
HAL Id: hal-01285959
https://hal.science/hal-01285959

Submitted on 10 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An attempt to set the framework of Model-Oriented
Programming

Philippe Lahire, Didier Parigot, Carine Courbis, Pierre Crescenzo, Emanuel
Ţundrea

To cite this version:
Philippe Lahire, Didier Parigot, Carine Courbis, Pierre Crescenzo, Emanuel Ţundrea. An attempt
to set the framework of Model-Oriented Programming. CONTI 2004 (6th Conference On Technical
Informatics), May 2004, Timisoara, Romania. pp.71-76. �hal-01285959�

https://hal.science/hal-01285959
https://hal.archives-ouvertes.fr


1

Buletinul Stiintific al Universitatii "Politehnica" din Timisoara, ROMANIA
Seria AUTOMATICA si CALCULATOARE

PERIODICA POLITECHNICA, Transactions on AUTOMATIC CONTROL and COMPUTER SCIENCE
Vol.49 (63), 2004, ISSN 1224-600X

An attempt to set the framework of Model-Oriented
Programming

Philippe Lahire∗ Didier Parigot∗∗ Carine Courbis∗∗∗ Pierre Crescenzo∗ Emanuel Ţundrea∗∗∗∗

∗ Laboratoire I3S (UNSA/CNRS) - Projet OCL - 2000 route des Lucioles - Les Algorithmes, Bâtiment Euclide - BP 121 -
F-06903 Sophia-Antipolis cedex - France

{ Philippe.Lahire , Pierre.Crescenzo } @unice.fr
http://www.i3s.unice.fr/

∗∗ INRIA Sophia-Antipolis - 2004, route des Lucioles - BP 93 - F-06902 Sophia-Antipolis cedex - France
Didier.Parigot@inria.fr

http://www.inria.fr/
∗∗∗ University College London - Computer Science Department - Adastral Park - Martlesham IP5 3RE - United Kingdom

Carine.Courbis@bt.com
http://www.cs.ucl.ac.uk/

∗∗∗ “Politehnica” University of Timisoara - Faculty of Automatics and Computer Science - Bd. V. Parvan no 2 - 1900
Timisoara- Romania

Emanuel@emanuel.ro
http://www.utt.ro/

Abstract— Nowadays, companies involved in the development
of modern software face several difficulties. One of the most
important ones is the continuous evolution of software platforms
(C++, Java, DotNet, CORBA, EJB, Web services, XML, etc.).
One interesting solution to this problem is the Model-Driven
Architecture (MDA) approach from the OMG. It suggests that
domain-specific knowledges should be encapsulated in platform-
independent business models, apart from the applications. Be-
yond this answer is the failure of classical development techniques
that rely on object-oriented design and programming. According
to these remarks, we address another way to develop software:
Model-Oriented Programming. It is based on the Domain-Driven
Development track and introduces a macro-level on top of the
classical programming entities. It intends to be used for the
handling, reuse and evolution of the business know-how and
its associated applications. This paper attempts to define a set
of golden rules for setting up the framework of model-oriented
programming and ensuring the success of its use. It gives also an
overview of the implementation of those rules that we propose
in our approach called SmartModels.

Index Terms— Meta-modelling, Business models, Model-
Driven Architecture (MDA), Domain-Driven Development
(DDD), aspect-oriented programming (AOP), Generative pro-
gramming

I. I NTRODUCTION

The way an application must be developed must evolve
in order to take into account new trends in order to provide

softwares which are more open, adaptable and evolutive.
Main reason is that with the continuous evolution and the
proliferation of new technologies it is difficult to choose
the right and more capable of evolving one and most of
all classical approaches do not provide the right answer
to allow a company to quickly and cheaply adapt its
software to new user needs and technologies. The lacks
of object-oriented programming explain the emergence of
new programming paradigms such as AOP (Aspect-Oriented
Programming) [16], SOP (Subject-Oriented Programming)
[15], IP (Intentional Programming) [24], or component
programming [27]. At the specification level, a strong and
continuous evolution is undergoing toward standards of
the W3C (World Wide Web Consortium) for documents
or of the OMG (Object Management Group) for design
methodologies such as UML (Unified Modeling Language)
or MDA (Model-Driven Architecture) approach [28], [4], [14].

According to these observations, we propose another way
of developing software, namedModel-Oriented Programming.
It is based on the Domain-Driven Development track (DDD)
[9], which relies on several paradigms such as object-oriented
technology, languages for components, MDA, approaches for
the separation of concerns, and generative programming [8].



2

Model-oriented programming is a new approach for the
development of software which takes advantage not only from
object-oriented and aspect-oriented paradigms but also from
information systems. As it has been mentioned above, model-
oriented programming introduces a new level of abstraction
(the model) which acts as an autonomous entity that may
receive queries from satellite applications. The specification
of both the model and the applications may use for example
object-oriented and/or aspect-oriented approaches.

Each application is built around at least one business model.
We address the most frequent case where one business model
is predominant. Having a predominant model on which are
plugged in different concerns of an application is very similar
to approaches by separation of concerns (ASoC). However,
in model-oriented programming, concerns are attached to a
business model instead of being weaved into object-oriented
applications which may be executed with or without these
concerns. The model has its behaviour (its semantics), but
it does not invoke itself any treatment. On the contrary, the
semantics of the model is addressed only when applications
query the model entities in order to match their requirements.
In the context of DDD, a business model may support two
main categories of applications: i) those dedicated to the
computation and/or the update of information recorded by the
instances of models; their methodology is close from informa-
tion systems, and ii) those which deals with the transformation
of the model and which are particularly relevant in the context
of MDA.

Model-oriented programming is definitively very different
from other paradigms such as object-oriented programming
(OOP). It breaks the supremacy of programming languages:
the model is now the key-point whereas the formalism
used to describe its instances play minor roles. This is
the consequence of the collaboration between MDA and
generative programming. Altogether these two paradigms
contribute to link the model and its formalism(s), and this
favours the coming out of Domain-Specific Languages (DSL)
as business-models.

A new approach for the development of software must
ensure that software engineering skills are covered and im-
proved in comparison with object-oriented and aspect-oriented
approaches. Reusability, evolution capabilities and robustness
of both business models and applications must be addressed
very carefully by model-oriented programming. We propose
nine rules which characterize, from our point of view, model-
oriented programming; they are classified in two categories:
conceptual and implementation purposes. These rules relies
on the experience gained in previous works which deal on
the one hand with meta-modeling [7], and on the other hand
with the design of a software factory called SMARTTools
[2]. They intends to take advantage of both approaches in
order to propose a framework for the development of domain-
specific applications. In sections II and III we address rules
related respectively to the design of the meta-model and its
implementation. Section IV deals with the description of a
possible implementation of those rules in an approach called

SMARTMODELS and section V mention some of the related
works. finally we conclude.

II. RULES FOR THEAPPROACHDESIGN

Rule N◦1: Business Model as a first-class entity of the
development process. :A business model relies on a data
model and on a semantic model. The data model contains
the description of the entities involved in the business model
whereas the semantic model describes the interactions and the
constraints between those entities, but also their behaviour
with respect to the business-model know-how. A business
model is considered by applications as a whole or for its
contents; it constitutes a new level of abstraction which favours
global operations such as transformation or introspection. Both
of them query the model entities in order to reuse its business
know-how or to involve both model and programs.

Rule N◦2: A triple independence between the model, the
application and the technology.:A business model is not an
application. It encapsulates the description of its behaviour
(its semantics), which must be independent from any further
use. This property will ensure that a business model is
reusable independently from the applications that may address
it1. Moreover, an application or a business model must be
designed independently from the software platform on which
the application will be executed. This is only at the very last
moment that the binding with the platform technology2 must
be made. This second property allows the business logic to be
used whatever technology will appear in the future.

Rule N◦3: Support of generic entities. :Typically busi-
ness models may address lines of products and more generally
a set of entities that may have commonalities and differences
but which have a close semantics3; they must be designed as
generic entities which may be easily derived. A quite common
situation is that business models address a few key-entities
which are defined according to a large number of basic entities;
very often, the key-entities correspond to generic entities. Then
it is particularly important that generic entities provide a clear
vision of their semantics because they deal with a significant
part of the model semantics. Object-Oriented languages like
Eiffel proved that the support of generic entities (we should say
generic business model) is an interesting approach to ensure
reusability and evolution.

Rule N◦4: Clear separation between semantic and data
models.: The domain-specific know-how is encapsulated in
business models through the data model (reification and struc-
turing by the entities) and the semantic model (behaviour
of those entities). To be able to reuse the semantics when
the data model evolves is an important issue. This is par-
ticularly important in the context of model transformations
where semantics must evolve accordingly to the data-model (in
the most automatic way). Model-oriented programming must
provide a clear separation between the description of the data-
model and the description of its semantics.

1Of course it is still an important issue to ensure also the reusability of the
application behaviour.

2Some people call this the Platform Dependent Model (PDM).
3It is important to note that commonalities and differences may represent

a major part of the semantics of these entities.



3

Rule N◦5: Orthogonal handling of concerns.:Rule N◦2
infers a separation of concerns between the business model and
the applications. The first one is under the responsibility of an
expert which captures the domain-specific know-how, whereas
the second one is handled by programmers. But separation of
concerns must exist also within the business model and within
the applications themselves.

According to the business model, the needs are twofolds:i)
the semantics may be complex enough and require some mod-
ularization, andii) pieces of semantics which are orthogonal to
the original semantics must be straightforwardly carried out.

According to applications, the requirements are even more
important. An application may contain different subjects which
have to be smoothly composed for building it up. Moreover,
an application should be able to take care about the evolution
of the environment (which can not be foreseen in advance),
without changing the application core.

III. RULES FOR THEAPPROACHIMPLEMENTATION

Rule N◦6: An adequate balance between declarative
and imperative programming.:Semantics of business models
should be described as much as possible in a declarative
way in order to specify what is expected (the “what”) but
not how it is made (the “how”). This is one of the most
important issues addressed by the MDA approach. But, it is not
acceptable to carry this approach to the breaking point where
the description relies on very complex formalisms, difficult to
read and to understand. A compromise is necessary between
the “all declarative” and the “all programming”.

Rule N◦7: Support of domain-specific languages.:A clear
distinction has to be made between the expressiveness of a
business model and the language (textual, graphical, etc.) used
by the designer for the specification of the different pieces of
this business model. Moreover, model-oriented programming
tends to come closer and closer to the general public (ubiq-
uitous programming), so that the need to provide “languages”
dedicated to one business model and even to one application
becomes more and more important. Generative programming
and MDA provide a good support to achieve this issue.

Rule N◦8: Openness of the development process.:To
provide a meta-model and a set of related mechanisms that
answer to any need of any kind of business model is Utopian
from our point of view. We promote the idea of an unified
approach with very few built-in mechanisms, but that can
be easily adapted to further needs of modern applications.
In particular, it is important to be able to customize the
way to query information according to the context of use.
In other words, the generation and handling of an executable
business model must be customizable. In our approach, all
the key-concepts which participate to the description of both
the application and the business model in order to make it
executable are first-class entities.

Rule N◦9: Self-extensible capability of the approach.:
Model-oriented programming requires a meta-model which
captures the description of both business models and
applications, as it is mentioned in previous rules. This
meta-model may be considered as a particular business

model. As it is explained in Rule N◦7, the specification of
the different parts of this meta-model may rely, for example
on a dedicated language4. But many other needs required for
the development of applications may appear. In particular,
modern applications should be available as components
that may interact one with the others. It is important to
make the approach self-extensible, that is to say able to
include other applications and business models built thanks
to model-oriented programming (that means built with the
approach itself). For example, to handle components, a correct
approach would be to design a business model.

With those nine rules, we attempted to set a framework
for model-oriented programming. We promote the idea that
an approach which intends to implement model-oriented pro-
gramming should try as much as possible to match the
requirements proposed by those rules. In the next section we
propose some elements of response addresses the rules.

IV. K EY-ASPECTS OF BUSINESS MODELS WITH

SMARTMODELS

This section deals with a subset of the rules described in
previous sections and tries to explain how to map those rules
in the meta-model associated to our approach which is called
SMARTMODELSand which allows to describe business models
(reification and semantics). But we do not address here the
aspects related to the modelisation of applications dedicated
to these business models.

As a preamble, we can say that the meta-model which
allows the description of business models addressedi) the
reification of basic entities (Section IV-B),ii) the reification of
generic entities and their generic parameters (Section IV-C),
iii) the semantics of the business model which corresponds
mainly to the possible values that may be assigned to the
generic parameters (Section IV-C) and to the actions (Section
IV-D). One of the key-aspects of SMARTMODELS is that
the semantic model is encapsulated in a meta-level, so that
it may be distinguished from the data-model. Section IV-A
explains the main benefits that are expected from this. Figure
1 illustrates these previous lines.

A. A meta-level to separate semantic and data-models

This section addresses principally the fourth rule. In Figure
1 we propose an overview of the architecture of the meta-
model. The semantics of the business model is addressed
through the specification ofhypergeneric parameters[10],
characteristicsand actions. All of them participate to the
definition of the semantics of business-model entities5

(whether they are generic or not); but they do not address
the description of their instances. Because applications are
outside the business model, the methods that handle instances
of atoms are accessors only6; they are automatically generated

4It can be built as a pseudo-language or it can use the UML graphical
approach with activity or class diagrams, Action Semantics, etc.

5We call thematom - see section IV-B.
6This is the main difference with actions which address entities but not

instance of entities.



4

is−a

instance

of

business model

One 

instance

of

business model

One 

instance

of

business model

Parameters 

&

Characteristics Concept

Generic

Generic

Atom

...

Atom

Concept

is−a

M
eta

−
level

R
eifica

tio
n

 L
evel

In
sta

n
ce−

level

Actions

&

Aspects

One Derived Atom

One Atom ...

One Derived Atom

is−derived is−derived

is−a

is−an−instance−of

contains is−an−instance−of

contains

One 

Fig. 1. Key-aspects of a business model

taking into account the type (for example if it is a collection
or not). Actions are methods with special properties; for
example, they can handle assertions (see section IV-D) and
aspects (not presented in this paper). Moreover, actions are
first-class entities and are integrated in a meta-object protocol.

We propose to create a meta-level in order to encapsulate
the semantics of an entity into a meta-level which is named the
concept. A concept is associated with one or several atoms7.
This clear separation between the semantics of the business
model and the reification of its entities is very important be-
cause it favoursi) the maintenance of the semantics (redefining
the semantics should only deal with concepts),ii) the reuse of
the semantics in other (closely-related) business models, and
iii) the transformation of model which is one of the key-points
of model-oriented programming. MOF does not integrate any
meta-level. The main consequence is that it is not possible8 to
indicate that a MOF class is an instance of another one. The
main facilities provided by MOF to describe meta-information
are class variables and class methods; from our point of view
it is not sufficient.

B. Expressiveness of the data-model

This section addresses mainly the first and the second rules;
it participates to the description of the data-model which is part
of a business model.

The description of the business-model entities relies on
well-known concepts that may be found in most programming
languages or meta-models. We present them briefly in the
context of SMARTMODELS and with regard to MOF [13]. At

7It is an approach which is quite similar to the classes and meta-classes of
the Smalltalk language.

8It is of course possible to write two models with MOF, one being the
meta-model of the other. But according to our knowledge is not possible to
express it with MOF.

a first glance, we could define business models directly with
MOF, but Sections IV-A and IV-C demonstrate that additional
information must be inserted.

In our meta-model, anatom is the structure which supports
the description of an entity; it is very close to the MOF
“class” notion9. Then the features provided by MOF to
describe the contents of a class (such as attributes, operations,
generalisation relationships) are sufficient to define most of
the reification of an entity. MOF provides also the possibility
to describe associations. To describe associations, we have
introduced a generic type which implements different kinds of
collection such asbag, set, or list (with or without bounds)10.

The designer of a business model may create atoms either
for improving the structuring and factorization of information
within the model hierarchy, or for describing atoms which
have instances within applications. Our meta-model provides
a way to address those two issues; MOF does it through
the notion ofabstract class. If it means that the class must
have at least an abstract method or that all the methods
must be abstract, then we believe that this mechanism is not
sufficient. In particular, some applications may be interested
by some atoms whereas others are not; it is not the same
thing to say that whatever is the context of use, one atom
may not have instances because it is only partially defined.
We believe that a more accurate information according to the
atom status will improve the readability of the code produced
by generators, and the facilities that may be provided or not
to the programmer of application according to it. The interest
to be able to associate different status with an atom is even
greater if the business model may import atoms from another
business model.

C. Support of generic entities

This section addresses mainly the first, third and fourth
rules. It participates to the description of the data and se-
mantics models; it addresses especially the handling of the
key-entities of a model.

The support of generic entities (generic atoms) is an im-
portant issue for business models. Let us take an example
of one business model which is dedicated to record both the
structures and semantics of Java programs. Possible applica-
tions with respect to this model may implement functionalities
of programming environments (metrics, various wizards or
editors, etc.). Possible atoms of this model represent, for
example,attribute, method, method parameters, modifiers, etc.
But the most interesting ones deals with the different kinds of
classifiersand relationships(aggregation-like or inheritance-
like). Most semantics may be encapsulated within classifiers
and relationships and other atoms mentioned above may have a
very minimal semantics mostly represented by their reification.
This is possible because they are driven by the semantics
associated with classifiers and relationships. In fact, there are

9The concept ofclass is, from our point of view, too much related to
programming languages whereas business models require a more abstract
concept.

10The MOF associations provide more capabilities but we are not sure at
the moment that business model description requires it.



5

several kinds of classifiers (e.g.class, inner class, interface,
etc.) and relationships (e.g.extendsbetween interface,extends
between classes,implementsbetween one interface and one
class) in this business model [7]. Then it is meaningful to be
able to record their definitions as generic atoms11.
Let us define the term “generic atoms”. The genericity comes
from a set ofhypergeneric parametersand a set ofcharac-
teristicswhich records the differences and the commonalities
between all the foreseen derived entities12 (e.g. all the Java
classifiers). The definition of an hypergeneric parameter is
mainly based on a basic type (it may be an integer, a
boolean, an enumeration, a tuple and a collection) and on
some additional pieces of information. The definition of a
characteristic relies on an atom or a collection of atoms (e.g.
one kind of classifier records the possible kinds of inheritance-
like relationships that it may declare). Intuitively, generic
atoms are quite similar to the concept of generic class in
the Eiffel language. But derived atoms are obtained through
the relevant combination of values associated with the sets
of characteristics and parameters which participate to the
definition of thegeneric atom.

We choose to use generic atoms instead of inheritance
relationships for modeling these atoms for several reasons:
i) the definition of the data model is not mixed with the
definition of the semantics; this increases the ability of the
semantics of the business model to be transformed and reused
in another model;ii) a significant part of the semantics of all
the derived entities of one generic entity is recorded in one
location, by the definition of its parameters and characteristics;
this favours both (re)use and maintenance of these entities; iii)
the reuse of a business model is improved, especially when the
new model is an extension of the first one; according to the
business model related to the Java language, to extend it with
a new relationship like for instance, the reverse-inheritance
requires only that the new business model describes a new
instance of the generic entity which deals with inheritance-
like relationships.

D. Description of the semantic model

This section addresses the first rule and more especially the
description of the semantics model.

We explained in Section IV-C that a significant part of the
semantics of a business model is encapsulated in a few generic
atoms. A part of the semantics is captured by parameters,
characteristics and invariants13. It is a first step but it is still not
sufficient to handle the full semantics of atoms. For example,
the value of parameters used for the instantiation of generic
atoms will affect the behaviour of its derived atoms. It is
necessary to be able to specify this behaviour.

Each atom, whatever it is generic or not, has a meta-level
(its concept) where it is possible to define actions; when the
atom is derived from a generic one its execution is driven by

11One generic entity for modifiers, one for inheritance-like relationships
and one for aggregation-like relationships.

12This is the term which is quite often used in the state of the art, to refer
instances of generic entities.

13Like in MOF or UML, it is possible also to define atom invariants. This
contributes to the description of the semantics of entities.

the value of the parameters. For other atoms, the ability is
provided but we believe that it is not relevant in most cases.

An action has a signature, preconditions and postcondi-
tions defined with respect to the reification of entities and
hypergeneric parameters when it is a generic atom14. It may
also accept the execution of orthogonal concerns (aspects). An
action must be completely independent from the application
related to the business model. A typical scenario is that
the behaviour of a given application relies on the semantic
model, that is to say call those actions or query hypergeneric
parameters.
It is straightforward that an action has a “body” that has
to be specified; there are three main approaches to take its
contents into account in the meta-model:i) to propose a
full representation of the body which may correspond to
the reification of some pseudo-languages,ii) to delegate to
the description of the body to the underlying implementation
language; the meta-model records only the fact that an action
has a body, andiii) to propose a partial description of the
body15. Typically for the first and third solution the body
of the action will be partially generated, whereas in the
second solution, the whole description of the body will be
completely under the responsibility of the developer. At the
moment our first prototype implements the third solution but
the expressiveness of action bodies is going to be improved
as far as interesting capabilities are found.
It is important to distinguish the capability of the model to
record more or less the representation of the action bodies,
from the description language which is provided to the user
in order to describe it. About this aspect two solutions seem
to be relevant:i) to take UML from OMG and to use diagram
of activities and/or Action Semantics,ii) to design a domain-
specific language for the semantics description. We have not
evaluated seriously these two solutions yet. It is said that UML
is the meta-model for the specification of business models (it
is important to reuse existing standards), but we have also
to remember that at the beginning UML was not designed
for the definition of business models but for applications.
An alternative to those approaches may be to increase the
expressiveness of MOF with respect to the description of the
semantics.

V. RELATED WORK

Several approaches address the problematic suggested in the
introduction, that is to say : to capitalize the business know-
how and its associated applications in order to handle the
continuous evolution of software platforms.

The AOP-related works try to propose powerful mechanisms
to describe the semantics of domain specific languages (DSLs)
[3]. All of these works [18], [22], [23], [17] stem from the
basic issue of a better separation between the data structure
and the semantics treatments.

It is well-known that the handling of an AOP can be rather
complex and can introduce scarcely controllable situations [5].

14In our meta-model, assertions are described with OCL from the OMG.
15For example, to record the list of hypergeneric parameters that are

involved in the semantics of the action



6

To solve this problem, aspect-oriented languages dedicated to
the context are proposed [25]. However, nearly in all the cases,
the reflexivity mechanism plays major role [20], [19]. Because
of this, from our point of view, there is a strong dependence
between the approach and the implementation techniques (that
should be as less visible as possible at the model level).

Some approaches focused on the issues of modularity or
reuse of semantics components [3], [26]; Other investigate
how to introduce powerful mechanisms to reuse language
components; their objective is to be able to design a DSL
by composition of existing components [3]. Model-oriented
programming is more oriented toward the definition of a family
of DSLs.

About Modelling approaches, Model-oriented programming
is closer to those that advocate a domain model approach
[1] than those that propose extensions (profiles) of a standard
model. Indeed, having an universal model seems no longer be
the solution advocating by the MDA but rather an approach à
la MDA.

With respect to model transformation approaches (MDA)
[1], the coupling of model-oriented programming with gen-
eration mechanisms allows much more complex transforma-
tion than those offered by simple transformations between
models[4], [1]. But foreseeing a translation of the treatments
from the original model to the target model [21] is important.

Finally, Model-oriented programming, is integrated in the
much more global context of software factories [12], [6], [11].

VI. CONCLUSION AND PERSPECTIVES

In this paper, we propose to structure the framework of
Model-Oriented Programming with a set of essential rules. We
consider them as a first attempt for the definition of the main
principles of this approach. We are working on an approach
called SMARTMODELS, for which some of the key-aspects had
been presented. It is one interpretation of those rules and an
implementation of this approach on top of SmartTools [2] is
undergoing implementation.

In the short term we want to experiment our approach
for the description of various business models and their
applications; currently we start to investigate business models
of a the French electricity company, EDF. The objective is
to get feedbacks in order to improve the expressiveness of
SMARTMODELS but also the automation ofi) the generation
of the behaviour, andii) the semantics transformation of both
business models and applications when they evolve toward
another model or application.

REFERENCES

[1] Colin Atkinson and Thomas Kühne. The role of meta-modeling in MDA.
In Jean Bezivin and Robert France, editors,Workshop in Software Model
Engineering, 2002.

[2] Isabelle Attali, Carine Courbis, Pascal Degenne, Alexandre Fau, JoÃ«l
Fillon, Didier Parigot, Claude Pasquier, and Claudio Sacerdoti Coen.
SmartTools: a development environment generator based on XML
technologies. InXML Technologies and Software Engineering, Toronto,
Canada, May 2001. ICSE’2001, ICSE workshop proceedings.ftp://ftp-
sop.inria.fr/oasis/personnel/Carine.Courbis/smarticse02.pdf.

[3] Don Batory, Bernie Lofaso, and Yannis Smaragdakis. JTS: Tools for
implementing Domain-Specific Languages. In P. Devanbu and J. Poulin,
editors,Proceedings: Fifth International Conference on Software Reuse,
pages 143–153. IEEE Computer Society Press, 1998.

[4] Jean Bezivin. From Object Composition to Model Transformation with
MDA. In TOOLS USA, Santa-Barbara, August 2001. IEEE TOOLS-39.

[5] Noury M. N. Bouraqadi-Saâdani and Thomas Ledoux. Le point sur
la programmation par aspects. InTechnique et Sciences Informatiques,
volume 20, page 505 à 528. HermÃ¨s, 2001.

[6] Steve Cook and Stuart Kent. The Tool Factory. InOOPSLA’2003,
workshop on Generative Techniques in the context of MDA, Anaheim -
USA, October 2003.

[7] Pierre Crescenzo and Philippe Lahire. Using both specialisation and
generalisation in a programming language: Why and how?Lecture Notes
in Computer Science, 2426:64–73, 2002.

[8] Krysztof Czarnecki and Ulrich W. Eisenecker.Generative Programming:
Methods, Techniques, and Applications. Addison-Wesley, June 2000.

[9] Krzysztof Czarnecki and John Vlissides. Domain-Driven
Development. Special Track at OOPSLA’03 URL:
http://oopsla.acm.org/oopsla2003/files/ddd.html.

[10] P. Desfray.Object Engineering, the Fourth Dimension. Addison-Wesley
Publishing Co., 1994.

[11] Christer Fernström, Kjell-Ḣakan Närfelt, and Lennart Ohlsson. Software
factory principles, architecture, and experiments.IEEE Software, 9:36–
44, March 1992.

[12] Jack Greenfield and Keith Short. Software factories: assembling appli-
cations with patterns, models, frameworks and tools. InCompanion
of the 18th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 16–27. ACM
Press, 2003.

[13] Object Management Group. Meta Object Facility (MOF) specification
(version 1.3). Technical report, Object Management Group, March 2000.

[14] OMG Staff Strategy Group and Richard Soley. Model-Driven Architec-
ture. Technical report, OMG, November 2000.

[15] William Harrison and Harold Ossher. Subject-oriented programming (A
critique of pure objects). In Andreas Paepcke, editor,Proceedings ACM
Conference on Object-Oriented Programming Systems, Languages, and
Applications, pages 411–428. ACM Press, October 1993.

[16] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented
Programming. In Mehmet Akşit and Satoshi Matsuoka, editors,
ECOOP ’97 — Object-Oriented Programming 11th European Confer-
ence, Jyväskylä, Finland, volume 1241 ofLecture Notes in Computer
Science, pages 220–242. Springer-Verlag, New York, NY, June 1997.

[17] Karl J. Lieberherr. Adaptive Object-Oriented Software: The Demeter
Method with Propagation Patterns. PWS Publishing Company, Boston,
1996. ISBN 0-534-94602-X.

[18] Karl J. Lieberherr and Doug Orleans. Preventive program maintenance
in Demeter/Java. InProceedings of the 1997 International Conference
on Software Engineering, pages 604–605. ACM Press, 1997.

[19] Cristina Videira Lopes and Karl J. Lieberherr. AP/S++: A CASE-study
of a MOP for purposes of software evolution. Technical Report NU-
CCS-95-?, Xerox PARC and Northeastern University, November 1995.

[20] Jacques Malenfant and Pierre Cointe. Aspect-Oriented Programming
versus Reflection: a first draft. InPosition Statement for the OOPLSA
’96 AOP meeting, 1996.

[21] OMG. MDA - Model-Driven Architecture.http://www.omg.org/mda.
[22] Doug Orleans and Karl Lieberherr. DJ: Dynamic adaptive programming

in Java.Lecture Notes in Computer Science, 2192:73–??, 2001.
[23] Jens Palsberg, Boaz Patt-Shamir, and Karl Lieberherr. A new approach

to compiling adaptive programs.Science of Computer Programming,
29(3):303–326, 1997.

[24] Charles Simonyi. The death of programming languages, the birth of
intentional programming. Technical report, Microsoft, Inc., September
1995.

[25] Yannis Smaragdakis and Don Batory. DiSTiL: A transformation library
for data structures. InUSENIX Conference on Domain-Specific Lan-
guages, 1997.

[26] Y. V. Srinivas and Richard Jullig. Specware(TM): Formal support for
composing software. Technical Report KES.U.94.5, Kestrel Institute,
1994. see also Proceedings of the Conference on Mathematics of
Program Construction, Kloster Irsee, Germany.

[27] Clemens Szyperski. Component Software: Beyond Object-Oriented
Programming. ACM Press and Addison-Wesley, New York, NY, 1998.

[28] T Ziadi, B Traverson, and Jean-Marc JÃc©zÃ c©quel. From a UML
Platform Independent Component Model to Platform Specific Compo-
nent Models. InInternational workshop in Software Model Engineering
(WiSME02) at UML2002, Dresden (Germany), September 2002.


