F in the

sense that Fn is represented by T n.

We now mimic step by step the proof of [19]:

• by the Cayley-Hamilton theorem (Laurent polynomials form an Abelian ring),

the characteristic polynomial of T gives a relation of the form:

Tm =

m−1∑

j=0

∑

~i∈I

λ~i,ju
~iT j

for some m, some finite I ⊆ Z
d, and where λ~i,j ∈ Zpl ;

• first, by standard techniques (binomial theorem and binomial coefficients

modulo p), we have the following identity on any commutative algebra of

characteristic pl:
(
∑

i

Xi

)pn+l−1

=

(
∑

i

Xpn

i

)pl−1
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for any positive n. Then, applying this to the expression of Tm obtained

above we get:

Tm·pn+2(l−1)

=






m−1∑

j=0




∑

~i∈I

λp
n

~i,j
up

n·~i





pl−1

T pn+l−1·j






pl−1

• noting that the sequence (λp
n

~i,j
)n is ultimately periodic, with common period

N for all ~i, j, denoting k = pN and expanding the above equality, we have:

T knm′

=
m′−1∑

j=0

∑

~i∈I′

µ~i,ju
kn~iT knj

for somem′ large enough and n ≥ 1, some finite I ′ ⊆ Zd, and where µ~i,j ∈ Zpl ;

• we are interested in the space-time dependency function T j
~i
of T which is the

matrix of MD(Q) corresponding to the terms in u
~i of the matrix T j, so that

T j =
∑

~i T
j
~i
u
~i; we therefore have the following:

T knm′+y
~x =

∑

~i∈I′

m′−1∑

j=0

µ~i,jT
y+knj

~x−kn~i

• choosing n = ⌊logk
y
m′

⌋, we can rewrite it for all y > m′ as:

T y
~x =

∑

~i,j

µ~i,jT
g~i,j(y)

~x+f~i,j(y)
(1)

where ~i and j range over fixed finite sets, and where for any 0 ≤ t < k we

have:

1. g~i,j(y) < y,

2. f~i,j(ky + t) = kf~i,j(y),

3. g~i,j(ky + t) = kg~i,j(y) + t;

• starting from any point (~x, y) ∈ Z
d × N and applying recursively the equation

above as much as we can, we get:

T y
~x =

∑

~i,j<m′

α~i,j(~x, y)T
j
~i

(2)

we take this as a definition of α~i,j(x, y);

• now, by the properties of the functions f~i,j and g~i,j we have that

α~i,j(~x, y) = α~0,j(~x−~i, y),

and in the equation (1) the transformation (~x, y) 7→ (k~x+ ~s, ky + t) (for

t < k and ‖s‖∞ < k) applied to the left term T y
~x , translates into the same
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transformation on each term T b
~a of the right hand side; therefore, denoting

αj = α~0,j , the recursive application of (1) in (2) can be reproduced identically

starting from T ky+t
k~x+~s so that we have

T ky+t
k~x+~s =

∑

~i1,j<m′

αj(~x− ~i1, y)T
kj+t

k~i1+~s
(3)

that we want to compare to the final decomposition of T ky+t
k~x+~s which is by

definition of the αj :

T ky+t
k~x+~s =

∑

~i2,j<m′

αj(k~x+ ~s− ~i2, ky + t)T j
~i2

(4)

• since kj + t is bounded by k(m+ 1), going from (3) to (4) involves only a

bounded number of applications of (1) to each term of the right hand side;

therefore, there is some finite set ∆ ⊆ Zd such that each term T b
~a on the right

will produce only terms in T j

~a+~i
for j < m′ and ~i ∈ ∆.

Therefore, αj(k~x+ ~s− ~i2, ky+ t) only depends on the αj(~x+
~s−~i2
k − ~i′, y) for

~i′ ∈ ∆;

• we choose X ⊆ Zd large enough so that:

1. ~i2 ∈ X implies ~i′ − ~s−~i2
k ∈ X for any ~i′ ∈ ∆;

2. T j
~i
is null for j < m′ and ~i 6∈ X;

with such an X we finally set M = k and

e(~x, y) =
(
αj(~x −~i, y) : j < m′,~i ∈ X

)
.

The lemma follows. 2

The existence of this substitution has strong consequences on the structure of

traces: the trace of a finite configuration is determined by a prefix of linear size in

the distance of the farthest non-zero cell. Let us first define some notation.

• For z ∈ Zd, ‖z‖∞ = max{|zi| : i ∈ {1, .., d}.

• The size of a configuration c
∞
= 0 is the smallest n ∈ N such that c(z) 6= 0

imply ‖z‖∞ ≤ n.

Lemma 10. Let F be any d-dimensional linear CA on a p-group. Let m > 0

and denote by Tm the trace function associated to F and m. There exist a function

λ : N → N with λ ∈ O(n) and such that for any n and for any pair of configurations

c1, c2 with:

• the size of ci is less than or equal to n,

• Tm(c1)(t) = Tm(c2)(t) for any t ≤ λ(n),

then Tm(c1) = Tm(c2).
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Proof. First F fullfils the hypothesis of Lemma 9 so we have the existence of the

substitution and adopt the notations of the Lemma.

Let’s focus on the substitution given by the function e and consider k ≥ 0,

t ≥ Mk, and ~z ∈ Zd with ‖z‖∞ ≤ Mk. By k − 1 applications of the substitution

we get the following expression for e(~z, t):

e(~z, t) = Φt mod M
~z mod M ◦ · · · ◦ Φ

t/Mk−1 mod M

~z/Mk−1 mod M

(
e(ρ(~z), t/Mk)

)

where ‖ρ(~z)‖∞ ≤M , and where the division/modulus correspond to the standard

Euclidean division on Zd.

The sequence of superscripts in this expression only depends on t modMk. The

sequence of subscripts depends only on ~z. Therefore we can write this functional

dependency of e(~z, t) on e(ρ(~z), t/Mk) in the following way:

e(~z, t) = χt mod Mk

~z

(
e(ρ(~z), t/Mk)

)
. (5)

Now consider a time t0 sufficiently large to see any possible vector of the form

(e(~z0, t))‖ ~z0‖∞≤M before t0, precisely:

∀t, ∃t′ ≤ t0, ∀~z0, ‖~z0‖∞ ≤M : e(~z0, t) = e(~z0, t
′).

Given an index set I, consider any uple (~zi)i∈I , with ‖~zi‖∞ ≤Mk, and any P ⊆ EI .

For any time t, we can define the property PI(t) by:

PI(t) ⇔
(
e(~zi, t)

)

i∈I
∈ P .

Claim: if PI(t) holds for every t ≤ (t0 + 1) ·Mk then PI(t) holds for every t ∈ N.

Indeed, take some time t > (t0 + 1) ·Mk. Then by choice of t0 there exists t
′ ≤ t0

such that:

∀~z0, ‖~z0‖∞ ≤M : e(~z0, t/M
k) = e(~z0, t

′).

Now we can choose t′′ ≤ (t0 + 1) ·Mk with

t′′/Mk = t′ and

t′′ mod Mk = t modMk

and equation 5 yields the equalities:

e(~zi, t) = χt mod Mk

~z

(
e(ρ(~zi), t/M

k)
)
= χt′′ mod Mk

~z

(
e(ρ(~zi), t

′)
)
= e(~zi, t

′′).

It shows that PI(t) ⇔ PI(t
′′) and the claim follows.

Since the space-time dependency function is completely determined by the

substitution e (Lemma 9), the fact that the trace of a finite configuration at time

t is null can be expressed by a property of the form PI(t). More precisely, for any

configuration c of size Mk, we can define

D = {z ∈ Z
d : c(z) 6= 0},

I =
⋃

z∈D

Bm(z),

P = {f ∈ EI : ∀x ∈ Bm(0),
∑

z∈D

Ψ(fz+x)(c(z)) = 0}.
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We then have that

PI(t) ⇔ ∀x ∈ Bm(0),
∑

z∈D

Ψ(e(z + x, t))(c(z)) = 0

⇔ ∀x ∈ Bm(0),
∑

z∈D

Γt
z+x(c(z)) = 0

⇔
∑

z∈D

Tm(cc(z)) = 0

⇔ Tm(c)t = 0.

We deduce that if F t(c) is null on Bm(0) until time (t0+1)·Mk then it is null forever.

By linearity of F , equality of two traces is equivalent to nullity of their difference.

We have thus shown the Lemma for m ≥ 0 by choosing λ(n) = (t0 + 1) ·Mk for

k = ⌈logM (n)⌉. 2

Theorem 2. If a CA of dimension d ≥ 2 is linear over an Abelian group then it

is not pre-expansive.

Proof. First, if G is the Abelian group of the Theorem it can be decomposed in a

direct product G = Gp×G
′ where Gp is a finite p-group for some prime p and G′ is

a group whose order m is such that p doesn’t divide m (structure theorem for finite

abelian groups, see [24]). Then F is isomorphic to Fp × F ′ according to Lemma 1,

where Fp is linear over Gp. Moreover if F is pre-expansive, then Fp must also be

pre-expansive (by Proposition 1). It is therefore sufficient to show the Theorem for

p-groups.

Now consider F of dimension d ≥ 2 linear over a p-group and some m ≥ 0. By

lemma 10, we know that the trace Tm of finite configurations of size n is determined

by its prefix of size λ(n) where λ ∈ O(n). The number of such finite configurations

grows like αnd

for some α > 0 and the number of prefixes of Tm of length λ(n)

grows like βλ(n) for some β > 0 which depends only on m, Gp and d. Since d ≥ 2

and λ is linear we deduce for n large enough that two finite configurations of size

n have the same trace Tm. Therefore Tm is not pre-injective and by Proposition 1,

F is not pre-expansive. 2

Note that this does not avoid a priori the existence of a linear CA which is

k-expansive for any k ∈ N or for infinitely many k.

6.2. Linear CA with Q = Zp In general, in a CA with neighborhood V ⊂ G,

we can remark that the influence of the cell 0 is restricted to the set generated by

linear combinations of −V . More precisely, at time t, its influence is restricted to

the following set:

−Vt(0) =

{
t∑

i=1

vi | (∀i ∈ {1, .., t}) vi ∈ −V

}

A perturbation in a cell u ∈ G can produce a change in the state of cells in

−Vt(u) = u− Vt(0) up to time t.

Prepared using etds.cls



24 ?

If G is commutative, for example G = Z
n and V = {v1, .., vm}, this set can be

computed as follows.

−Vt(0) =

{
m∑

k=1

nk(−vk) |

m∑

k=1

nk = t and for each k, nk ∈ N

}

=

{
m∑

k=1

nk

t
(−tvk) |

m∑

k=1

nk = t and for each k, nk ∈ N

}

⊆

{
m∑

k=1

λk(−tvk) |

m∑

k=1

λk = 1 and for each k, λk ∈ [0, 1],

}

⊆ co(−tV )

Where tV = {tv | v ∈ V }, and co(·) stands for the convex hull (in Rn).

In the simpler case where Gp = Zp, any linear CA F can be expressed as

F =
∑

z∈V

azσz,

where (az)z∈V is a sequence of elements of Zp. When p is prime, we have Lucas’

lemma, which gives even stronger properties to linear CAs, more precisely.

F pk

=
∑

z∈V

azσpkz (6)

The next lemma establishes that the constant of k-expansivity in a linear CA on

Zp depends only on the radius of the neighborhood. The radius of a neighborhood

V is the smallest number r ∈ Z such that V ⊆ Br(0).

Lemma 11 (Amplification) Let F be a linear CA with neighborhood V ⊂ Zn of

radius r, with state set Zp. If there exists a configuration c 6= 0 such that Tr(c) = 0,

then for any m ≥ r there exists a configuration c′ 6= 0 such that Tm(c′) = 0.

Proof. Let c be such that Tr(c) = 0 and let k be such that m ≤ pk − 1. We define

c′ by c′pkx = cx for every x ∈ Zn and 0 elsewhere.

From equation 6, it is easy to see that F tpk

(c′)pkx = F t(c)x, and 0 elsewhere.

Therefore, for every t ∈ N and every v ∈ Br(0), F
tpk

(c′)pkv = 0.

Now, between iterations tpk and (t + 1)pk, we know, from the former remarks,

that only cells in Ω =
⋃

x 6∈Br(0)

(pkx− Vpk(0)) can have a state different from 0. Since

−V ⊆ Br(0), we have that −Vpk(0) ⊆ Brpk(0), and the complement of Ω contains

Prepared using etds.cls



? 25

Bpk−1(0), which is what we were looking for, in fact,

y ∈ Ω =




⋃

x 6∈Br

pkx− Vpk(0)





⇒ (∃x 6∈ Br(0))(∃v ∈ −Vpk(0)) y = pkx+ v

⇒ ||y|| ≥ ||pkx|| − ||v|| ≥ pk(r + 1)− pkr = pk

⇒ y 6∈ Bpk−1(0).

2

Corollary 2. Let F be a linear CA in Zp. It holds:

• F is k-expansive, if and only if F is k-expansive with expansivity constant

2−r;

• F is k-expansive for all k ∈ N if and only if F is pre-expansive.

With this lemma we can establish k-expansivity just by looking at Tr. We will

show a CA in that setting which is 1-expansive, 3-expansive and non 2-expansive,

and another which is non 1-expansive (and so non k-expansive for every k).

6.2.1. The rule ⊕2 with von Neumann neighborhood in Z2 The rule that

simply sums the state of its 5 neighbors in the von Neumann neighborhood:

(0, 0), (0, 1), (1, 0), (0,−1), (−1, 0) is not 2-expansive. This can be seen through

a simple picture: let us suppose that we start with the configuration c that has a

‘1’ in cell (−2k, 2k−1) and in cell (2k, 2k−1). By symmetry, the vertical line {0}×Z

will be always null. Thus, at iterations t2k only cells at 2k(Z \ {0}) × Z will be

activated. Between iterations t2k and (t+1)2k these cells cannot influence the ball

B2k−1−1(0, 0) (see figure 3) and this ball will have a null trace: T2k−1(c) = 0.

In order to establish the 3-expansivity of this CA, we will start by proving some

lemmas that describe the form of the traces T1(σz(c
1)) of the evolution of the

configuration c1 at the different points of Z2. In order to achieve this, we start

by computing the partial traces T0(σz(c
1))|[0,2k−1] and T0(σz(c

1))|[2k,2k+1−1]. We

first give a way for compute them, and afterwards we prove they are effectively the

partial traces.

Definition 6. Given k ≥ 0 and z ∈ B2k−1(0, 0), we recursively define uk(z) and

vk(z) as follows. Let us define Sk = {(0, 0), (0, 2k), (2k, 0), (0,−2k), (−2k, 0)}, the
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−3 · 2k −2 · 2k −2k 2k 2 · 2k 3 · 2k

−2 · 2k−1

−2k−1

2k−1

2 · 2k−1

Figure 3. Potentially active cells at iteration t2k cannot influence B
2k−1

−1
(0) before iteration

(t + 1)2k . Big dots represent the initially active cells.

active cells of iteration 2k.

u0(z) = v0(z) = 1;

uk(z) =







uk−1(z)vk−1(z) if z ∈ B2k−1−1(0, 0)

02
k−1

uk−1(z − x) if z ∈ B2k−1−1(x) \B2k−1−1(0, 0) and x ∈ Sk−1

02
k

otherwise

vk(z) =







uk−1(z)uk−1(z) if z ∈ B2k−1−1(0, 0)

uk−1(z − x)uk−1(z − x) if z ∈ B2k−1−1(x) \B2k−1−1(0, 0) and x ∈ Sk

02
k

otherwise

Lemma 12. If z ∈ B2k−1(0, 0), then uk(z) and vk(z) represent the trace of z from

0 to 2k − 1 and from 2k to 2k+1 − 1 respectively.

Proof. When k = 0, B0(0, 0) = {(0, 0)}, and the trace of (0, 0) is constant and equal

to 1.

Let us suppose the lemma true for k − 1 ≥ 0. Let z ∈ B2k−1(0, 0).

Figure 4(a) depicts the first two cases in the definition of uk(z), the last one

corresponds to cells over the central diagonals.

• Case 1) z ∈ B2k−1−1(0, 0). In this case, the induction hypothesis says that

the trace until 2k − 1 is given by uk−1(z)vk−1(z)

• Case 2) z ∈ B2k−1(0, 0) \ B2k−1−1(0, 0). From 0 to 2k−1 − 1, z has not been

touched jet, thus its trace until 2k−1 − 1 is 02
k−1

. At iteration 2k−1, only the

cells in Sk−1 are in state 1, thus z is influenced by only one of the cells in

Sk−1, say x, its trace from 2k−1 to 2k−1 is equal to the trace of the cell z−x

from 0 to 2k−1 − 1, thus by induction again, it is equal to uk−1(z − x).

• Case 3) If z belong to none of these balls, it is over one of the two diagonals

that pass by (0, 0), and its trace is null.
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(a) (b)

Figure 4. (a) Represents the evolution from iteration 0 to 2k . Non null cells at iterations 0 and
2k−1 are marked with brown and red dots, respectively (cell (0,0) is active at both instants). The
balls of radius 2k−1 around these cells are colored with similar colors. (b) Represents the evolution
from iteration 2k to 2k+1. Brown dots represent non null cells at iterations 2k and 2k + 2k−1,
while red dots represent the cells which are non null at iteration 2k + 2k−1. The balls of radius
2k−1 around these cells are colored with similar colors. Faded colors represent the cells outside

the ball of radius 2k .

Figure 4(b) depicts the three cases in the definition of vk(z).

• Case 1) z ∈ B2k−11(0, 0). At iteration 2k, only the cells in Sk are in state 1.

Therefore, from 2k to 2k+2k−1−1, z will be influenced only by the cell (0, 0),

and its trace will be equal to uk−1(z). At iteration 2k +2k−1, the active cells

corresponds to red and brown cells in Figure 4(b), and again only cell (0, 0)

reaches z, the process is repeated.

• Case 2) z ∈ B2k−1(0, 0) \ B2k−1−1(0, 0). At iteration 2k, only the cells in Sk

are in state 1, thus, before iteration 2k + 2k−1, z is touched only if it is at

distance less than 2k−1 from one of the cells in Sk, say x, (orange zone in

Figure 4(b)), then its trace is equal to uk−1(z − x). At iteration 2k + 2k−1,

the active cells are far again, and z is influenced only by x again.

• Case 3) If z belong to none of these balls, its trace is null.

2

This lemma proves that the traces can be obtained through the substitution

u→ uv and v → uu. The basic u and v for a given cell z are obtained at iteration

2k+1 if B2k−1(0, 0) is the smallest ball containing z. From the next lemma we can

conclude the 1-expansiveness of this automaton with expansivity constant equal to

2−1.
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Lemma 13. If i+ j is odd and smaller than 2k, then the trace of the cell z = (i, j),

T0(σz(c
1)) is not null and its first non null index is odd and smaller than 2k, in

particular uk(i, j) is not null.

Proof. For k = 1, the trace of the odd cells inside B1(0, 0) from 0 to 1 is u = 01, the

result holds. Let us assume the result true for k ≥ 1, and let z = (i, j) be an odd

cell in B2k+1−1(0, 0)\B2k−1(0, 0). Since the cell is odd, it is not over the diagonals,

and it belongs to the ball of radius 2k of one of the four cells of Sk \ {(0, 0)}, say x.

Then, by lemma 12, its trace from 2k to 2k+1 − 1 is given by uk(z − x). Since the

cells of Sk are even, (z− x) is also odd, and the conclusion follows by induction. 2

Now we will prove several properties that will be useful to prove 3-expansivity.

Lemma 14. Given k > 0, if z ∈ B2k−1(0, 0) then vk(z) is a square.

Proof. It is clear from Definition 6 and the fact that k > 0. 2

Lemma 15. Given k > 0, if z ∈ B2k−1(0, 0) \ {(0, 0)} and uk(z) 6= 02
k

, then uk(z)

is not a square.

Proof. By induction on k. For k = 1, if z is inside the von Neumann neighborhood

of (0, 0), thus u1(z) = 01 which is not a square. Let us suppose the assertion true

for k − 1 ≥ 1. Since k ≥ 1, from definition 6, we recognize two cases for uk(z).

Case 1: uk(z) = 02
k

uk−1(z − x), for some x ∈ Sk−1. The only way for uk(z) to

be a square is to be equal to 02
k

.

Case 2: uk(z) = uk−1(z)vk−1(z). By the induction hypothesis u is either null or

not a square. From lemma 14 vk−1(z) is a square, then uk(z) is a square if

and only if uk(z) = 02
k

.

2

Lemma 16. If |i| = |j| and (i, j) 6= 0, then the trace of the cell (i, j), T0(σ(i,j)(c
1))

is equal to 0ω.

Proof. Cells in the diagonals systematically falls in the boundaries of the zones

given by the substitution, then their traces are systematically assigned equal to 0.

2

Lemma 17. If i + j is even, smaller than 2k and the trace of the cell z = (i, j),

T0(σz(c
1)) is not null, then the first non null index of the trace is even and it is

smaller than 2k.

Proof. For k = 0, the trace of the even cell inside B0(0, 0) from 0 to 0 is u = 1, the

result holds. Let us assume the result true for k ≥ 0, and let z = (i, j) be an even

cell in B2k+1−1(0, 0) \ B2k−1(0, 0). Since the cell is attained, from Lemma 16, it is

not over the diagonals, then it belongs to the ball of radius 2k of one of the four

cells in Sk, say x. Then, its trace from 2k to 2k+1 − 1 is given by uk(z − x). Since
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the cells in Sk are even, z−x is also even, and the conclusion follows by induction.

2

Now we are ready to prove that this automaton is 3-expansive.

Lemma 18. If z1, z2 and z3 are three different cells and T0(σz1(c
1))+T0(σz2(c

1))+

T0(σz3(c
1)) = 0ω, then there exists z ∈ {z1, z2, z3} such that T0(σz(c

1)) = 0ω.

Proof. We will prove a stronger assertion:

If z1, z2 and z3 are three different cells in B2k−1(0, 0) and uk(z1) +

uk(z2) + uk(z3) = 02
k

, then there exists z ∈ {z1, z2, z3} such that

uk(z) = 02
k

.

It is stronger because from Lemmas 13 and 17, if z ∈ B2k−1(0, 0) and uk(z) = 02
k

,

then T0(σz(c
1)) = 0ω.

By contradiction, let z1, z2 and z3 be three different cells in a ball B2k−1(0, 0)

such that uk(z1) + uk(z2) + uk(z3) = 02
k

and for all i ∈ {1, 2, 3}, uk(zi) 6= 02
k

. Let

us choose these cells such that k is as small as possible.

Let be tz1 , tz2 and tz3 the indices where the respective traces equals 1 by the first

time. It is clear that two of these numbers are equal and smaller than the third.

Let us suppose that tz1 = tz2 < tz3 .

Case 1: z1, z2 ∈ B2k−1−1(0, 0). In this case, the trace of z3 from 2k−1 to 2k − 1 is

equal to uk(z3 − x), for some x ∈ Sk, thus uk(z3) = 02
k−1

uk−1(z3 − x). On

the other hand, uk(zi) = uk−1(zi)vk−1(zi) for i ∈ {1, 2}. From Lemma 14,

vk−1(z1) and vk−1(z2) are squares if k > 0, which is the case, since B0(0, 0)

contains only one cell. Thus vk−1(z1) + vk−1(z2) is also a square, then it

cannot be equal to uk−1(z3 − x) which is not a square thanks to Lemma 15.

Case 2: z1, z2, z3 6∈ B2k−1−1(0, 0). In this case, for each i ∈ {1, 2, 3} there exists

some xi ∈ Sk−1 such that uk(zi) = 02
k−1

uk−1(zi − xi). Of course zi − xi ∈

B2k−1−1(0, 0) for each i ∈ {1, 2, 3} and uk−1(z1 − x1) + uk−1(z2 − x2) +

uk−1(z3 − x3) = 02
k−1

, which contradicts the minimality of k.

2

With this last lemma we know that if three cells produces a null trace of radius

1, thus one of them has a null trace of radius 0, this means that this cell is even,

and its four neighbors are odd. When looking at the neighbors of these cells, their

sum is also null, for each if its neighbors. Thus at least one cell must have even

neighbors with a null trace, but in this case, two of these cells are odd, and its four

even neighbors cannot equal the odd neighbors of the first cell, and then the trace

of radius 1 of the sum of the three cells cannot be null.

6.2.2. The rule ⊕2 with triangular neighborhood The last rule is 1 and 3

expansive, now we present a linear rule which is even not 1-expansive. Thanks

to Proposition 3, it implies in particular that is not k-expansive, for every k ∈ N.
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Figure 5. Simulation of ⊕2 with a triangular neighborhood at iteration 25 starting from an initial
configuration with a single 1 inside 0s: cells in state 1 are in red, cells that have been in state 1

between iteration 0 and 24 but not at 25 are in blue, and the others cells are not drawn.

It correspond to addition modulo 2 as the last one but with a triangle shaped

neighborhood: N = {(−1, 1), (1, 1), (0, 0), (0,−1)}.

Proposition 10. T2(σ(0,36)(c
1)) is null.

Proof. We will prove, by induction, that T2(σ(0,36)(c
1)) is null from 0 to 2k. For

k = 0 to 5 is clear since cell (0, 36) is too far to touch B2(0, 0). At iteration 2k the

only active cells are (−2k,−2k + 36), (2k,−2k + 36), (0, 2k + 36) and (0, 36). The

first three are too far to touch B2(0, 0) from iterations 2k to 2k+1. By induction

hypothesis (0, 36) does not attain B2(0, 0) in 2k iterations, thus B2(0, 0) remains

null until iteration 2k+1. 2

7. Open Problems

We showed in this paper that dynamics like pre-expansivity or k-expansivity can

exist without necessarily implying positive expansivity. We also showed that

some combinations of the space structure and the local rule structure forbid pre-

expansivity (Theorem 2).

However, we left many open questions concerning pre-expansivity and k-

expansivity:

• is there a pre-expansive cellular automata on Zd when d ≥ 2?

• is there a 2-expansive cellular automata on Z2? on the free group? more

generally which is the set of integers k such that a given group admits k-

expansive cellular automata?

• are pre-expansive CA always transitive? mixing? open?

• is the property of pre-expansivity decidable?
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