N

N
N

HAL

open science

An attempt to set the framework of Model-Oriented
Programming

Philippe Lahire, Didier Parigot, Carine Courbis, Pierre Crescenzo, Emanuel

Tundrea

» To cite this version:

Philippe Lahire, Didier Parigot, Carine Courbis, Pierre Crescenzo, Emanuel Tundrea. An attempt
to set the framework of Model-Oriented Programming. CONTI 2004 (6th Conference On Technical

Informatics), May 2004, Timisoara, Romania. pp.71-76. hal-01285959

HAL Id: hal-01285959
https://hal.science/hal-01285959
Submitted on 10 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01285959
https://hal.archives-ouvertes.fr

Buletinul Stiintific al Universitatii "Politehnica" din Timisoara, ROMANIA
Seria AUTOMATICA si CALCULATOARE
PERIODICA POLITECHNICA, Transactions on AUTOMATIC CONTROL and COMPUTER SCIENCE
Vol.49 (63), 2004, ISSN 1224-600X

An attempt to set the framework of Model-Oriented
Programming

Philippe Lahiré Didier Parigot* Carine Courbis™ Pierre CrescenZzoEmanuel Tundreg**

* Laboratoire 13S (UNSA/CNRS) - Projet OCL - 2000 route des Lucioles - Les Algorithmes, Batiment Euclide - BP 121 -
F-06903 Sophia-Antipolis cedex - France
{Philippe.Lahire , Pierre.Crescenzo }@unice.fr
http://www.i3s.unice.fr/
** INRIA Sophia-Antipolis - 2004, route des Lucioles - BP 93 - F-06902 Sophia-Antipolis cedex - France
Didier.Parigot@inria.fr
http://www.inria.fr/
*** University College London - Computer Science Department - Adastral Park - Martlesham IP5 3RE - United Kingdom
Carine.Courbis@bt.com
http://www.cs.ucl.ac.uk/
= “Politehnica” University of Timisoara - Faculty of Automatics and Computer Science - Bd. V. Parvan no 2 - 1900
Timisoara- Romania
Emanuel@emanuel.ro
http://www.utt.ro/

Abstract—Nowadays, companies involved in the development softwares which are more open, adaptable and evolutive.
of modern software face several difficulties. One of the most Main reason is that with the continuous evolution and the
important ones is the continuous evolution of software platforms proliferation of new technologies it is difficult to choose

(C++, Java, DotNet, CORBA, EJB, Web services, XML, etc.). the right and ble of Vi d t of
One interesting solution to this problem is the Model-Driven € rignt and more capable ol evolving one and most 0

Architecture (MDA) approach from the OMG. It suggests that @ll classical approaches do not provide the right answer
domain-specific knowledges should be encapsulated in platform- to allow a company to quickly and cheaply adapt its

independent business models, apart from the applications. Be- software to new user needs and technologies. The lacks
yond this answer is the failure of classical development techniques of object-oriented programming explain the emergence of

that rely on object-oriented design and programming. According - : ;
to these remarks, we address another way to develop software: new programming paradigms such as AORsiect-Oriented

Model-Oriented Programminglt is based on the Domain-Driven Programming [16], SOP Gubject-Oriented Programmihg
Development track and introduces a macro-level on top of the [15], IP (Intentional Programminy [24], or component

classi_cal programming entit_ies. It intends_to be used for the programming [27]. At the specification level, a strong and
handling, reuse and evolution of the business know-how and continuous evolution is undergoing toward standards of

its associated applications. This paper attempts to define a set .
of golden rules for setting up the framework of model-oriented the W3C World Wide Web Consortiymfor documents

programming and ensuring the success of its use. It gives also anOr 0of the OMG (Qbject Management Grojipfor design
overview of the implementation of those rules that we propose methodologies such as UMLUfified Modeling Language

in our approach called SmartModels. or MDA (Model-Driven Architecturpapproach [28], [4], [14].
Index Terms— Meta-modelling, Business models, Model-

Driven Architecture (MDA), Domain-Driven Development))
(DDD), aspect-oriented programming (AOP), Generative pro- According to these observations, we propose another way

gramming of developing software, namédodel-Oriented Programming
It is based on the Domain-Driven Development track (DDD)
|. INTRODUCTION [9], which relies on several paradigms such as object-oriented
The way an application must be developed must evoltechnology, languages for components, MDA, approaches for
in order to take into account new trends in order to providae separation of concerns, and generative programming [8].

SMARTMODELS and section V mention some of the related
Model-oriented programming is a new approach for theorks. finally we conclude.
development of software which takes advantage not only from
object-oriented and aspect-oriented paradigms but also from Il. RULES FOR THEAPPROACHDESIGN
information systems. As it has been mentioned above, model- Ryle N1: Business Model as a first-class entity of the

oriented programming introduces a new level of abstracti%vebpmem process. A business model relies on a data
(the model) which acts as an autonomous entity that M@yhgel and on a semantic model. The data model contains
receive queries from satellite applications. The specificatighe description of the entities involved in the business model
of both the model and the applications may use for exampjfhereas the semantic model describes the interactions and the
object-oriented and/or aspect-oriented approaches. constraints between those entities, but also their behaviour
Each application is built around at least one business modg|ip, respect to the business-model know-how. A business
We address the most frequent case where one business mgg&lel is considered by applications as a whole or for its
is predominant. Having a predominant model on which aggntents; it constitutes a new level of abstraction which favours
plugged in different concerns of an application is very similgfiohal operations such as transformation or introspection. Both
to approaches by separation of concerns (ASoC). Howevgfithem query the model entities in order to reuse its business
in model-oriented programming, concerns are attached tQ.@yw-how or to involve both model and programs.
business model instead of being weaved into object-oriented Ryle N2: A triple independence between the model, the
applications which may be executed with or without thes&pplication and the technologyA business model is not an
concerns. The model has its behaviour (its semantics), Rigplication. It encapsulates the description of its behaviour
it does not invoke itself any treatment. On the contrary, tf‘(ﬁs semantics), which must be independent from any further
semantics of the model is addressed only when applicatiqige. This property will ensure that a business model is
query the model entities in order to match their requiremenigysaple independently from the applications that may address
In the context of DDD, a business model may support twgt \oreover, an application or a business model must be
main categories of applications: i) those dedicated to thRsigned independently from the software platform on which
computation and/or the update of information recorded by thge application will be executed. This is only at the very last
instances of models; their methodology is close from informgyoment that the binding with the platform technoldggust
tion systems, and ii) those which deals with the transformatigya made. This second property allows the business logic to be
of the model and which are particularly relevant in the conteyked whatever technology will appear in the future.
of MDA. Rule N'3: Support of generic entities. Typically busi-
Model-oriented programming is definitively very differentyess models may address lines of products and more generally
from other paradigms such as object-oriented programmiggset of entities that may have commonalities and differences
(OOP). It breaks the supremacy of programming languagegit which have a close semanfic¢hey must be designed as
the model is now the key-point whereas the formalisgeneric entities which may be easily derived. A quite common
used to describe its instances play minor roles. This dgyation is that business models address a few key-entities
the consequence of the collaboration between MDA aRghich are defined according to a large number of basic entities;
generative programming. Altogether these two paradigngry often, the key-entities correspond to generic entities. Then
contribute to link the model and its formalism(s), and thig js particularly important that generic entities provide a clear
favours the coming out of Domain-Specific Languages (DSkjsjon of their semantics because they deal with a significant
as business-models. part of the model semantics. Object-Oriented languages like
Eiffel proved that the support of generic entities (we should say
A new approach for the development of software mugfeneric business model) is an interesting approach to ensure
ensure that software engineering skills are covered and iFB'usabiIity and evolution.
proved in comparison with object-oriented and aspect-oriented Ryle N4: Clear separation between semantic and data
approaches. Reusability, evolution capabilities and robustn@ggdels.: The domain-specific know-how is encapsulated in
of both business models and applications must be addrespgéiness models through the data model (reification and struc-
very carefully by model-oriented programming. We proposgring by the entities) and the semantic model (behaviour
nine rules which characterize, from our point of view, modeqf those entities). To be able to reuse the semantics when
oriented programming; they are classified in two categoriafe data model evolves is an important issue. This is par-
conceptual and implementation purposes. These rules religglarly important in the context of model transformations
on the experience gained in previous works which deal @fhere semantics must evolve accordingly to the data-model (in
the one hand with meta-modeling [7], and on the other hagge most automatic way). Model-oriented programming must
with the design of a software factory calledu&RTTools provide a clear separation between the description of the data-

[2]. They intends to take advantage of both approaches fipdel and the description of its semantics.
order to propose a framework for the development of domain-

specific applications. In sections Il and Ill we address rules'Of course it is still an important issue to ensure also the reusability of the
; ; lication behaviour.

.relalted respgctlvely tc.) the deS|g|n Of. Lhehmeta m(.)d(.al an? Some people call this the Platform Dependent Model (PDM).

Imp e.mer.]tatlon' SeCtllon IV deals wit 't € descrlptlon Of a3y g important to note that commonalities and differences may represent

possible implementation of those rules in an approach calleehajor part of the semantics of these entities.

Rule N'5: Orthogonal handling of concernsRule N°2 model. As it is explained in Rule N, the specification of
infers a separation of concerns between the business model gmeddifferent parts of this meta-model may rely, for example
the applications. The first one is under the responsibility of am a dedicated languafeBut many other needs required for
expert which captures the domain-specific know-how, whereilire development of applications may appear. In particular,
the second one is handled by programmers. But separatiommaddern applications should be available as components
concerns must exist also within the business model and withivat may interact one with the others. It is important to
the applications themselves. make the approach self-extensible, that is to say able to

According to the business model, the needs are twofdldsinclude other applications and business models built thanks
the semantics may be complex enough and require some mimdinodel-oriented programming (that means built with the
ularization, andi) pieces of semantics which are orthogonal tapproach itself). For example, to handle components, a correct
the original semantics must be straightforwardly carried ouaapproach would be to design a business model.

According to applications, the requirements are even more
important. An application may contain different subjects which With those nine rules, we attempted to set a framework
have to be smoothly composed for building it up. Moreovefpr model-oriented programming. We promote the idea that
an application should be able to take care about the evoluti@n approach which intends to implement model-oriented pro-
of the environment (which can not be foreseen in advancgyamming should try as much as possible to match the
without changing the application core. requirements proposed by those rules. In the next section we

propose some elements of response addresses the rules.

Ill. RULES FOR THEAPPROACHIMPLEMENTATION
IV. KEY-ASPECTS OF BUSINESS MODELS WITH

Rule N6: An adequate balance between declarative SMARTMODELS

and imperative programming.Semantics of business models

should be described as much as possible in a declarativérhis section deals with a subset of the rules described in
way in order to specify what is expected (theHat) but previous sections and tries to explain how to map those rules
not how it is made (the How?). This is one of the most in the meta-model associated to our approach which is called

important issues addressed by the MDA approach. But, it is ARTMoDELSand which allows to describe business models

acceptable to carry this approach to the breaking point Whéngfication and semantics). BUt we do not _ad(jress her_e the
the description relies on very complex formalisms, difficult tgspects related to the madelisation of applications dedicated

read and to understand. A compromise is necessary betw ese business models. ,
the “all declarative” and the “all programming’. As a preamble, we can say that the meta-model which

Rule N'7: Support of domain-specific language. clear allows the description of business models addresketthe

distinction has to be made between the expressiveness df igcqtion O.f .basic entitigs (Secti_on IV-8)) the reificatipn of
business model and the language (textual, graphical, etc.) uggateh”c ent't'ei and ft?ﬁ Ir gen_erlc para(rjnelter;,_ (: ection IV'CO)I’
by the designer for the specification of the different pieces of . Ie ;ser;}an ICS qbl € Iusmeﬂ?stmo € bW N _corrgstport'lhs
this business model. Moreover, model-oriented programmi inly to the possible values thal may be assignec fo the
tends to come closer and closer to the general public (ub 2neric parameters (Section IV-C) and to the act|o.ns (Section
uitous programming), so that the need to provide “language D). Onet_ of thg Ikgy—aspectslotf N(?BTMOD'?[LSI IS Ithat that
dedicated to one business model and even to one applicat] A sen’kl)anég tmo € hlsde?capstlrj]az tm a ;n? aéevtg, SIOV Aa
becomes more and more important. Generative programm”’n ay be distinguished from the data-model. section TV=
and MDA provide a good support to achieve this issue. ex] lains the main bene_flts that are expected from this. Figure
Rule N8: Openness of the development procesko: Lillustrates these previous lines.
provide a meta-model and a set of related mechanisms that
answer to any need of any kind of business model is Utopidn A meta-level to separate semantic and data-models

from our point of view. We promote the idea of an unified Thijs section addresses principally the fourth rule. In Figure

approach with very few built-in mechanisms, but that can we propose an overview of the architecture of the meta-

be easily adapted to further needs of modern applicationgedel. The semantics of the business model is addressed

In particular, it is important to be able to customize thmrough the Specification Ohypergeneric parametq@]’

way to query information according to the context of useharacteristicsand actions All of them participate to the

In other words, the generation and handling of an executallgfinition of the semantics of business-model enfities

business model must be customizable. In our approach, @hether they are generic or not); but they do not address

the key-concepts which participate to the description of bothe description of their instances. Because applications are

the application and the business model in order to makegiitside the business model, the methods that handle instances

executable are first-class entities. of atoms are accessors ofilyhey are automatically generated
Rule N9: Self-extensible capability of the approach.:

Model-oriented programming requires a meta-model which?lt can be built as a pseudo-language or it can use the UML graphical

captures the description of both business models a?f?j’\;\?;‘;gl;’vt';inaqztt'(‘)’:;y_Osre‘;'asisct‘i’(')":‘]glrs_“és’ Action Semantics, etc.

applications, as it is men_tloned n prewou; rules. Th|55This is the main difference with actions which address entities but not
meta-model may be considered as a particular busin@ssance of entities.

Actions contains a first glance, we could define business models directly with
* Coneent MOF, but Sections IV-A and IV-C demonstrate that additional

Aspects
information must be inserted.
In our meta-model, aatomis the structure which supports

i :
:
:

1242)-v12

Parameters

o — i-eninstance—of the description of an entity; it is very close to the MOF
i i “clasg notion®. Then the features provided by MOF to
' describe the contents of a class (such as attributes, operations,
ts-an-inbiance—of fom generalisation relationships) are sufficient to define most of

the reification of an entity. MOF provides also the possibility
to describe associations. To describe associations, we have
introduced a generic type which implements different kinds of
collection such abkag set or list (with or without boundsf.

.
g
.
. is—a
Generic
Atom One Atom .ee
is%edw

One Derived Atom

12427 uoynLfidy

One Derived Atom

The designer of a business model may create atoms either
for improving the structuring and factorization of information
within the model hierarchy, or for describing atoms which
have instances within applications. Our meta-model provides
a way to address those two issues; MOF does it through
the notion ofabstract classlf it means that the class must
have at least an abstract method or that all the methods
Fig. 1. Key-aspects of a business model must be abstract, then we believe that this mechanism is not

sufficient. In particular, some applications may be interested

L o . by some atoms whereas others are not; it is not the same
taking into account the type (for example if it is a collectionning 1o say that whatever is the context of use, one atom
or not). Actions are methods with special properties; fOf,,y not have instances because it is only partially defined.
example, they can handle assertions (see section IV-D) affl pelieve that a more accurate information according to the
aspects (not presented in this paper). Moreover, actions g6y status will improve the readability of the code produced
first-class entities and are integrated in a meta-object protoo&l, generators, and the facilities that may be provided or not

. to the programmer of application according to it. The interest

We propose to create a meta-level in order to encapsulgiene aple to associate different status with an atom is even

the semantics of an entity into a meta-level which is named ta?eater if the business model may import atoms from another
concept A concept is associated with one or several aft

_ , . OM$usiness model.
This clear separation between the semantics of the business

model and the reification of its entities is very important bec_ Support of generic entities
cause it favourg) the maintenance of the semantics (redefining _)) i)

the semantics should only deal with concepii)the reuse of This section addresses malnly.th.e first, third and fourth
the semantics in other (closely-related) business models, &HIgS: It participates to the description of the data and se-
iii) the transformation of model which is one of the key-pointd1antics models; it addresses especially the handling of the
of model-oriented programming. MOF does not integrate affgy-entities of a model.. o _ _ _
meta-level. The main consequence is that it is not possible 1€ Support of generic entitiegdneric atomgis an im-
indicate that a MOF class is an instance of another one. TR@ant issue for business models. Let us take an example
main facilities provided by MOF to describe meta-informatioRf ©n€ business model which is dedicated to record both the

are class variables and class methods; from our point of vi§ijuctures and semantics of Java programs. Possible applica-
it is not sufficient. tions with respect to this model may implement functionalities

of programming environments (metrics, various wizards or
) editors, etc.). Possible atoms of this model represent, for
B. Expressiveness of the data-model example attribute, methogd method parametersnodifiers etc.
This section addresses mainly the first and the second rulBat the most interesting ones deals with the different kinds of
it participates to the description of the data-model which is paffassifiersand relationships(aggregation-like or inheritance-
of a business model. like). Most semantics may be encapsulated within classifiers
The description of the business-model entities relies @imd relationships and other atoms mentioned above may have a
well-known concepts that may be found in most programmingry minimal semantics mostly represented by their reification.
languages or meta-models. We present them briefly in tihis is possible because they are driven by the semantics
context of MARTMODELS and with regard to MOF [13]. At associated with classifiers and relationships. In fact, there are

One
instance
of

business model

One
instance
of

One
instance
of

business model

business model

1242]—a0umsuy

"It is an approach which is quite similar to the classes and meta-classes dfThe concept ofclassis, from our point of view, too much related to
the Smalltalk language. programming languages whereas business models require a more abstract
8it is of course possible to write two models with MOF, one being theoncept.
meta-model of the other. But according to our knowledge is not possible tol°The MOF associations provide more capabilities but we are not sure at
express it with MOF. the moment that business model description requires it.

several kinds of classifiers (e.glass inner class interface the value of the parameters. For other atoms, the ability is
etc.) and relationships (e.gxtendsbetween interfaceextends provided but we believe that it is not relevant in most cases.
between classedmplementsbetween one interface and one An action has a signature, preconditions and postcondi-
class) in this business model [7]. Then it is meaningful to bke®ns defined with respect to the reification of entities and
able to record their definitions as generic atdns hypergeneric parameters when it is a generic atomh may
Let us define the termgeneric atom’s The genericity comes also accept the execution of orthogonal concerns (aspects). An
from a set ofhypergeneric parameterand a set oftharac- action must be completely independent from the application
teristicswhich records the differences and the commonalitieslated to the business model. A typical scenario is that
between all the foreseen derived entitfege.g. all the Java the behaviour of a given application relies on the semantic
classifiers). The definition of an hypergeneric parameter nsodel, that is to say call those actions or query hypergeneric
mainly based on a basic type (it may be an integer, parameters.
boolean, an enumeration, a tuple and a collection) and bnis straightforward that an action has a “body” that has
some additional pieces of information. The definition of & be specified; there are three main approaches to take its
characteristic relies on an atom or a collection of atomg.(contents into account in the meta-modél:to propose a
one kind of classifier records the possible kinds of inheritanciedl representation of the body which may correspond to
like relationships that it may declare). Intuitively, generithe reification of some pseudo-languaggks,to delegate to
atoms are quite similar to the concept of generic class tihhe description of the body to the underlying implementation
the Eiffel language. But derived atoms are obtained throutgnguage; the meta-model records only the fact that an action
the relevant combination of values associated with the séi@s a body, andii) to propose a partial description of the
of characteristics and parameters which participate to thedy'®. Typically for the first and third solution the body
definition of thegeneric atom of the action will be partially generated, whereas in the
We choose to use generic atoms instead of inheritaneecond solution, the whole description of the body will be
relationships for modeling these atoms for several reasosempletely under the responsibility of the developer. At the
i) the definition of the data model is not mixed with thenoment our first prototype implements the third solution but
definition of the semantics; this increases the ability of the expressiveness of action bodies is going to be improved
semantics of the business model to be transformed and reuasdar as interesting capabilities are found.
in another modelii) a significant part of the semantics of alllt is important to distinguish the capability of the model to
the derived entities of one generic entity is recorded in omecord more or less the representation of the action bodies,
location, by the definition of its parameters and characteristiédspm the description language which is provided to the user
this favours both (re)use and maintenance of these entities; iiii)order to describe it. About this aspect two solutions seem
the reuse of a business model is improved, especially when tbebe relevanti) to take UML from OMG and to use diagram
new model is an extension of the first one; according to thé activities and/or Action Semanticg) to design a domain-
business model related to the Java language, to extend it végiecific language for the semantics description. We have not
a new relationship like for instance, the reverse-inheritanegaluated seriously these two solutions yet. It is said that UML
requires only that the new business model describes a newhe meta-model for the specification of business models (it
instance of the generic entity which deals with inheritancés important to reuse existing standards), but we have also

like relationships. to remember that at the beginning UML was not designed
for the definition of business models but for applications.

D. Description of the semantic model An alternative to those approaches may be to increase the
This section addresses the first rule and more especially gi(ezzi;::ness of MOF with respect to the description of the

description of the semantics model.

We explained in Section IV-C that a significant part of the
semantics of a business model is encapsulated in a few generic V. RELATED WORK
atoms. A part of the semantics is captured by parametersseveral approaches address the problematic suggested in the
characteristics and invariaftsit is a first step but it is still not introduction, that is to say : to capitalize the business know-
sufficient to handle the full semantics of atoms. For examplgew and its associated applications in order to handle the
the value of parameters used for the instantiation of geneggntinuous evolution of software platforms.
atoms will affect the behaVi(.)Ur Of its del‘.ived atoms. It is The AOP-related works try to propose powerfu' mechanisms
necessary to be able to specify this behaviour. to describe the semantics of domain specific languages (DSLs)
_ Each atom, whatever it is generic or not, has a meta-leyg}. All of these works [18], [22], [23], [17] stem from the
(its concept) where it is possible to define actions; when th@sic issue of a better separation between the data structure
atom is derived from a generic one its execution is driven qd the semantics treatments.

n . . o N . . Itis well-known that the handling of an AOP can be rather
One generic entity for modifiers, one for inheritance-like relationships

and one for aggregation-like relationships. complex and can introduce scarcely controllable situations [5].
12This is the term which is quite often used in the state of the art, to refer
instances of generic entities. 14In our meta-model, assertions are described with OCL from the OMG.

13Like in MOF or UML, it is possible also to define atom invariants. This 1%For example, to record the list of hypergeneric parameters that are
contributes to the description of the semantics of entities. involved in the semantics of the action

To solve this problem, aspect-oriented languages dedicated [t Jean Bezivin. From Object Composition to Model Transformation with

the context are proposed [25]. However, nearly in all the case
the reflexivity mechanism plays major role [20], [19]. Becaus
of this, from our point of view, there is a strong dependence

5]

MDA. In TOOLS USASanta-Barbara, August 2001. IEEE TOOLS-39.
Noury M. N. Bouragadi-Saaddani and Thomas Ledoux. Le point sur
la programmation par aspects. Technique et Sciences Informatiques
volume 20, page 505 a 528. HermA's, 2001.

between the approach and the implementation techniques (tt@lt Steve Cook and Stuart Kent. The Tool Factory. GOPSLA2003,

should be as less visible as possible at the model level).

Some approaches focused on the issues of modularity
reuse of semantics components [3], [26]; Other investigate
how to introduce powerful mechanisms to reuse langua
components; their objective is to be able to design a DS
by composition of existing components [3]. Model-oriented®]
programming is more oriented toward the definition of a family
of DSLs. [10]

About Modelling approaches, Model-oriented programmirﬁ
is closer to those that advocate a domain model approac
[1] than those that propose extensions (profiles) of a standard
model. Indeed, having an universal model seems no longer(bd
the solution advocating by the MDA but rather an approach a
la MDA.

With respect to model transformation approaches (MDA}
[1], the coupling of model-oriented programming with gen[- 3l
eration mechanisms allows much more complex transformas
tion than those offered by simple transformations between
models[4], [1]. But foreseeing a translation of the treatment®]
from the original model to the target model [21] is important.

Finally, Model-oriented programming, is integrated in the
much more global context of software factories [12], [6], [11}.16]

V1. CONCLUSION AND PERSPECTIVES

In this paper, we propose to structure the framework of
Model-Oriented Programming with a set of essential rules. W]
consider them as a first attempt for the definition of the main
principles of this approach. We are working on an approag,ﬂ;
called S1ARTMODELS, for which some of the key-aspects ha
been presented. It is one interpretation of those rules and an
. . . .%9]
implementation of this approach on top of SmartTools [2] i
undergoing implementation.

In the short term we want to experiment our approadf®l
for the description of various business models and their
applications; currently we start to investigate business modgls|
of a the French electricity company, EDF. The objective i32]
to get feedbacks in order to improve the expressiveness[
SMARTMODELS but also the automation af the generation
of the behaviour, and) the semantics transformation of both2
business models and applications when they evolve towéré]
another model or application.

[25]
REFERENCES

[1] Colin Atkinson and Thomas Kiihne. The role of meta-modeling in MDA[26]
In Jean Bezivin and Robert France, editdiarkshop in Software Model
Engineering 2002. -
Isabelle Attali, Carine Courbis, Pascal Degenne, Alexandre Fau, JoA«l
Fillon, Didier Parigot, Claude Pasquier, and Claudio Sacerdoti Co€27]
SmartTools: a development environment generator based on XML
technologies. IKML Technologies and Software Engineerifigronto, [28]
Canada, May 2001. ICSE’2001, ICSE workshop proceedirigs!ftp-
sop.inria.fr/oasis/personnel/Carine.Courbis/smarticse02.pdf
Don Batory, Bernie Lofaso, and Yannis Smaragdakis. JTS: Tools for
implementing Domain-Specific Languages. In P. Devanbu and J. Poulin,

editors,Proceedings: Fifth International Conference on Software Reuse
pages 143-153. IEEE Computer Society Press, 1998.

(2]

(3]

workshop on Generative Techniques in the context of M&#aheim -
USA, October 2003.

Pierre Crescenzo and Philippe Lahire. Using both specialisation and
generalisation in a programming language: Why and hbecure Notes

in Computer Science2426:64—73, 2002.

] Krysztof Czarnecki and Ulrich W. Eiseneck&enerative Programming:

Methods, Techniques, and Applicatiosddison-Wesley, June 2000.
Krzysztof Czarnecki and John Vlissides. Domain-Driven
Development. Special Track at OOPSLA03 URL:
http://oopsla.acm.org/oopsla2003/files/ddd.html.

P. Desfray.Object Engineering, the Fourth DimensioAddison-Wesley
Publishing Co., 1994.

Christer Fernstrom, Kjell-Bkan Narfelt, and Lennart Ohlsson. Software
factory principles, architecture, and experimenEBEE Software 9:36—

44, March 1992.

Jack Greenfield and Keith Short. Software factories: assembling appli-
cations with patterns, models, frameworks and tools. Cmpanion

of the 18th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applicatipages 16-27. ACM
Press, 2003.

Object Management Group. Meta Object Facility (MOF) specification
(version 1.3). Technical report, Object Management Group, March 2000.
OMG Staff Strategy Group and Richard Soley. Model-Driven Architec-
ture. Technical report, OMG, November 2000.

William Harrison and Harold Ossher. Subject-oriented programming (A
critique of pure objects). In Andreas Paepcke, edRooceedings ACM
Conference on Object-Oriented Programming Systems, Languages, and
Applications pages 411-428. ACM Press, October 1993.

Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented
Programming. In Mehmet Aksit and Satoshi Matsuoka, editors,
ECOOP '97 — Object-Oriented Programming 11th European Confer-
ence, Jyvaskyla, Finlandrolume 1241 ofLecture Notes in Computer
Science pages 220-242. Springer-Verlag, New York, NY, June 1997.
Karl J. Lieberherr. Adaptive Object-Oriented Software: The Demeter
Method with Propagation Pattern®WS Publishing Company, Boston,
1996. ISBN 0-534-94602-X.

] Karl J. Lieberherr and Doug Orleans. Preventive program maintenance

in Demeter/Java. IfProceedings of the 1997 International Conference
on Software Engineeringpages 604—605. ACM Press, 1997.

Cristina Videira Lopes and Karl J. Lieberherr. AP/S++: A CASE-study
of a MOP for purposes of software evolution. Technical Report NU-
CCS-95-?, Xerox PARC and Northeastern University, November 1995.
Jacques Malenfant and Pierre Cointe. Aspect-Oriented Programming
versus Reflection: a first draft. IRosition Statement for the OOPLSA
'96 AOP meeting1996.

OMG. MDA - Model-Driven Architecture http://www.omg.org/mda

Doug Orleans and Karl Lieberherr. DJ: Dynamic adaptive programming
in Java.Lecture Notes in Computer Scien@192:73-??, 2001.

Jens Palsberg, Boaz Patt-Shamir, and Karl Lieberherr. A new approach
to compiling adaptive programsScience of Computer Programming
29(3):303-326, 1997.

Charles Simonyi. The death of programming languages, the birth of
intentional programming. Technical report, Microsoft, Inc., September
1995.

Yannis Smaragdakis and Don Batory. DiSTiL: A transformation library
for data structures. IRJSENIX Conference on Domain-Specific Lan-
guages 1997.

Y. V. Srinivas and Richard Jullig. Specware(TM): Formal support for
composing software. Technical Report KES.U.94.5, Kestrel Institute,
1994. see also Proceedings of the Conference on Mathematics of
Program Construction, Kloster Irsee, Germany.

Clemens Szyperski. Component Software: Beyond Object-Oriented
Programming ACM Press and Addison-Wesley, New York, NY, 1998.

T Ziadi, B Traverson, and Jean-Marc @zA®©quel. From a UML
Platform Independent Component Model to Platform Specific Compo-
nent Models. Irinternational workshop in Software Model Engineering
(WiSMEO02) at UML2002Dresden (Germany), September 2002.

