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Abstract

We devise and analyze vertex-based schemes on polyhedral meshes to approxi-
mate advection-reaction equations. Error estimates of order O(h3/2) in the discrete
inf-sup stability norm are established. The two key ingredients are a local poly-
hedral reconstruction map leaving affine polynomials invariant, and a local design
of stabilization whereby gradient jumps are only penalized across some subfaces in
the interior of each mesh cell. Numerical results are presented on three-dimensional
polyhedral meshes.

AMS Subject Classification. 656N12, 65N30, 65N08

1 Introduction

Considering a polyhedral domain Q in R3, we want to approximate the scalar-valued
function p :  — R solving the following first-order problem:

BVp+up=s ae. in €, (1.1a)
p=pp a.e.on 00, (1.1b)

where 8 € Lip(Q2) is a given vector-field and p € L*°(2) a reaction coefficient. The
problem data are such that s € L?(Q) and pp € H!(9S2) with ¢ > 1. Dirichlet boundary
conditions are enforced on the inflow part of the boundary 9Q~, where 9QF = {z €
0| £B(x)n > 0} and n is the unit outward normal. We assume that there exists a
reference time 7 > 0 such that u — %V-,@ > 771 holds a.e. on . In the above setting,
the problem is well posed; see, e.g., [14].

Our goal is to devise and analyze a discretization scheme for that supports
general meshes including polyhedral cells and nonmatching interfaces. Such meshes
are indeed important in many applications involving multi-physics and multi-domain
problems and also in computer graphics and topology optimization. Our second goal is
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to consider vertex-based schemes, i.e., schemes with degrees of freedom (DoFs) attached
to the mesh vertices, and to achieve O(h3/2) convergence rates for smooth solutions
where h denotes the mesh-size. Vertex-based schemes are attractive since they provide a
natural way to discretize O-differential forms (i.e., potentials) in the context of differential
geometry. Moreover, compared to discontinuous Galerkin methods [23], 22} [12] which are
cell-based schemes, using one DoF per vertex is, in general, more effective than using
four DoFs per cell to achieve O(h%/?) accuracy.

To the best of the authors’ knowledge, there are no vertex-based schemes of or-
der O(h3/?) on polyhedral meshes available in the literature for the advection-reaction
problem . Instead, many examples of stabilized Py Lagrange finite elements can be
found on (matching) simplicial meshes; among various choices for stabilization, we men-
tion Streamline Diffusion [2I], Subgrid Viscosity [19] 20], Continuous Interior Penalty
(CIP) |7, 9], 8], and Local Projection Stabilization [3, [6 24], 25]. Thus, the present work
can be viewed as a polyhedral extension of stabilized finite elements. We also men-
tion that the present scheme for the advection-reaction problem can be combined
with the recent Compatible Discrete Operator (CDO) schemes for diffusion problems
from [5], so as to discretize advection-diffusion problems in a Péclet-robust manner
on polyhedral meshes. A recent Péclet-robust CDO scheme for advection-diffusion on
polyhedral meshes has been analyzed in [I1]; therein, however, the convergence rate is
only of order O(h/?) in the advection-dominated regime (and O(h) in the diffusion-
dominated regime). Therefore, the present work can also be viewed as a higher-order
extension of [I1I]. Furthermore, the present scheme can also be combined with the re-
cent Vertex-Averaged Gradient schemes for diffusion [16, [I7, [I8] and, therefore, provide
a higher-order alternative to the more usual finite-volume treatment of advection based
on upwinding.

The main idea to devise our scheme consists of introducing, in addition to the vertex-
based DoFs, one DoF per mesh cell. The additional cell DoFs can be eliminated locally
using a Schur complement technique (i.e., static condensation) at no additional cost since
cell DoFs are uncoupled from each other (and are only coupled to vertex-based DoFs).
Hence, the size of the linear system to be solved is just the number of mesh vertices. Our
first important ingredient is the introduction of a polyhedral reconstruction map defining
P1 broken polynomials on each mesh cell from the local vertex and cell DoFs. Our second
important ingredient is the stabilization. A crucial point is to devise the stabilization
locally so that it does not hamper the possibility of eliminating locally the cell DoFs.
In the present work, we achieve this by using CIP stabilization, but we penalize the
gradient jump only across some interior subfaces of each mesh cell. As shown recently
in [I0] in a different context related to composite elements, the CIP technique provides
enough stabilization. Our main result is Theorem Its proof hinges essentially on
two intermediate results: discrete inf-sup stability and a bound on the consistency error.
The former hinges on using the advective derivative as test function, but only for the
cell DoFs, similarly in spirit to [I0]. The latter hinges on the design of the polyhedral
reconstruction map that leaves affine polynomials locally invariant.

The material is organized as follows. In section [2] we introduce the discrete setting.
In section (3] we present the main results in the analysis; the proofs, along with some
technical results, are postponed to Section[5] In section[d] we detail some implementation
aspects and we present numerical results on three-dimensional polyhedral meshes.
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2 Discrete setting

In this section, we introduce some basic notation concerning polyhedral meshes and we
define the local reconstruction maps as well as the discrete scheme.

2.1 Meshes

We consider a mesh M of the domain  C R composed of (possibly) polyhedral cells
c € C, planar faces f € F, straight edges e € E, and vertices v € V. By convention, all
the cells, faces, and edges of the mesh are closed sets in R3. Since boundary conditions
are weakly enforced, we also consider the subset F? = {f € F| f C 99} composed of
the boundary faces. We denote by # the cardinal number of a set, so that #V is equal
to the number of vertices of M, #E to the number of edges, and so on.

The quadruple {V,E, F, C} is a cellular complex in the sense that the boundary of a
cell in C is composed of faces in F, that of a face in F' is composed of edges in E, and that
of an edge in E of (two) vertices in V. For two types of mesh entities A, X € {V,E, F, C},
we denote by X, the set defined as {z € X|a C Oz} if the dimension of a is smaller than
that of elements of X and as X, = {z € X |2z C da} otherwise. Important examples are
thesets Fo={feF|fCoc},Ef={ecE|eCof}, C;r={ceC|fCOc}.

We denote by x,, ., s, and x. the barycenters of v € V, e € E, f € F, and
¢ € C respectively. We assume that f and c are star-shaped with respect to &y and
x., respectively. Each polyhedral cell ¢ € C is subdivided into elementary simplices
Pefe = [@v;, Tuy, Tf, xc] (the brackets denote the convex cell) for all f € F, and all
e € Ey with e = [x,,,@,,]; see the left panel of Figure [ This partition of the cell,
which plays a central role in this work, is denoted

Pe = Uger, UeeE; Pef,c-

Note that #. = 2#E, since each mesh edge is shared by two mesh faces. Another
useful partition of the cell ¢ is composed of the polyhedra

Poc = U U [xvaweyxfaxc]
FEFNFy, e€EfNE,

for all v € V; see the right panel of Figure [1} Notice that under the above star-shaped
assumption, ¢ = Uger, UeeE; Pef,c and ¢ = UUEVC Po,c as sets of points in R3.

Figure 1: Left, simplex p.y.. Right, polyhedron p, .

In what follows, we consider families of polyhedral meshes satisfying the following
regularity criterion.

(M) #E. is uniformly bounded and the simplices composing B, are shape-regular in
the usual sense.
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2.2 Degrees of freedom

We consider degrees of freedom (DoFs) attached to mesh vertices and mesh cells. Let
V = R#*Y and C = R#C be the finite-dimensional spaces collecting the degrees of freedom
attached to vertices and cells, respectively. We define the product space P =V x C, and
use the notation p = (py,pc) € P. We denote by p, and p. the entries of the vector p
attached to the vertex v € V and to the cell ¢ € C, respectively.

It is convenient to localize discrete objects to a cell of the mesh. Let ¢ € C and recall
the local subset V. = {v € V|v C ¢} containing the vertices of ¢. The vector space
P, = R#Vetl is then composed of vectors of the form p = ((py)vev,, Pe)-

2.3 Local reconstruction map

The central ingredient in our work is a reconstruction map Lp, that allows us to build
locally in each mesh cell ¢ € C a function from local DoFs p € P.. The reconstructed
function Lp,(p) is continuous in ¢ and is piece-wise affine on the partition B, of c.
To define the function Lp,_(p), we consider the usual Courant (or hat) basis functions
associated with the simplicial partition . of ¢; we denote these functions as

((HU)UGVw (Hf)fEFw 90)

Observe that 6. is a bubble function in the sense that it vanishes on the boundary of c.
We then set, for all p € P,

ch Z pv vc + chc( )7 Vo € ¢, (21)
’UEVC

with the local reconstruction functions ((¢y ¢)vev,,¢c) such that

—0,+ > I 0Pocly “vev,,  4—0. (2.2)
2

2.4 Discrete scheme

The discrete problem consists in finding p € P such that, for all q € P,
A(p,a) +A%(p,q) = Z(s,pp; a), (2.3)

where the bilinear form A : PxP — R results from the Galerkin approximation plus a
local stabilization and the bilinear form A? : PxP — R weakly enforces the boundary
condition, while the linear form =(s, pp;-) : P — R accounts for the problem data.

The bilinear form A is assembled cell-wise as

)= Aclp, ), (2.4)
ceC

with a slight abuse of notation since we still denote by p the restriction of an element
of P to P.. The local bilinear form A, : P.xP. — R is defined by means of the local
reconstruction map Lp, as follows:

Ac(p,a) :=ac(p,q) + vsc(p,a), (2.5a)

2c(p,q) = / B-YLp, (p) Lp.(a) + / L, (p) L, (a), (2.5b)

se(pa) = A28 Y / (BoAVLr. (M)]) (B VL. (@)]) (2.5¢)
fESe
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where v > 0 is a stabilization parameter, h. denotes the diameter of the mesh cell c,
B. = B(x.), and |B,| := [|B.ll2(rs)- Moreover, F is the set composed of the internal
subfaces in ¢ resulting from the simplicial partition B. of ¢, that is, F. = {f C Ip|p €
PBe, f ¢ Oc}, see Figure , and [q] denotes the jump of q across each face f € §. defined
by Alp; — ip, with f = 0p1 N Ops.

e =

Figure 2: Two internal subfaces contained in the set §. and attached to the sub-mesh

Pe.

The bilinear form weakly enforcing the boundary condition is assembled face-wise as

A%(p,q) :== > A%(p,q) (2.6)
fer?

where, letting c; be the unique cell of which f is a face, we have

Aip.) = [ (B Lo, ()L, (0 (27)
with (8-n)~ := 2(|8n| — B-n). Finally, the linear form = is such that
2sppia) = Y [sta@+ Y [(Bn) o le, (@), (2.8
ceC Ve feFo f

Alternative definitions resulting from the use of quadratures are discussed in section 4.2

Example 2.1 (Simplicial mesh). Let us briefly discuss our scheme in the case of a
simplicial mesh. Then, each mesh cell ¢ is a tetrahedron, see Figure[3 The tetrahedron
c is subdivided into 12 sub-tetrahedra composing the set B., and there are 6 internal
sub-faces in the set §. where the jump of the advective derivative is penalized; instead,
this jump is not penalized on the four faces of c.

3 Main results

This section contains our main results concerning the stability and error analysis of the
discrete scheme ; proofs are postponed to Section |5, To avoid the proliferation of
constants in the analysis, we assume that v € (79, 1] with 79 > 0. We also assume that
there are 0 < p; < ps such that, for all ¢ € C,

pihel B~ < 7 < pomin (L7 Il 7k ) (3.1)
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Figure 3: Tetrahedron c

with L. satisfying |8 — B, p~() < Lehe and [V-B] 1o () < Le. Notice that implies
he|B.| 7! max(Le, Il poo (o)) < %7 meaning that that the local mesh-size h. resolves the
spatial variation of the vector field 3 and that we are not concerned with dominant
reaction regimes. In what follows, we denote by A < B the inequality A < CB for
positive real numbers A, B, C' where the value of C' can change at each occurrence, the
value being independent of the mesh (as long as it satisfies (M)) and of the physical
parameters (as long as holds); the value of C' can depend on the time-scale 7 and

on vp.

3.1 Properties of the reconstruction map

Let ¢ € C. We equip the DoF space P, with the following discrete norm:

5= he (pi + > p%) . VpeP. (3.2)

’UEVC

lIp

Under the mesh-regularity assumption (M), another, uniformly equivalent, choice for
the discrete norm is [[pll3 . = 5 (elp? + X v, [Po.clPy)-

Lemma 3.1 (Stability). Assume that the mesh satisfies (M). There exist 0 < C}, < Cy
such that

Glpllz.c < ILp.(P) 720y < Cillpl3.c, (3.3)
for all p € P, and all c € C.

Let us consider, for all ¢ € C, the local reduction (or de Rham) map Rp, : D(Rp,) —
P, with domain D(Rp,) := C%(c) such that, for a continuous function p : ¢ — R, the
DoF vector Rp_(p) € P. has components given by

((p(zv)vev., p(xe))-

Composing the reduction operator with the reconstruction map leads to the interpolation
map Zp, = Lp, o Rp, mapping continuous functions in ¢ to continuous, piece-wise affine
functions in c.

Lemma 3.2 (P;-consistency). For all ¢ € C, affine polynomials in ¢ are left invariant
by the interpolation map Ip,, i.e.,

IPC(P) = P, VP € Pl(C).
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3.2 Well-posedness and inf-sup stability
We equip the global DoF space P with the following (so-called coercivity) norm:

lall* = (v~ llall3. +70se(a,9) + D lalf, (3-4)

ceC fer?
where |q|?c = %ff |31 chf (9)? (recall that c; is the unique mesh cell s.t. f = 9cNoQ).
Lemma 3.3 (Coercivity and well-posedness). The following inequality holds:
Alp.p) +A%(p,p) > I, ¥pEP. (3.5)
Consequently, the discrete problem 1s well-posed.

The coercivity norm is not strong enough to establish an error estimate of order %
To this purpose, we show that inf-sup stability holds for the following stronger norm:

lallf == llall* + > helB ™" 18-VLp.(@)72 () (3.6)
ceC

Lemma 3.4 (Inf-sup stability). Assume that the mesh satisfies (M) and that assumption
(3.1) holds. There exists Cs,, > 0 such that

A(p,q) +A%(p,q
Conllplly < sup AP FTATP.9)

, Vp e P. (3.7)
4P\ {0} lall:

3.3 Bound on consistency error

To measure the consistency error for the discrete problem , we assume that the
exact solution p is in H*(Q2), s > %7 so that p|. is in the domain of Rp, for all ¢ € C
and we can use the vector Rp,(p) to measure the consistency error locally. The global
consistency error is defined such that

Eoos®) = sup  |E(s,ppia) — (ARp(0), @) + ARp(p).0))|,  (38)
q€P;[lallz=1

where Rp(p) is such that its restriction to a mesh cell ¢ € C is given by Rp,(p).

Lemma 3.5 (Consistency). Assume that the mesh satisfies (M) and that assumption
(3-1) holds. Assume that p € H%(Y), s > 3. There exists Ccoys > 0 such that

2
gCoNS(p) S CCONS (Z ‘Bc’(h‘gl”p - I’Pc(p> H%?(c) + hc|p - I’PC (p)lill(c) + h?’pﬁ{Q(C))) N
ceC

3.4 A priori error estimate

The last intermediate result we need before establishing our a priori error estimate is a
bound on the interpolation error p — Zp_(p) for all ¢ € C.

Lemma 3.6 (Interpolation error). Assume that the mesh satisfies (M). There ezists
Chvr such that

1D~ Zr. ()l 120 + help — oo (0) 1) < Cueah? Iplizagey (3.9)

for all p € H*(c) and all ¢ € C.
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Theorem 3.7 (Convergence rate). Assume that the mesh satisfies (M) and that as-
sumption (3.1)) holds. Let p € P be the discrete solution of (2.3)). Assume that the exact
solution satisfies p € H*(Q). There exists Coon > 0 such that

1
2
|||p - RP(p)mﬁ S CCONV <Z |Bc|h3 |p|%12(0)> :

ceC

Proof. Combine stability (Lemma, consistency (Lemmal3.5)), and the approximation
properties of the local interpolation maps Zp,(p) (Lemma . O

4 Implementation aspects and numerical results

4.1 Elimination of cell-based unknowns

The algebraic realization of the discrete problem ([2.3) is the linear system Ap = = with

p = (pV7 Pc) € Pa

A A =

A= vv vc> and = (Hv> , 4.1
(Acv Acc =c ( )

where =, € X is the restriction of = to X and Ay, : Y — X the restriction of A to X', )
for XY € {V,C}. Observing that A.. is diagonal, one can easily compute its Schur
complement so as to express pc in terms of p,, and obtain a linear system in terms of
py only. This operation, which is often called static condensation in the finite element
context, leads to the equivalent formulation Ap = Z where

K _ (AVV AVCA ACV OCV> and — ( ’ALVIC’_"A‘ ¢ HC) . (42)

ACC ACV IdCC cc =c

[

[

An interesting question is to compare the stencils associated with the blocks A,
and Ay, = A,y — AVCAC_CIACV. For all v € V, we introduce the sets

Sty(v) = {v/ € V|Ayy #0}, and Sty(v) = {v € V|Ayy # 0}
One can verify that Sty(v) = {v/ € V| C, N Cy # 0} and that
Sty(v) =Sty(v)N{v € V| €V, F,NFy # 0 and Foo NF,y # 0},
so that Sty (v) C Sty (v). The converse inclusion holds in the following situation.

Lemma 4.1 (Vertex stencil). Let v € V and assume that for all ¢ € C,,, all the vertices
i V¢ are connected to v by a maximum of two faces of ¢, i.e., it is possible to find

[, €Fewith fOf' #£0,vCf, and v C f' Then, Sty(v) = Sty(v).

Proof. Let v/ € Sty(v). Reformulating the definition of Sty (v) as {t/ € V|3c € C,, v €
V.}, it follows, using the assumption, that there exist f, f/ € F. with fN f' # 0, v C f,
and v' C f’. Denoting v" € f N f/, we obtain {v,v"} C f and {v',v"} C f’, so that
F,NFyr # 0 and Fy NFur # 0. Hence, we infer that o' € Sty (v). O

The assumption of Lemma [4.1] is often met in practice, as long as the mesh cells do
not have too many vertices. An example of a cell that does not satisfy the assumption
is shown in Figure
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T, L __ | __
7z

7z

7

Figure 4: Example of cell (cf. CB sequence) which does not satisfy assumption of
Lemma v and v' are connected by at least 3 faces.

4.2 Numerical source term

As mentionned in Section quadratures are often used in the computation of the
source term . In practice, we consider the approximation =" given by

S ,PD5q Z/Ip Lp Z / ,Bn Ip pD) Lp( ) (4.3)

ceC fer?

where ﬁf)|f = pp|y for all f € F?; notice that Zp(pp)|s is independent of the choice of
the lifting pp inside Q. The source term =" has the advantage of being exactly computed
using a second-order quadrature as soon as the boundary mesh is compatible with the
inflow boundary 99~ (i.e., if the interior of a boundary face f € F? intersects 9Q~,
then f C 0Q~). However, using =" in the discrete problem introduces an additional
non-consistency, leading to the following additional term in the error bound:

- __m=h .
sup [(Z—=Z2")(s,pp;q)|
qeP\{0} llalls

Then, the error estimate from Theorem still holds with the following lemma.

Lemma 4.2. Assume that the mesh satisfies (M) and that the mesh M is compatible
with the inflow boundary 0. Assume that s € H*(C) and pp € H3?(F?). The
following holds:

(2~ =")(s,pp;9)] i ,
B il DAL PR DR S A
qeP\{0} qiilg = e

4.3 Numerical illustration

The domain € is the unit cube [0,1]® and we test three sequences of three-dimensional
polyhedral meshes, each sequence consisting of successive uniform refinements of an
initial mesh. The first sequence, denoted by H, consists of uniform hexahedral meshes,
the second one, denoted by PrG, of prismatic meshes with polygonal basis, and the third
one, denoted by CB, consists of checkerboard meshes with hanging nodes; see Figure
Notice that hanging nodes in the CB mesh sequence induce polyhedral cells composed of
26 vertices, 48 edges and 24 faces.
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Figure 5: Examples of mesh from the three sequences. Left: hexahedral mesh; Middle:
prismatic mesh with polygonal basis; Right: checkerboard mesh with hanging nodes.

4.3.1 Validation case : smooth solution

The exact solution p, the vector field B and the reaction term y are given by
y—1/2

p(z,y,z) = sin(nzx) sin(2wy) sin(nz), B=|1/2—-= and p=1.
2

Notice that p vanishes on the whole boundary 02 and that p — %V-,@ = % > 0. The
stabilization parameter v in is equal to 0.01 (common optimal value for these
three mesh sequences, see Section .

Accuracy. We perform a convergence study by computing the discrete L?-error at-
tached to vertex and cell DoFs, denoted by Ery(p) and Er¢(p) respectively, and defined
as

o = Rp(p))? : e (Pe — Rp(p) ) 3
Ery(p) := (Zvezv:izv Rpg)()%)' ) ) and Er¢(p) := (Z E:(:;C RPZJ()? ) )

We observe a super-convergence in these two error measures for all mesh sequences, the
convergence rate being closer to 2 than to % Moreover, the error attached to C seems
to be less dependent on the type mesh.

10_1 F E 1071 L ,E
= = 1
o S ]

-2 |
& 10 <) 10-2} ]
10_3 guu\ Lol Lol ool ! \\E 7\ Ll Lol Lol Lol | \7
102 10° 10% 10° 102 103 104 10°
#V #C

Figure 6: Discrete error Ery(p) (Left) and Erc(p) (Right) on H sequence (—&-), PrG
sequence (—=—), and CB sequence (——).

Cost. We illustrate the advantage of the static condensation technique to eliminate
locally cell DoFs. We compute the stockage benefit v and the speedup x, defined by

NNZ
v = = and x = ch,
NNZ Xe

10
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where NNZ. and NNZ,. are the number of non-zero entries in the system matrix to invert
with or without static condensation, respectively, and X, and Xx,. the computational
costs defined by NNZ X njte, where njte is the number of iterations needed to bring the
residual to a tolerance below 107!, using a (diagonal) preconditioned bi-Conjugate
Gradient Stabilized method. Results are reported in Tables [I, 2| and [3] for the three
mesh sequences, respectively.

#V  #V/#C v x  Ery(p)

1.2e+02 1.95 1.50 2.78 1.3e-01
7.3e+02 1.42 1.56 3.18 2.7e-02
4.9e+03 1.20 1.59 3.67 6.6e-03
3.6e+04 1.10 1.61 3.48 1.8e-03

Table 1: Discrete error Ery(p), speedup X, and ratio #V/#C on the H sequence.

#V o H#V/#C v x  Ery(p)

3.1e+03 2.55 1.30 2.14 2.4e-02
2.0e+04 2.29 1.31 238 5.7e-03
6.3e+04 2.19 1.31 2.04 2.5e-03
1.4e+05 2.15 1.31 1.54 1.4e-03

Table 2: Discrete error Ery(p), speedup x, and ratio #V/#C on the PrG sequence.

#V  #V/#C v x  Ery(p)

9.7¢+01 2.69 1.29 2.62 3.2e-01
6.2e+02 2.17 1.26 3.12 6.0e-02
4.4e+03 1.92 1.25 3.06 1.7e-02
3.3e+04 1.79 1.25 3.57 4.3e-03
2.5e+05 1.73 1.25 291 1.2e-03

Table 3: Discrete error Ery(p), speedup x, and ratio #V /#C on the CB sequence.

For these three sequences, we observe that the Schur complement method leads to
a more competitive system regarding the stockage (v > 1) and the speedup (x > 1)
criteria. Notice also that x /v is proportional to the ratio of the condition number of
these matrices, so that these results illustrate the fact that the condensed matrix is
better conditionned.

4.3.2 Smooth solution with an internal layer
The exact solution p is now given by

o0 . (4.4)

—V2
p(z,y, z) = zy tanh (m + M) ,

with a = 0.05, 3 = (1,1,0) and p = 0. We observe on Figure 7| that this potential
present an internal layer around the plan § +y + 2z = V2.

11
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02 04 06 08 10 0'5y 002 0006 05 1o Oéy 02 040508 T y
T x xT

0.5

0

Figure 7: From left to right: exact solution (z,y, z) — p(z,y, z) given by (4.4) for z = 0,
z = % and z = 1, respectively.

We report on Figures |§| and 10 the error Ery(p) obtained for different values of
the stabilization parameter v. With no surprise, the error depends on the choice of
this parameter and the optimal value depends on the mesh sequence: among the tested
values, v = 0.001 is the best choice for the PrG sequence while v = 0.01 will prefered for
CB sequence. To a lesser extent, this parameter also influences the convergence rate.

T T T T T T T T

100

1072

bl | Lol Load

102 103 10%

#V

Figure 8: Discrete error Ery(p) with v = 0.001 (), v = 0.01 (—=), vy =0.1 (&)
and y=1(—#8-) .

100

10t

EI‘V(

104 10°

#V

Figure 9: Discrete error Ery(p) with v =0.001 (), y=0.01( =~ ),y=0.1 (—)
andy=1(—=").
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107 E

(»)

T T R TR
#V
Figure 10: Discrete error Ery(p) with v =0.001 ( ~ ), vy=0.01 (¢ ), y=0.1 (—=)
and y=1(—%).

5 Auxiliary results and proofs

This section collects the proofs of our main results stated in Section [3]

5.1 Auxiliary results on polyhedral cells

Lemma 5.1 (Inverse inequality). Assume that the mesh satisfies (M). There exists
Chiw > 0 such that

|4l 1y < Crwvh lalz2 ) (5.1)

for all q continuous and piece-wise affine in c, all p € P, and all ¢ € C.
Proof. See [12, Lemma 1.44]. O

Lemma 5.2 (Multiplicative trace inequality). Assume that the mesh satisfies (M). Let
c € C. There exists Ct+ > 0 such that

a2, < Crldlzaey (v Hlal o) + lal i) (5.2)
for all g € H'(p), all p C P, all § € F. such that f C Ip, and all ¢ € C.
Proof. See |12, Lemma 1.49]. O

Lemma 5.3 (Polynomial approximation). Assume that the mesh satisfies (M). There
exists Cpo, > 0 such that

inf - P help — Plyie) < Cpoh? o) 5.3
Pelgl(c)(ﬂp 22(c) + help — Plai(e)) < Croche|plm2(c) (5.3)

for all p € H*(c) and all c € C.

Proof. We follow the ideas in [15]. Since the partition 3. consists of a finite number of
tetrahedra connected through their faces, we can proceed as in [I5, Lemma 5.5] to infer
that there exists Cpw > 0 such that the following so-called local Poincaré(—Wirtinger)
inequality holds:

|2 =72 < Crwhelalin o

13
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for all ¢ € H'(c) with g¢ := |—(1:| fcq and all ¢ € C. Notice that whenever the mesh cell ¢

is a convex set, one can take Cpyw = 71, see [2]. Let now p € H?(c) and ¢ € C. Let us
consider the affine polynomial P(z) := p° + Vp'-(x — x.). Then, applying the Poincaré
inequality component-wise, we first infer that

P = Pl = IVP = VD' l12(6) < Cowhe [Vl ) < 2Cowhe ply2 (e

since cross-derivatives are counted only once in the H2-seminorm. Moreover, since the
function p — P has zero mean-value in ¢ by construction, applying again the Poincaré
inequality, we infer that

[p = Pla(e) < Crwhe [p = Pl < 2C0wh2 [plgz (e »

owing to the above bound on [p — P|g1 (). O

5.2 Properties of the local reconstruction map

Proof of Lemma[3.1] Let ¢ € C. Given real numbers (Ay)vev,, (Af)fer,, and Ag, it is
well-known (see, e.g., [13} §9.1.3|) from the spectral properties of the mass matrix of P;
Lagrange finite elements that the assumption on mesh regularity implies that there are
uniform constants 0 < C; < Cy such that the function f) := ZUEVC )\qﬁmtzfch A+
MO, satisfies

ClINZ < B3l < Gl (5.4)

with A% = >, cv. [Al® + > feF., IAf|2 4+ [A|?. Consider now p € P, and observe that

Lp.(p) = > polo+ > | D wobu | Of + pebe,

vEV, feF: \veV;

where w, 5 = ‘W;T" satisfies w, y € (0,1). Applying the lower bound in (5.4) to
fr = Lp,(p), we infer that the lower bound in (3.3) holds with C, = C;. Applying now
the upper bound in (j5.4)) and observing that

2
DD wurepo] <D0 #VsRP=D [ D0 #Ve ] bl

f€F. |veVy feFcveVy vEVe \ fEF,NF.
the upper bound in (3.3) holds with Cy = Co(1 + maxvev, D pep,qp, #V£)- O

Proof of Lemma[3.3. Let ¢ € C. Let P € Py(c) with P(x) = a-x+b and (a,b) € R®xR.
We observe that

Lp.Rp,(P)(x) = Y (a-@y + b)lyo(x) + (a-z + b)lo()
vEV,

=a- (Z xvév,C(m) + mcécmﬁ) + (Z Z”’C(m) + EC(w)) b.

VEV, VEV,

14
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Recalling that w,  := % and using the definition of the local reconstruction func-

tions and the properties of the Courant basis functions, we infer that

S lpel@) (@) =D Ou(@)+ Y | D wuy | Of(x) + Oc()

vEV, vEV, feF:. \veVy
- Y )+ Y o) + 0o =1,
UGVC EF(‘

and

Z Tply () + xle(T) = Z x,0,(x) + Z Z Wy f Ty | Of() + b ()

vEV, vEV, feF:. \veV;

= Z Ty, () + Z xhf(x) + xb(x) = ,
UEVC fch

since Zvevf wy,r =1 and Zvevf Wy, f&y = s (see [4, Proposition 5.23]). O

5.3 Well-posedness and inf-sup stability

Proof of Lemma[3.3 Let ¢ € C. Let p € P.. Applying the Leibniz rule to integrate by
parts the advective derivative (recall that Lp,(p) is a continuous function in ¢), we infer
that

A:(p,p) > T 08c(p, P /Vﬁbc

Let now p € P. For all the mesh faces f € F such that f = 0dc; N Jca, we have
L., (P)jy = L., (p)|s (since these two functions are uniquely determined by the DoFs
of p at the vertices v € V). Then, summing the above relation for all ¢ € C and using
the divergence theorem, we infer that

S A.p) 2 D (T P+ 0se (P p) + Y 5 /v (BLp (p

ceC ceC cEC
=3 Il + ose(pop) + S / Le,, (p
ceC fero
Finally, (3.5) follows by combining the last term with the term A?(p, p). O

Proof of Lemma[3.4 Let p € P and let us set S := supqep\ (o} %ﬁ‘:(p’q). Lemma
implies that

Ipll? < Alp,p) + A%(p,p) < S|pl-

It remains to control the advective derivative. Let us define q € P such that q, = 0 for
all v € V and, for all ¢ € C,

= helBe| ™

> BV (p)ps

pPEP.

#mc

15
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recalling that Lp_(p) is a piece-wise affine function on the partition of ¢ induced by ..
Let us first notice that

1
> 1B VLp.(p)p )
#Be S

< helBel 7B VLp, (P72

Observing that |q|f = 0 for all f € F? since Lp, (q) vanishes on the boundary dc for all
c € C, we infer that [lq? = 3 cc (7 lall3. + v0sc(a,a) + helBel ~HBe Vip. (@)72 ()

and obtain the following bounds:
7 Hlall3e < o1 he M Belllall e S elBel T Be VP (P) 72
705¢(a,Q) < helBel 18- VL. (P) 720
helBel M BeVLp ()72 < CrnCihe HBlllall3 e < ChelBel B VLp, (P) 72 ()
owing to (3.1)) for the first line, 79 < 1 and the definition of s. for the second line, and

owing to the inverse inequality (5.1]) and Lemma for the third line. Collecting these
bounds, we obtain

he 1Belllall3 . = h2lBlaZ < helB.™

lallf <D helBel B VLp.(P)[72() S lIPlIE-
ceC

Using the inverse inequality C 1||¢H%2 © < [ 0,02, valid for any piece-wise affine func-

tion ¢ in ¢, we infer that
Cy el Bl 18T Lp (P)2 ) < / (B.-TLp,(9)) (helB.] 6.8,V L, (5))
- [BIrE)Ln @ + A
with

1
#Pc

A= B, /(Bc-vm(p»ec B.VLp.(p) — 3" B.VLr (o) |

peEPc
where we have used that Lp,(q) = q.f. and the definition of q.. Owing to the bound
(see, e.g., [1L 18, 15])

1
#Pe

helB: ™" ||B.-VLp,(p) — > BeVLlp.(p) < Chrvese(ps P);

pPEBC L2(c)

we can use the Cauchy—Schwarz inequality, 6. < 1, and Young’s inequality to bound A,
and infer that

(2C0) el Bl 1Bo-VLp, (P22 < / (8. VLp(p))Lp. (@) + 5 CoCircselp.).

We next observe that

/(ﬂc-VLPC(p))LPC(q) = Ac(p,q) — AL,

c

16
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with

A= / uLp, (p)Lp, (q) + / (8 — B)VLp,(9)Lp () + 75:(p. ).

Cc

Using (3.1), the inverse inequality (5.1), and Lemma together with the Cauchy—
Schwarz inequality, we infer that

> 1AL S lelllal-

ceC

Collecting the above bounds, we infer that

D hel Bl M B VLR (P72 S D Aclp,a) + Illlplls-

ceC ceC

Finally, since Y- .. Ac(p,a) = A(p,q) = A(p,q) + A%(p,q) < Sflafl; < Slplls, we finally
obtain

IpliE < Shiell: + Ielllipll:,

whence the conclusion follows from [|p[|* < S||p|ls and Young’s inequality. O

5.4 Bound on consistency error

Proof of Lemma[3.5 Let us set y. = p—Zp,(p) for all ¢ € C. Recalling the properties of
the exact solution and the definition of the linear form = and the local definitions
and of the bilinear forms A, and A? for all c € C and all f € F?, respectively,
we infer that

Z(s,pp;q) — (A(Rp(p),q) + A°(Rp(p),q)) = T1 + Tp + T,

where

T =Y~ [1(BTLn (@) + (8- B VLp(a) - (1 - V:B)Lr ().

ceC ¢
=281 Y [(BATuD B AT @)
ceC IS
(' / Yy Lp,, (@),
fer?

where we have used that

> [BVun@ =X - [ (89Ln @) + (V-B)Lr. +Z/ n)ye, L, (q)

ceC ceC ¢ feFRd

in the evaluation of 71, the fact that [Vp]; = 0 for all f € F. in the evaluation of T,
and the fact that pp = pjspq in the evaluation of 75. Applying now the Cauchy-Schwarz
inequality, Lemma [5.1], and recalling that 3 is Lipschitz, we infer that

[NIES

Tl < (Z(!ﬁc\hc_l + (LeCran Oy + (1 — V'IB”LOO(C)Cﬁ)QT)”%”%%c)) lall;

ceC

17
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so that assumption (3.1)) implies that

1
2
71 S (Z rﬁc|h;1||ycu%2(c>> lally-

ceC

Furthermore, using the multiplicative trace inequality from Lemma [5.2] we infer that

2

ol £ [ D2 D BB 1B IVyellZegsy | Mlally

ceC feFe

N

< (Z 1Bl (helyelps oy + hiyc@p@)) Jall-

ceC

Finally, still using Lemma this time for each face f € F? and the corresponding
mesh cell ¢y, we infer that

2

T5] S D2 18, 100 Mes 12 ey + heglWeslFriep)) | Nl
fEF?

Collecting these bounds leads to the assertion. O

5.5 A priori error estimate

Proof of Lemma[3.6 Let us first prove that there exists Cr such that

IRz (p)

20 < Cr (IPlage) + he Pl + b2 Plag ) - (5.5)

for all p € H?(c) and all ¢ € C. consider a tetrahedron p € B.. Proceeding as for finite
element proofs (using a reference tetrahedron and the continuous embedding H?(p) <
L*>(p); see, e.g., [13, §1.5]), we infer using mesh regularity that

[l oy < CRS® (Hp“%z(p) + B2 |plH gy + he |P’?{2(p)> : (5.6)

The conclusion follows by noticing that h_3||Rp, (p)
2
Zpe&pc 4“p||Loo(p)~

Let now ¢ € C, let p € H?(c), let P € P1(c), and let us prove Lemma We observe
that

5= Yvev, [P(@) + Ip(xe) | <

Ip = Zp.(P)lL2(e) < Ip = Plrze) + 1Zr.(p — P)l2(o)
< [p = Plr2(e) + CillRp.(p = P)ll2.c
Sp = Plre(e) + help — Plyie) + h2lp — Pluz (o),
using the triangle inequality and Lemma [3:2] on the first line, Lemma [3.1 on the second
line, and on the third line. Moreover, we observe that
P —=Zp.0)Er () < [P = Plare) + [ Zr.(p — Pla (o)
< [p— Pl + Conh 1 Zp. (p — P)ll 2o
< p = Pl + Crwhi o — Pllz2(e) + Crwh Mo — I, (9) | 22(0),

18
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using the triangle inequality and Lemma [3.2| on the first line, the inverse inequality from
Lemma [5.1] on the second line, and again the triangle inequality and Lemma [3.2] on the
third line. Combining these two bounds, using that [p — P|g2() = |p|m2() and that P
is arbitrary in P1(c), we infer that

Ip=Zp. (D) L2(e) T help=Tp. (D) |1 () S 1f (lp—=PllL2(e) +help— Pl (o) +h2lpl a2 ()

PePi(c)

We conclude using the polynomial approximation property from Lemma [5.3] O
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