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Performance bounds and statistical analysis of
DOA estimation

Jean Pierre Delmas

I. INTRODUCTION

Over the last three decades, many direction of arrival (DOA)estimation and source number detection methods
have been proposed in the literature. Early studies on statistical performance were only based on extensive Monte
Carlo experiments. Analytical performance evaluations, that allow one to evaluate the expected performance,
as pioneering by [47], have since attracted much excellent research.

The earlier works were devoted to the statistical performance analysis of subspace-based algorithms. In
particular the celebrated MUSIC algorithm has been extensively investigated (see e.g., [80], [82], [67], [103]
among many others). But curiously, these works were based onfirst-order perturbations of the eigenvectors and
eigenvalues of the sample covariance matrix, and thus involved very complicated derivations. Subsequently,
[51] carried out a performance analysis of two eigenstructure-based DOA estimation algorithms, using a series
expansion of the orthogonal projectors on the signal and noise subspaces, allowing considerable simplification of
the previous approaches. Motivated by this point of view, several unified analyses of subspace-based algorithms
have been presented (see e.g., [57], [40], [58]). In parallel to these works, a particular attention has been paid
to the statistical performance of the exact and approximative maximum likelihood algorithms (ML), in relation
to the celebrated Cramer-Rao bound (see e.g., [81], [63], and the tutorial [64] with the references therein).

The statistical performance analysis of the difficult and critical problem of the detection of the number of
sources impinging on an array, has been based on principallystandard techniques of the statistical detection
literature. In particular, the information theoretical criteria and especially the minimum description length
(MDL), as popularized in the signal processing literature by [99], have been analyzed (see e.g., [106] [33],
[26]). Related to the DOA estimation accuracy and to the detection of the number of sources, the resolvability
of closely spaced signals in terms of their parameters of interest have been also extensively studied (see e.g.,
[78], [59]).

The aim of this chapter is not to give a survey of all performance analysis of DOA estimation and source
detection methods that have appeared in the literature, butrather, to provide a unified methodology introduced
in [11] and then specialized to second-order in [19] to studythe theoretical statistical performance of arbitrary
DOA estimation and source number detection methods and to tackle the resolvability of closely space sources.
To illustrate this framework, several examples are detailed such as the conventional MUSIC algorithm, the
MDL criterion and the angular resolution limit based on the detection theory.

This chapter is organized as follows. Section II presents the mathematical model of the array output and
introduce the basic assumptions. General statistical tools for performance bounds and statistical analysis of DOA
estimation algorithms are given in Section III based on a functional approach providing a common unifying
framework. Then, Section IV embarks on statistical performance analysis of beamforming-based, maximum
likelihood and second-order algorithms with a particular attention paid to the subspace-based algorithms. In
particular the robustness w.r.t. the Gaussian distribution, the independence and narrowband assumptions, and
array modeling errors are considered. Finally some elements of statistical performance analysis of high-order
algorithms complete this section. A glimpse into the detection of the number of sources is given in Section V
where a performance analysis of the minimum description length (MDL) criterion is derived. Finally, Section
VI is devoted to criteria for resolving two closely spaced sources.
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The following notations are used throughout this chapter:o(ǫ) and O(ǫ) denote quantities such that
limǫ→0 o(ǫ)/ǫ = 0 and |O(ǫ)/ǫ| is bounded in the neighborhood ofǫ = 0, respectively.

II. M ODELS AND BASIC ASSUMPTION

A. Parametric array model

Consider an array ofM sensors arranged in an arbitrary geometry that receives thewaveforms generated by
P point sources (electromagnetic or acoustic). The output ofeach sensor is modeled as the response of a linear
time-invariant bandpass system of bandwidthB. The impulse response of each sensor to a signal impinging
on the array depends on the physical antenna structure, the receiver electronics and other antennas in the
array through mutual coupling. The complex amplitudessp(t) of these sources w.r.t. a carrier frequencyf0 are
assumed to vary very slowly relative to the propagation timeacross the array (more precisely, the array aperture
measured in wavelength, is much less than the inverse relative bandwidthf0/B). This so-called narrowband
assumption allows the time delaysτm,p of the pth source at themth sensor, relative to some fixed reference
point, to be modeled as a simple phase-shift of the carrier frequency. Ifn(t) is the complex envelope of the
additive noise, the complex envelope of the signals collected at the output of the sensors is given by applying
the superposition principle for linear sensors by:

x(t) =

P∑

p=1

a(θp)sp(t) + n(t) = A(θ)s(t) + n(t), (1)

wheres(t)
def
= [s1(t), ..., sP (t)]

T andθp may include generally azimuth, elevation, range and polarization of the
pth source. However, we will here assume that there is only oneparameter per source, referred as the direction
of arrival (DOA) θ. a(θp) is the steering vector associated with thepth source. The array manifold, defined as
the set{a(θ), θ ∈ Θ} for some regionΘ in DOA space, is perfectly known, either analytically or by measuring
it in the field. It is further required for performance analysis thata(θ) be continuously twice differentiable w.r.t.
θ. A(θ) = [a(θ1), ...,a(θP )] is theM × P steering matrix withθ = [θ1, ..., θP ]

T .
To illustrate the parameterization of the steering vectora(θ), assume that the sources are in the far field of

the array, and that the medium is non-dispersive, so that thewaveforms can be approximated as planar. In this
case, themth component ofa(θ) is simplygm(θ)e−ikT rm wheregm(θ) is the directivity gain of themth sensor,

k
def
= 2πf0

c u, c represents the speed of propagation,u is a unit vector pointing in the direction of propagation
andrm is the position of themth sensor relative the origin of the different delays.

The by far most studied sensor geometry is that of uniform linear array (ULA), where theM sensors are
assumed to be identical and omnidirectional over the DOA range of interest. Referenced w.r.t. the first sensor
that is used as the origin,gm(θ) = 1 andkT rm = (m− 1)2πf0c d sin(θ) = (m− 1)2πdλ0

sin(θ), whereλ0 is the
wavelength. To avoid any ambiguity,d must be less than or equal toλ0

2 . The standard ULA hasd = λ0

2 that
ensures a maximum accuracy on the estimation ofθ. In this case

a(θ) = [1, eiπ sin(θ), ..., ei(M−1)π sin(θ)]T . (2)

B. Signal assumptions and problem formulation

Each vector observationx(t) is called a snapshot of the array output. Let the processx(t) be observed
at N time instants{t1, ..., tN}. x(t) is often sampled at a slow sampling frequency1/Ts compared to the
bandwidth ofx(t) for which {x(t)}t1 ,...,tN are independent. Temporal correlation between successivesnapshots
is generally not a problem, but implies that a larger numberN of snapshots is needed for the same performance.
We will prove in Subsection IV-C that the parameter that fixesthe performance is notN , but the observation
interval T = NTs. The signals{sp(t)}p=1,..,P andn(t) are assumed independent1. For well calibrated arrays,

1Note that only the uncorrelation assumption is required forsecond-order based algorithms, in contrast to fourth-order based algorithms,
that require the independent assumption. However, this latter one simplifies the statistical performance analysis.
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n(t) is often assumed to be dominated by thermal noise in the receivers, which can be well modeled as zero-
mean temporally and spatially white circular Gaussian random process. In this case,E[n(ti)nH(tj)] = σ2

nδi,jI
andE[n(ti)n

T (tj)] = 0, for which the spatial covariance and spatial complementary covariance matrices are

given by Rn
def
= E[n(t)nH(t)] = σ2

nI and Cn
def
= E[n(t)nT (t)] = 0, respectively. A common, alternative

model assumes thatn(t) is spatially correlated whereRn is known up to a scalar multiplicative termσ2
n, i.e.,

Rn = σ2
nΣn whereΣn is a known definite positive matrix. In this case,x(t) can be pre-multiplied by an

inverse square-root factorΣ−1/2
n of Σn, which renders the resulting noise spatially white and preserves model

(1) by replacing the steering vectorsa(θ) by Σ
−1/2
n a(θ).

Two kind of assumptions are used for{sp(t)}p=1,..,P . In the first one, called stochastic or unconditional
model (see e.g., [63] and [81]),{sp(t)}p=1,..,P are assumed to be zero-mean random variables for which the

most commonly used distribution is the circular Gaussian one with spatial covarianceRs
def
= E[s(t)sH(t)] and

spatial complementary covarianceCs
def
= E[s(t)sT (t)] = 0. Rs is nonsingular for not fully correlated sources

(called also noncoherent) or near-singular for highly correlated sources. In the case of coherent sources (specular
multipath or smart jamming, where some signals impinging onthe array of sensors can be sums of scaled and
delayed versions of the others),Rs is singular. In this chapterRs is usually assumed nonsingular. For these
assumptions, the snapshotsx(t) are zero-mean complex circular Gaussian distributed with covariance matrix

Rx = A(θ)RsA
H(θ) + σ2

nI. (3)

This circular Gaussian assumption lies not only in the fact that circular Gaussian data are rather frequently
encountered in applications, but also because optimal detection and estimation algorithms are much easier to
deduce under this assumption. Furthermore, as will be discussed in Section IV, under rather general conditions
and in large samples [86], the Gaussian CRB is the largest of all CRB matrices corresponding to different
distributions of the sources of identical covariance matrix Rs. This stochsatic model can be extended by
assuming thats(t) is arbitrarily distributed with finite fourth-order moments [19] including the case where
Cs 6= 0 associated with the second-order noncircular distributions.

A common alternative assumption, called deterministic or conditional model (see e.g., [63] and [81]) is
used when the distribution ofs(t) is unknown or/and clearly nonGaussian, for example in radarand radio
communications. Heres(t) is nonrandom, i.e., the sequence{s(t)}t1,...,tN is frozen in all realizations of the
random snapshots{x(t)}t1,...,tN . Consequently,{s(t)}t1 ,...,tN is considered as a complex unknown parameter in
CNP . For this assumption, the snapshotsx(t) are complex circular Gaussian distributed with meanA(θ)s(t)
and covariance matrixσ2

nI.
With these preliminaries, the main DOA problem can now be formulated as follows: Given the observations,

{x(t)}t1 ,...,tN and the described model (1), detect the numberP of incoming sources and estimate their DOAs
{θp}p=1,...,P .

C. Parameter identifiability

Once the distribution of the observations{x(t)}t1,...,tN has been fixed, the question of the identifiability of the
parameters (including the DOA{θp}p=1,...,P ) must be raised. For example, under the assumption of independent,
zero-mean circular Gaussian distributed observations, all information in the measured data is contained in the
covariance matrixRx (3). The question of parameter identifiability is thus reduced to investigating under which
conditionsRx determines the unknown parameters. Thus, if no a priori information onRs is available, the
unknown parameterα of Rx contains the followingP + P 2 + 1 real-valued parameters:

α =
[
θ1, ..., θP , [Rs]1,1, ..., [Rs]P,P ,Re([Rs]2,1), Im([Rs]2,1), ...,Re([Rs]P,P−1), Im([Rs]P,P−1), σ

2
n

]T
(4)

and the parameterα is identifiable if and only ifRx(α
(1)) = Rx(α

(2)) ⇒ α(1) = α(2). To ensure this
identifiability, it is necessary thatA(θ) be full column rank for any collection ofP , distinctθp ∈ Θ. An array
satisfying this assumption is said to be unambiguous. Notice that this requirement is problem-dependent and,
therefore, has to be established for the specific array understudy. For example, due to the Vandermonde structure
of a(θ) in the ULA case (2), it is straightforward to prove that the ULA is unambiguous ifΘ = (−π/2,+π/2).
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In the case where the rank ofRs, that is the dimension of the linear space spanned bys(t) is known and equal
to r, different conditions of identifiability has been given in the literature. In particular, the condition

P <
M + r

2
(which reduces toP < M whenRs is nonsingular) (5)

has been proved to be sufficient [100] and practically necessary [61].
When s(t) are not circularly Gaussian distributed, the identifiability condition is generally much more

involved. For example, whens(t) is noncircularly Gaussian distributed,x(t) is noncircularly Gaussian distributed
as well with complementary covariance

Cx = A(θ)CsA
T (θ) 6= 0 (6)

and the distribution of the observations are now characterized by bothRx andCx. Consequently, the condition
of identifiability will be modified w.r.t. the circular case given in (5). This condition has not been presented
in the literature, except for the particular case of uncorrelated and rectilinear (called also maximally improper)
sources impinging on a ULA for which, the augmented covariance matrixRx̃

def
= E[x̃(t)x̃H(t)] with x̃(t)

def
=

[xT (t),xH (t)]T is given by

Rx̃ =

P∑

p=1

σ2
pa(θp, φp)a

H(θp, φp) + σ2
nI, (7)

wherea(θp, φp)
def
= [aT (θp), e

−2iφpaH(θp)]
T with φp is the second-order phase of noncircularity defined by

E[s2p(t)] = e2iφpE|s2p(t)| = e2iφpσ2
p. (8)

Due to the Vandermonde-like structure of the extended steering matrix A(θ,φ)
def
= [a(θ1, φ1), ...,a(θP , φP )],

the condition of identifiability is now hereP < 2M − 1.
Note that whens(t) is discrete distributed (for example whensp(t) are symbolssp,k(p) of a digital modulation

takingq different values), the condition of identifiability is nontrivial despite the distribution ofx(t) is a mixture
of qP circular Gaussian distributions of mean

∑P
p=1 sp,k(p)a(θp) and covarianceσ2

nI.

III. G ENERAL STATISTICAL TOOLS FOR PERFORMANCE ANALYSIS OFDOA ESTIMATION

A. Performance analysis of a specific algorithm

1) Functional analysis:To study the statistical performance of any DOA’s estimator(often called an algorithm
as a succession of different steps), it is fruitful to adopt afunctional analysis that consists in recognizing that
the whole process of constructing the estimateθ̂N is equivalent to defining a functional relation linking this
estimate to the measurements from which it is inferred. As generally θ̂N are functions of some statisticsgN
(assumed complex-valued vector inCL) deduced from(x(t))t1,...,tN , we have the following mapping

{x(t)}t1,...,tN 7−→ gN
alg7−→ θ̂N . (9)

Many often, the statisticsgN are sample moments or cumulants ofx(t). The most commun ones are
second-order sample moments ofx(t) deduced from the sample covariance and complementary covari-

ance matricesRx,N
def
= 1

N

∑N
n=1 x(tn)x

H(tn) and Cx,N
def
= 1

N

∑N
n=1 x(tn)x

T (tn), respectively. For
nonGaussian symmetric sources distributions, even samplehigh-order cumulants ofx(t) are also used,
in particular the fourth-order sample cumulants deduced from the sample quadrivariance matricesQx,N ,

Q
′

x,N andQ”
x,N where [Qx]i+(j−1)M,k+(l−1)M

def
= Cum(xi(t), x

∗
j (t), x

∗
k(t), xl(t)), [Q

′

x]i+(j−1)M,k+(l−1)M
def
=

Cum(xi(t), x
∗
j (t), xk(t), xl(t)) and [Q”

x]i+(j−1)M,k+(l−1)M
def
= Cum(xi(t), xj(t), xk(t), xl(t)), estimated

through the associated fourth and second-order sample moments. In these cases, the algorithms are called
second-order, high-order and fourth-order algorithms, respectively.

The statisticgN generally satisfies two conditions:
(i) gN converges almost surely (from the strong law of large numbers) toE(gN ) whenN tends to infinity,

that is a function of the DOAs and other parameters denotedg(θ),
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(ii) the DOAs θ are identifiable fromg(θ), i.e., there exists a mappingg(θ) 7−→ θ.
Furthermore, we assume that the algorithmalg satisfiesalg[(g(θ)] = θ for all θ ∈ Θ. Consequently the

functional dependencêθN = alg(gN ) constitutes a particular extension of the mappingg(θ) 7−→ θ in the
neighborhood ofg(θ) that characterizes all algorithm based on the statisticgN .

Note that for circular Gaussian stochastic and deterministic models of the sources, the likelihood functions
of the measurements depend on{x(t)}t1 ,...,tN through only the sample covarianceRx,N , and therefore the
algorithms called respectively stochastic maximum likelihood (SML) and deterministic maximum likelihood
(DML) algorithms are second-order algorithms [64]. The SMLalgorithm has been extended to noncircular
Gaussian sources, for which the ML algorithm is built from both Rx,N andCx,N [21].

However, due to their complexity, many suboptimal algorithms with much lower computational requirements
have been proposed in the literature. Among them, many algorithms are based on the noise (or signal)
orthogonal projectorΠx,N onto the noise (or signal) subspace associated with the sample covarianceRx,N .
These algorithms are called subspace-based algorithms. The most celebrated is the MUSIC algorithm that offers
a good trade-off between performance and computational costs. Its statistical performance has been thoroughly
studied in the literature (see e.g., [47], [80], [34], [31]). In these cases, the mapping (9) becomes

{x(t)}t1 ,...,tN 7−→ Rx,N 7−→ Πx,N
alg7−→ θ̂N , (10)

where the mappingalg characterizes the specific subspace-based algorithm. Someof these algorithms have
been extended for noncircular sources through subspace-based algorithms based on(Πx,N ,Π

′

x,N ) or Πx̃,N

where Π
′

x,N and Πx̃,N are the orthogonal projectors onto the noise subspace associated with the sample

complementary covarianceCx,N and the sample augmented covarianceRx̃,N
def
= 1

N

∑N
n=1 x̃(tn)x̃

H(tn) with

x̃(tn)
def
= (xT (tn),x

H(tn))
T , respectively [3].

2) Asymptotic distribution of statistics:Due to the nonlinearity of model (1) w.r.t. the DOA’s parameter,
the performance analysis of detectors for the number of sources and the DOA’s estimation procedures are not
possible for a finite numberN of snapshots. But in many cases, asymptotic performance analyses are available
when the numberN of measurements, the signal-to-noise ratio (SNR) (see e.g., [71]) or the number of sensors
M converges to infinity (see e.g., [92]). In practiceN , SNR andM are naturally finite and thus available
results in the asymptotic regime are approximations, whosedomain of validity are specified through Monte
Carlo simulations. We will consider in this chapter, only asymptotic properties w.r.t.N and thus, the presented
results will be only valid in practice whenN ≫ M . WhenN is of the same order of magnitude thanM ,
although very large, the approximations given by the asymptotic regime w.r.t.N are generally very bad.

To derive the asymptotic distribution, covariance and biasof estimated DOAs w.r.t. the numberN of
measurements, we first need to specify the asymptotic distribution of some statisticsgN .

For the second-order statistics

gN = vec (Rx,N ,Cx,N) =
1

N

N∑

n=1

[
x∗(tn)⊗ x(tn)
x(tn)⊗ x(tn)

]
,

wherevec(.) and⊗ denote, respectively, the vectorization operator that turns a matrix into a vector by stacking
the columns of the matrix one below another and the standard Kronecker product of matrices, closed-form
expressions of the covarianceE

[
(gN − g)(gN − g)H

]
and complementary covarianceE

[
(gN − g)(gN − g)T

]

matrices (whereg
def
= g(θ) for short), and their asymptotic distributions2 have been given [25] for independent

2Throughout this chapterNR(m;R), NC(m;R) andNC(m;R,C) denote the real, circular complex, arbitrary complex Gaussian
distribution, respectively, with meanm, covarianceR and complementary covarianceC.
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measurements, fourth-order arbitrary distributed sources and Gaussian distributed noise:

E
[
(gN − g)(gN − g)H

]
=

1

N

(
RRx

RRx,Cx

RH
Rx,Cx

RCx

)

E
[
(gN − g)(gN − g)T

]
=

1

N

(
CRx

CRx,Cx

CT
Rx,Cx

CCx

)
,

√
N (vec(Rx,N ,Cx,N )− vec(Rx,Cx))

L→ NC

(
0;

(
RRx

RRx,Cx

RH
Rx,Cx

RCx

)
,

(
CRx

CRx,Cx

CT
Rx,Cx

CCx

))
, (11)

with

RRx
= R∗

x ⊗Rx +K(Cx ⊗C∗
x) + (A∗ ⊗A)Qs(A

T ⊗AH) (12)

RCx
= Rx ⊗Rx +K(Rx ⊗Rx) + (A⊗A)Q

′′′

s (A
H ⊗AH)

CRx
= RRx

K

CCx
= Cx ⊗Cx +K(Cx ⊗Cx) + (A⊗A)Q

′′

s (A
T ⊗AT )

RRx,Cx
= C∗

x ⊗Rx +K(Rx ⊗C∗
x) + (A∗ ⊗A)Q

′′′′

s (AH ⊗AH)

CRx,Cx
= R∗

x ⊗Cx +K(Cx ⊗R∗
x) + (A∗ ⊗A)Q

′

s(A
T ⊗AT ),

whereA
def
= A(θ) for short andK denotes the vec-permutation matrix which transformsvec(C) to vec(CT ) for

any square matrixC. Qs, Q
′

s andQ
′′

s are defined as forx(t) defined previously and[Q
′′′

s ]i+(j−1)P,k+(l−1)P
def
=

Cum(si(t), sj(t), s
∗
k(t), s

∗
l (t)), [Q

′′′′

s ]i+(j−1)P,k+(l−1)P
def
= Cum(si(t), s

∗
j (t), s

∗
k(t), s

∗
l (t)). Note that the asymp-

totic distribution ofRx,N has be extended to non independent measurements with arbitrary distributed sources
and noise of finite fourth-order moments withRn arbitrarily structured in [18] in [19].

Consider now the noise orthogonal projectorgN = vec(Πx,N ). Its asymptotic distribution is deduced from
the standard first-order perturbation for orthogonal projectors [46] (see also [51]):

δ(Πx,N ) = −Πxδ(Rx,N )S# − S#δ(Rx,N )Πx + o (δ(Rx,N )) , (13)

where δ(Πx,N )
def
= Πx,N − Πx, δ(Rx,N )

def
= Rx,N − Rx and S# is the Moore-Penrose inverse ofS =

A(θ)RsA
H(θ). The remainder in (13) is a standardo (δ(Rx,N )) for a realization of the random matrixRx,N ,

but anop (δ(Rx,N )) if Rx,N is considered as random. The relation (13) proves thatgN is differentiable w.r.t.
vec(Rx,N ) in the neighborhood ofvec(Rx) and its differential matrix (called also Jacobian matrix) evaluated
at vec(Rx) is

DRx,Πx
= −

(
S∗# ⊗Πx +Π∗

x ⊗ S#
)
. (14)

Then using the standard theorem of continuity (see e.g., [75, th.B, p.124]) on regular functions of asymptotically
Gaussian statistics, the asymptotic behaviors ofΠx,N andRx,N are directly related:

√
N (vec(Πx,N )− vec(Πx))

L→ NC (0;RΠx
,RΠx

K) , (15)

whereRΠx
is given for independent measurements, fourth-order arbitrary distributed sources and Gaussian

distributed noise, using (12) by:

RΠx
= DRx,Πx

RRx
DH

Rx,Πx
= Π∗

x ⊗U+U∗ ⊗Πx, (16)

with U = σ2
nS

#RxS
#. We see thatRΠx

does not depend onCs and the quadrivariances of the sources.
Consequently, all subspace-based algorithms are robust tothe distribution and to the noncircularity of the
sources; i.e., the asymptotic performances are those of thestandard complex circular Gaussian case. Note that
the asymptotic distribution of(Πx,N ,Π

′

x,N) andΠx̃,N have also been derived under the same assumptions in
[3], where it is proved that they do not depend on the quadrivariances of the sources, as well. The asymptotic
distributions ofΠx,N , (Πx,N ,Π

′

x,N ) andΠx̃,N will allow us to derive the statistical performance of arbitrary

May 18, 2016 DRAFT
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subspace-based algorithms based on these orthogonal projectors in the Section IV-D.
Note that the second-order expansion ofΠx,N w.r.t. Rx,N has been used in [51] to analyse the behavior of

the root-MUSIC and root-min-norm algorithms dedicated to ULA, but is useless as far as we are concerned
by the asymptotic distribution of the DOAs alone, as it has been specified in [3], where an extension of the
root-MUSIC algorithm to noncircular sources has been proposed.

Finally, consider now the asymptotic distribution of the signal eigenvalues ofRx,N that is useful for the
statistical performance analysis of information theoretic criteria (whose MDL criterion popularized by Wax and
Kailath [99] is one of the most successful), for the detection of the numberP of sources. Letλ1, ..., λP , λP+1 =
σ2
n, ..., λM = σ2

n denote the eigenvalues ofRx, ordered in decreasing order andv1, ...,vP the associated
eigenvectors (defined up to a multiplicative unit modulus complex number) of the signal subspace. Then,
suppose that for a "small enough" perturbationRx,N −Rx, the largestP associated eigenvalues of the sample
covarianceRx,N areλ1,N > ... > λP,N . It is proved in [26], extending the work by [47] to arbitrarydistributed
independent measurements (1) with finite fourth-order moment, not necessarily circular and Gaussian, the
following convergence in distribution.

√
N (λN − λ)

L→ NR(0;Rλ), (17)

with λN = [λ1,N , ..., λP,N ]T , λ = [λ1, ..., λP ]
T and [Rλ]i,j = λ2

i δi,j + |λi,j|2 + λi,i,j,j for i, j = 1, ...P , δi,j
is the Kronecker delta,λi,j

def
= vH

i Cxv
∗
j and λi,j,k,l

def
= (vT

i ⊗ vH
j )Qx(v

∗
k ⊗ vl). In contrast to the circular

Gaussian distribution [47], we see that the estimated eigenvalues{λi,N}i=1,...,P are no longer asymptotically
mutually independent. Furthermore, it is proved in [26] that for i, j = 1, ...P :

E[λi,N ] = λi +
1

N

∑

1≤k 6=i≤M

λiλk + |λi,k|2 + λi,k,i,k

λi − λk
+ o(

1

N
) (18)

Cov[λi,N , λj,N ] =
1

N

(
λ2
i δi,j + |λi,j |2 + λi,i,j,j

)
+ o(

1

N
). (19)

We note that these results are also valid for the augmented covariance matrixRx̃,N whereM andP are replaced
by 2M and the rank ofRx̃,N − σ2

nI, respectively.
3) Asymptotic distribution of estimated DOA:In the following, we consider arbitrary DOA algorithms that

are in practice "regular" enough3. More specifically, we assume that the mappingalg is R−differentiable w.r.t.
gN ∈ CL in the neighborhood ofg(θ), i.e.,

θ̂N = alg(gN ) = alg(g) +D
alg
g,θ(gN − g) +D

alg∗
g,θ (gN − g)∗ + o||gN − g||, (20)

with alg(g) = θ andP ×L matrix D
alg
g,θ is theR−differential matrix (Jacobian) of the mappinggN

alg7−→ θ̂N

evaluated atg(θ). In practice, this matrix is derived from the chain rule by decomposing the algorithm as
successive simpler mappings, and in each of these mapping, this matrix is simply deduced from first-order
expansions. Then, applying a simple extension of the standard theorem of continuity [75, th.B, p.124] (also
called∆-method), it is straightforwardly proved the following convergence in distribution:

√
N (θ̂N − θ)

L→ NR(0;Rθ) with Rθ = 2
[
D

alg
g,θRg(D

alg
g,θ)

H +Re
(
D

alg
g,θCg(D

alg
g,θ)

T
)]

, (21)

whereRg andCg are the covariance and the complementary covariance matrices of the asymptotic distribution
of the statisticsgN . We note that for subspace-based algorithms and second-order algorithms based onRx,N

or Rx̃,N , g∗
N = KgN (because the orthogonal projector matrices and the covariance matrices are Hermitian

structured), and generally for statisticsgN that contain all conjugate of its components, the mappingalg is
C−differentiable w.r.t.gN in the neighborhood ofg(θ) and (20) and (21) become respectively:

θ̂N = alg(gN ) = alg(g) +D
alg
g,θ(gN − g) + o||gN − g||, (22)

3This is the case, for example when̂θN maximizes w.r.t.α, a real-valued functionf(α,gN ) that is twice-R differentiable w.r.t.α
andgN .
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where now,Dalg
g,θ is theC−differential matrix of the mappinggN

alg7−→ θ̂N evaluated atg(θ) and

√
N (θ̂N − θ)

L→ NR(0;Rθ) with Rθ = D
alg
g,θRg(D

alg
g,θ)

H . (23)

4) Asymptotic covariance and bias:Under additional regularities of the algorithmalg, that are generally
satisfied, the covariance of̂θN is given by

Cov(θ̂N ) =
1

N
Rθ + o(

1

N
). (24)

Using a second-order expansion ofalg(gN ) and CR−calculus, wherealg is assumed to be twice-
R−differentiable, the bias is given by

E(θ̂N )− θ =
1

2N




Tr(Rg̃H
alg
g̃,θ,1)

...
Tr(Rg̃H

alg
g̃,θ,P )


+ o(

1

N
), (25)

whereHalg
g̃,θ,k = ∂

∂g̃

(
∂alg
∂g̃

)H
=

[
H

(1)
g,θ,k H

(2)
g,θ,k

H(2)∗
g,θ,k H(1)∗

g,θ,k

]
is the complex augmented Hessian matrix [74, A2.3]

of the kth component of the functionalg at pointg(θ) andRg̃ =

[
Rg Cg

C∗
g R∗

g

]
is the augmented covariance

of the asymptotic distribution ofgN . In the particular case wherealg is twice-C−differentiable (see e.g., the
examples given forC−differentiable algorithms (22)), i.e.,

θ̂N = alg(gN ) = alg(g) +D
alg
g,θ(gN − g) +

1

2
[IP ⊗ (gN − g)H ]




H
alg
g,θ,1
...

H
alg
g,θ,P


 [gN − g] + o||gN − g||2, (26)

(25) reduces to

E(θ̂N )− θ =
1

2N




Tr(RgH
alg
g,θ,1)

...
Tr(RgH

alg
g,θ,P )


+ o(

1

N
). (27)

We note that relations (24), (25) and (27) are implicitly used in the signal processing literature by simple first
and second-order expansions of the estimateθ̂N w.r.t. the involved statistics without checking any necessary
mathematical conditions concerning the remainder terms ofthe first and second-order expansions. In fact these

conditions are very difficult to prove for the involved mappings gN
alg7−→ θ̂N . For example, the following

necessary conditions are given in [56, Th. 4.2.2] for second-order algorithms: (i) the measurements{x(t)}t1 ,...,tN
are independent with finite eighth moments, (ii) the mappinggN

alg7−→ θ̂N is four timesR−differentiable, (iii)
the fourth derivative of this mapping and those of its squareare bounded. These assumptions that do not depend
on the distribution of the measurements are very strong, butfortunately (24), (25) and (27) continue to hold in
many cases in which these assumptions are not satisfied, in particular for Gaussian distributed data (see, e.g.,
[56, Ex. 4.2.2]).

In practice, (24), (25) and (27) show that the mean square error (MSE)

E‖θ̂N − θ‖2 = ‖E(θ̂N )− θ‖2 +Tr[Cov(θ̂N )] (28)

is then also of order1/N . Its main contribution comes from the variance term, since the square of the bias is
of order1/N2. But as empirically observed, this bias contribution may besignificant when SNR orN is not
sufficiently large. However, there are very few contributions in the literature, that have derived closed-form bias
expressions. Among them, [104] has considered the bias of the MUSIC algorithm, whose derivation ought to
be simplified by using the asymptotic distribution of the orthogonal projectorΠx,N , rather than those of the
sample signal eigenvectors(e1,N , ..., eP,N ).
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B. Cramer-Rao bounds (CRB)

The accuracy measures of performance in terms of covarianceand bias of any algorithm, described in the
previous section may be of limited interest, unless one has an idea of what the best possible performance is. An
important measure of how well a particular DOA finding algorithm performs is the mean square error (MSE)
matrixE[(θ̂−θ)(θ̂−θ)T ] of the estimation error̂θN−θ. Among the lower bounds on this matrix, the celebrated
Cramer-Rao bound (CRB) is by far the most commonly used. We note that this CRB is indeed deduced from
the CRB on the complete unknown parameterα of the parametrized DOA model, for example, given by (4) for
the circular Gaussian stochastic model. Furthermore, rigorously speaking, this CRB ought to be only used for
unbiased estimators and under sufficiently regular distributions of the measurements. Fortunately, these technical
conditions are satisfied in practice and due to the property that the bias contribution is often weak w.r.t. the
variance term in the mean square error (28) forN ≫ 1, the CRB that lower bounds the covariance matrix of
any unbiased estimators is used to lower bound the MSE matrixof any asymptotically unbiased estimator4

E[(α̂−α)(α̂−α)T ] ≥ CRB(α) (29)

with CRB(α) is given under weak regularity conditions by:

CRB(α) = FIM−1(α), (30)

whereFIM(α) is the Fisher information matrix (FIM) given elementwise by

[FIM(α)]k,l = −E

[(
∂2 log p(x;α)

∂αkαl

)]
(31)

associated with the probability density functionp(x;α) of the measurementsx = [xT (t1), ...,x
T (tN )]T .

The main reason for the interest of this CRB is that it is oftenasymptotically (when the amontN of data is
large) tight, i.e., there exist algorithms, such that the stochastic maximum likelihood (ML) estimator (see IV-B),
whose covariance matrices asymptotically achieve this bound. Such estimators are said to be asymptotically
efficient. However, at low SNR and/or at low numberN of snapshots, the CRB is not achieved and is overly
optimistic. This is due to the fact that estimators are generally biased in such non-asymptotic cases. For these
reasons, other lower bounds are available in the literature, that are more relevant to lower bound the MSE
matrices. But unfortunately, their closed-form expressions are much more complex to derive and are generally
non interpretable (see e.g., the Weiss-Weinstein bound in [97]).

In practice, closed-form expressions of the FIM (31) are difficult to obtain for arbitrary distributions of
the sources and noise. In general, the involved integrations of (31) are solved numerically by replacing the
expectations by arithmetical averages over a large number of computer generated measurements. But for
Gaussian distributions, there are a plethora of closed-form expressions ofCRB(θ) in the literature. And the
reason of the popularity of this CRB is the simplicity of the FIM for Gaussian distributions ofx.

1) Gaussian stochastic case:On way to derive closed-form expressions ofCRB(θ) is to use the extended
Slepian-Bangs [77], [7] formula, where the FIM (31) is givenelementwise by

[FIM(α)]k,l = 2Re

[(
∂mx

∂αk

)H

R−1
x

∂mx

∂αl

]
+Tr

[
∂Rx

∂αk
R−1

x

∂Rx

∂αl
R−1

x

]
(32)

for a circular5 GaussianNC(mx;Rx) distribution ofx. But there are generally difficulties to derive compact
matrix expressions of the CRB for DOA parameters alone givenby

CRB(θ) = [FIM−1(α)](1:P,1:P )

4Note that for for finiteN , the estimator̂α is always biased and (29) does not apply. Additionally, biased estimators may exist whose
MSE matrices are smaller than the CRB (see, e.g., [83]).

5Note that this Slepian-Bangs formula has been extended to noncircular GaussianNC(mx;Rx,Cx) distribution in [22] where (32)

becomes[FIM(α)]k,l =
(

∂mx̃

∂αk

)H

R−1
x̃

∂mx̃

∂αl
+ 1

2
Tr

[
∂Rx̃

∂αk
R−1

x̃
∂Rx̃

∂αl
R−1

x̃

]
with mx̃

def
= (mT

x ,m
H
x )T andRx̃

def
=

[
Rx Cx

C∗

x R∗

x

]
.
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with α = (θT ,βT )T whereβ gathers all the nuisance parameters (in many applications,only the DOAs are
of interest). Another way, based on the asymptotic efficiency of the ML estimator (under certain regularity
conditions) has been used to indirectly derive the CRB on theDOA parameter alone (see IV-B).

For the circular Gaussian stochastic model of the sources introduced in Subsection II-B, compact matrix
expressions ofCRB(θ) have been given in the literature, when no a priori information is available on the
structure of the spatial covarianceRs of the sources. For example, Stoicaet al. [87] have derived the following
expression for one parameter per source and uniform white noise (i.e.,Rn = σ2

nI)

CRBCG(θ) =
σ2
n

2N

{
Re
[
(DHΠxD)⊙

(
RsA

HR−1
x ARs

)T ]}−1
, (33)

where⊙ denotes the Hadamard product (i.e., element-wise multiplication), Πx is the orthogonal projector
on the noise subspace, i.e.,Πx = Π⊥

A

def
= I − A(AHA)−1AH and D

def
=
[
da(θ1)
dθ1

, ..., da(θP )
dθP

]
. We note the

surprising fact that when the sources are known to be coherent (i.e.,Rs singular), the associated Gaussian CRB
CRBCG(θ) that includes this prior, keeps the same expression (33) [85].

As is well known, the importance of this Gaussian CRB formulalies in the fact that circular Gaussian data
are rather frequently encountered in applications. Another important point is that under rather general conditions
that will be specified in Subsection IV-B, the circular complex Gaussian CRB matrix (33) is the largest of all
CRB matrices among the class of arbitrary complex distributions of the sources with given covariance matrix
Rx (see, e.g., [86, p. 293]). Note that many extensions of (33) have been given. For example this formula has
been extended to several parameters per source (see e.g., [4, Appendix.D], to nonuniform white noise (i.e.,
Rn = Diag[σ2

1 , ..., σ
2
M ] and unknown parameterized noise field (i.e.,Rn = Σ(σ)) in [65] and [105], [39],

respectively. Due to the domination of the Gaussian distribution, these bounds have often been denoted in the
literature as stochastic CRB (e.g., in [63]) or unconditional CRB (e.g., in [81]), without specifying the involved
distribution.

Furthermore, all these closed-form expressions of the CRB have been extended to the noncircular Gaussian
stochastic model of the sources in [22], [2] and [4, Appendix.D], given associatedCRBNCG(θ) expressions
satisfying

CRBNCG(θ) ≤ CRBCG(θ)

corresponding to the same covariance matrixRs. For example, for a single source, with one parameterθ1,
CRBNCG(θ1) decreases monotonically as the second-order noncircularity rate γ1 (defined byE|s21(t)| =
γ1e

2iφ1E[s21(t)] and satisfying0 ≤ γ1 ≤ 1) increases from 0 to 1, for which we have, respectively,

CRBCG(θ1) =
1

N

(
1

h1

[
σ2
n

σ2
1

+
1

‖a(θ1)‖2
σ4
n

σ4
1

])
, CRBNCG(θ1) =

1

N

(
1

h1

[
σ2
n

σ2
1

+
1

2‖a(θ1)‖2
σ4
n

σ4
1

])
, (34)

whereh1 is the purely geometrical factor2daH(θ1)
dθ1

Π⊥
a1

da(θ1)
dθ1

with Π⊥
a1

def
= IM − a(θ1)aH(θ1)

‖a(θ1)‖2 .
If the source covarianceRs is constrained to have a specific structure, (i.e., if a prioron Rs is taken

into account), a specific expression ofCRBCG(θ), which integrates this prior ought to be derived, to assess
the performance of an algorithm that uses this prior. But unfortunately, the derivation ofCRBCG(θ) is very
involved and lacks any engineering insight. For example, when it is known that the sources are uncorrelated,
the expression given in [44, theorem 1] ofCRBCG(θ) includes a matrixB, defined as any matrix, whose
columns span the null space of[a∗(θ1) ⊗ a(θ1), ...,a

∗(θP ) ⊗ a(θP )]
H . And to the best of our knowledge no

closed-form expression ofCRBCG(θ) has been published in the important case of coherent sources, when the
rank ofRs is fixed strictly smaller thanP .

Finally, note that the scalar field modeling one component ofelectromagnetic field or acoustic pressure (1)
has been extended to vector fields with vector sensors, whereassociated stochastic CRBs for the DOA (azimuth
and elevation) alone have been derived and analyzed for a single source. In particular, the electromagnetic (six
electric and magnetic field components) and acoustic (threevelocity components and pressure) fields have been
considered in [62] and [42], respectively.
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2) Gaussian deterministic case:For the deterministic model of the sources introduced in Subsection II-B,
the unknown parameterα of Rx is now

α =
[
θ1, ..., θP ,

{
Re[sT (tn)], Im[sT (tn)]

}
n=1,...,N

, σ2
n

]T
. (35)

Applying the extended Slepian-Bangs formula (32) to the circular GaussianNC






As(t1)

...
As(tN )


 ;σ2

nINM




distribution of x, Stoica et al. [81] have obtained the following CRB for the DOA alone:CRBDet(θ) =
σ2
n

2N

{
Re
[
DHΠxD⊙Rs,N

]}−1
, whereRs,N

def
= 1

N

∑N
n=1 s(tn)s

H(tn). Furthermore, it was proved in [80] that
CRBDet(θ) decreases monotonically with increasingN (andM ). This implies, that if the sourcess(tn) are
second-order ergodic sequences,Rs,N has a limitRs whenN tends to infinity, and we obtain for largeN , the
following expression denoted in the literature as deterministic CRB or conditional CRB (e.g., in [81])

CRBDet(θ) ≈
σ2
n

2N

{
Re
[
(DHΠxD)⊙Rs

]}−1
. (36)

Finally, we remark that the CRB for near-field DOA localization has been much less studied than the far-
field one. To the best of our knowledge, only papers [28], [8] and [27] have given and analyzed closed-form
expressions of the stochastic and deterministic CRB, and furthermore in the particular case of a single source
for specific arrays. For a ULA where the DOA parameters are theazimuthθ and the ranger, based on the
DOA algorithms, the steering vector (2) has been approximated in [28] by

[a(θ, r)]m=1,...M = ei(ω(m−1)+φ(m−1)2),

whereω andφ are the so-called electric angles connected to the physicalparametersθ andr by ω = 2π d
λ0

sin(θ)

andφ = π d2

λ0r
cos2(θ). Then in [8], the exact propagation model

[a(θ, r)]m=1,...M = e
i 2πr

λ0

(

√

1+ 2(m−1)d sin(θ)

r
+ (m−1)2d2

r2
−1

)

,

has been used, that has revealed interesting features and interpretations not shown in [28]. Very recently, the
uniform circular array (UCA) has been investigated in [27] in which the exact propagation model is now:

[a(θ, φ, r)]m=1,...M = e
i 2πr

λ0

(

1−
√

1−2 r0
r
cos(θ− 2π(m−1)

M
) sin(φ)+

r2
0

r2

)

,

wherer0, θ andφ denote the radius of the UCA, the azimuth and the elevation ofthe source. Note that in
contrast to the closed-form expressions given in [28] and [8], the ones given in [27] relate the near and far-field
CRB on the azimuth and elevation by very simple expressions.

3) Non Gaussian case:The stochastic CRB for the DOA appears to be prohibitive to compute for non-
Gaussian sources. To cope with this difficulty, the deterministic model for the sources has been proposed for its
simplicity. But in contrat to the stochastic ML estimator, the corresponding deterministic (or conditional) ML
method does not asymptotically achieve this deterministicCRB, because the deterministic likelihood function
does not meet the required regularity conditions (see Subsection IV-B). Consequently, this deterministic CRB is
only a nonattainable lower bound on the covariance of any unbiased DOA estimator for arbitrary nonGaussian
distributions of the sources. So, it is useful to have explicit expressions of the stochastic CRB under non-
Gaussian distributions.

To the best of our knowledge, such stochastic CRBs have only been given in the case of binary phase-
shift keying (BPSK), quaternary phase-shift keying (QPSK)signal waveforms [23] and then, to arbitraryL-ary
square QAM constellation [9], and for a single source only. In these works, it is assumed Nyquist shaping
and ideal sample timing apply so that the intersymbol interference at each symbol spaced sampling instance
can be ignored. In the absence of frequency offset but with possible phase offset, the signals at the output of
the matched filter can be represented ass1(t) = σ2

1e
iφ1ǫ1(t), where{ǫ1(t)}t1,...,tN are independent identically
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distributed random symbols taking values±1 for BPSK symbols and{±(2k − 1)a± i(2l − 1)a}l,k=1,..2q−1

with L = 22q for L-ary square QAM symbols, where2a is the intersymbol distance in the I/Q plane, which is
adjusted such thatE|ǫ1(t)|2 = 1. For these discrete sources, the unknown parameter of this stochastic model is

α =
[
θ1, φ1, σ

2
1 , σ

2
n

]T

and it has been proved in [23] and [9] that the parameters(θ1, φ1) and(σ2
1 , σ

2
n) are decoupled in the associated

FIM. This allows one to derive closed-form expressions of the so called non-data-aided (NDA) CRBs on the
parameterθ1 alone. In particular, it has been proved [23] that for a BPSK and QPSK source, that is respectively
rectilinear and second-order circular, we have

CRBBPSK(θ1)

CRBNCG(θ1)
=

1

(1− g(ρ))(1 + 1
2ρ )

and
CRBQPSK(θ1)

CRBCG(θ1)
=

1

(1− g(ρ2 ))(1 +
1
ρ)

, (37)

whereCRBNCG(θ1) andCRBCG(θ1) are given by (34) and withρ
def
= Mσ2

1

σ2
n

andg is the following decreasing

function of ρ: g(ρ)
def
= e−ρ√

2π

∫ +∞
−∞

e−
u2

2

cosh(u
√
2ρ)

du. (37) is illustrated in Fig.1 for a ULA ofM sensors spaced a
half-wavelength apart. We see from this figure that the CRBs under the non-circular [resp. circular] complex
Gaussian distribution are tight upper bounds on the CRBs under the BPSK [resp. QPSK] distribution at very
low and very high SNRs only. Finally, note that among the numerous results of [23] and [9], these stochastic
NDA CRBs have been compared with those obtained with different a priori knowledge. In particular, it has
been proved that in the presence of any unknown phase offset (i.e., non-coherent estimation), the ultimate
achievable performance on the NDA DOA estimates holds almost the same irrespectively of the modulation
orderL. However, the NDA CRBs obtained in the absence of phase offset (i.e., coherent estimation) vary, in
the high SNR region, from one modulation order to another.

−10 −5 0 5 10 15 20 25 30
0.85

0.9

0.95

1

ρ (dB)

r 1(θ 1)

QPSK BPSK 

Fig.1 Ratiosr1(θ1)
def
= CRBBPSK(θ1)

CRBNCG(θ1)
andr1(θ1)

def
=

CRBQPSK(θ1)

CRBCG(θ1)
as a function ofρ

def
=

Mσ2
1

σ2
n

.

Finally note that the ML estimation of the DOAs of these discrete sources has been proposed [52], where
the maximization of the ML criterion (which is rather involved) is iteratively carried out by the expectation
maximization (EM) algorithm. Adapted to the distribution of these sources, this approach allows one to account
for any arbitrary noise covarianceRn as soon asn(t) is Gaussian distributed.

C. Asymptotically minimum variance bounds (AMVB)

To assess the performance of an algorithm based on a specific statistic gN built on {x(t)}t1 ,...,tN , it is
interesting to compare the asymptotic covarianceRθ (21) or (23) to an attainable lower bound that depends on
the statisticgN only. The asymptotically minimum variance bound (AMVB) is such a bound. Furthermore, we
note that the CRB appears to be prohibitive to compute for non-Gaussian sources and noise, except in simple
cases and consequently this AMVB can be used as an useful benchmark against which potential estimatesθ̂N
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are tested. To extend the derivations of Porat and Friedlander [68] concerning this AMVB to complex-valued
measurements, two additional conditions to those introduced in Subsection III-A1 must be satisfied:

(iii) the involved functionalg that defines the considered algorithm must beC−differentiable, i.e., must
satisfy (22). In practice, it is sufficient to add conjugate components to all complex-valued components ofg,
as in example (41);

(iv) the covarianceRg of the asymptotic distribution ofgN must be nonsingular. To satisfy this latter
condition, the components ofgN that are random variables, must be asymptotically linearlyindependent.
Consequently the redundancies ingN must be withdrawn.

Under these four conditions, the covariance matrixRθ of the asymptotic distribution of any estimatorθ̂N

built on the statisticsgN is bounded below by
(
GH(θ)R−1

g G(θ)
)−1

:

Rθ = D
alg
g,θRg(D

alg
g,θ)

H ≥
(
GH(θ)R−1

g G(θ)
)−1

, (38)

whereG(θ) is theL× P matrix dg(θ)
dθ .

Furthermore, this lowest bound AMVBgN
(θ)

def
=
(
GH(θ)R−1

g G(θ)
)−1

is asymptotically tight, i.e., there
exists an algorithmalg whose covariance of its asymptotic distribution satisfies (38) with equality. The following
nonlinear least square algorithm is an AMV second-order algorithm.

θ̂N = arg min
α∈ΘP

[gN − g(α)]HR−1
g (α)[gN − g(α)], (39)

where we have emphasized here the dependence ofRg on the unknown DOAα. In practice, it is difficult
to optimize the nonlinear function (39), where it involves the computation ofR−1

g (α). Porat and Friedlander
proved for the real case in [35] that the lowest bound (38) is also obtained if an arbitrary weakly consistent
estimateRg,N of Rg(α) is used in (39), giving the simplest algorithm:

θ̂N = arg min
α∈ΘP

[gN − g(α)]HRg,N [gN − g(α)]. (40)

This property has been extended to the complex case in [69].
This AMVB and AMV algorithm have been applied to second-order algorithms that exploit bothRx,N and

Cx,N in [21]. In this case, to fulfill the previously mentioned conditions (i-iv), the second-order statisticsgN
are given by

gN =




vec(Rx,N )
v(Cx,N)
v(C∗

x,N)


 , (41)

wherev(.) denotes the operator obtained fromvec(.) by eliminating all supradiagonal elements of a matrix.
Finally, note that these AMVB and AMV DOA finding algorithm have been also derived for fourth-order
statistics by splitting the measurements and statisticsgN into its real and imaginary parts in [69].

D. Relations between AMVB and CRB: projector statistics

The AMVB based on any statistics is generally lower bounded by the CRB because this later bound concerns
arbitrary functions of the measurements{x(t)}t1,...,tN . But it has been proved in [4], that the AMVB associated
with the different estimated projectorsΠx,N , (Πx,N ,Π

′

x,N ) andΠx̃,N introduced in Subsection III-A2, which
are functions of the second-order statistics of the measurements, attains the stochastic CRB in the case of circular
or noncircular Gaussian signals. Consequently, there always exist asymptotically efficient subspace-based DOA
algorithms in the Gaussian context.

To prove this asymptotic efficiency, i.e.,

AMVBvec(Πx,N )(θ) = CRBCG(θ) (42)

and
AMVBvec(Πx,N ,Π

′

x,N )(θ) = AMVBvec(Πx̃,N )(θ) = CRBNCG(θ), (43)
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the condition (iv) of Subsection III-C that is not satisfied [1] for these statistics ought to be extended and
consequently the results (38) and (39) must be modified as well, because hereRg is singular.

In this singular case, it has been proved [1] that if the condition (iv) in the necessary conditions (i-iv) is
replaced by the new conditionSpan(G(θ)) ⊂ Span(Rg(θ)), (38) and (39) becomes respectively

Rθ = D
alg
g,θRg(D

alg
g,θ)

H ≥
(
GH(θ)R#

g G(θ)
)−1

(44)

and
θ̂N = arg min

α∈ΘP
[gN − g(α)]HR#

g (α)[gN − g(α)]. (45)

And it is proved that the three statisticsvec(Πx,N ), vec(Πx,N ,Π
′

x,N ) and vec(Πx̃,N ) satisfy the conditions
(i,ii,iii,v) and thus satisfy results (44) and (45).

Finally, note that this efficiency property of the orthogonal projectors extends to the model of spatially
correlated noise, for whichRn = σ2

nΣn where Σn is a known positive definite matrix. In this case, for
example, the orthogonal projectorΠxw,N defined after whitening

{x(t)}t1 ,...,tN 7−→ {xw(t)}t1,...,tN
def
= {Σ−1/2

n x(t)}t1,...,tN 7−→ Rxw ,N =
1

N

N∑

n=1

xw(tn)x
H
w (tn) 7−→ Πxw,N

satisfies

AMVBvec(Πxw,N )(θ) = CRBw
CG(θ) =

σ2
n

2N

{
Re
[
(DHΠxw

D)⊙
(
RsA

HR−1
x ARs

)T ]}−1
,

whereΠxw

def
= Σ−1

n −Σ−1
n A(AHΣ−1

n A)−1Σ−H
n AH is insensitive to the choice of the square rootΣ

1/2
n of

Σn, and is no longer a projection matrix.

IV. A SYMPTOTIC DISTRIBUTION OF ESTIMATEDDOA

We are now specifying in this section the asymptotic statistical performances of the main DOA algorithms that
may be classified into three main categories, namely beamforming-based, maximum likelihood and moments-
based algorithms.

A. Beamforming-based algorithms

Among the so-called beamforming-based algorithms, also referred to as low-resolution, compared to the
parametric algorithms, the conventional (Bartlett) beamforming and Capon beamforming are the most referenced
representatives of this family. These algorithms do not make any assumption on the covariance structure of the
data, but the functional form of the steering vectora(θ) is assumed perfectly known. These estimatorsθ̂N are
given by theP highest (supposed isolated) maximizer and minimizer inα of the respective following criteria

aH(α)R̂xa(α) and aH(α)R̂−1
x a(α) (46)

whereR̂x is the unbiased sample estimateRx,N andR̂−1
x is either the biased estimateR−1

x,N or the unbiased

estimate[(N − M)/N ]R−1
x,N (that both give the same estimateθ̂N ). Note that these algorithms extend tod

parameters per source, whereα is replaced byα = (α1, ..., αd) in (46).
For arbitrary noise field, (i.e., arbitrary noise covariance Rn) and/or an arbitrary numberP of sources, the

estimateθ̂N given by these two algorithms are nonconsistent, i.e.,

lim
N→∞

θ̂N 6= θ

and asymptotically biased. The asymptotic biasAsBias(θ) can be straightforwardly derived by a second-order
expansion of the criterionaH(α)Rǫ

xa(α) around each true values(θp)p=1,...,P (with ǫ = +1 [resp.,ǫ = −1]
for the conventional [resp. Capon] algorithm), but noting that limN→∞ E(θ̂p,N) is a maximizer or minimizer
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θ̄p of aH(α)Rxa(α) or aH(α)R−1
x a(α), respectively. The following value is obtained [91]

AsBias(θp)
def
= lim

N→∞
E(θ̂p,N)− θp = − Re[a

′H(θp)R
ǫ
xa(θp)]

a
′H(θp)Rǫ

xa
′(θp) + Re[aH(θp)Rǫ

xa
′′(θp)]

, (47)

with a′(θp)
def
= daH(θp)

dθp
anda′′(θp)

def
= d2aH(θp)

dθ2
p

.
Following the methodology of Subsection III-A2, the additional bias for finite value ofN , that is of order

1/N can be derived, which gives

E(θ̂p,N)− θp = AsBias(θp) +
bp
N

+ o(
1

N
),

see e.g., the involved expression ofbp for the Capon algorithm [91, rel. (35)].
In the same way, the covarianceE[(θ̂N − E(θ̂N ))(θ̂N − E(θ̂N ))T ] which is of order1/N can be derived.

It is obtained withθ̄
def
= [θ̄1, ..., θ̄P ]

T

E[(θ̂N − E(θ̂N ))(θ̂N − E(θ̂N ))T ] = E[(θ̂N − θ̄)(θ̂N − θ̄)T ] + o(
1

N
) =

Rθ

N
+ o(

1

N
),

see e.g., the involved expression [42, rel. (24)] ofRθ associated with a source for several parameters per source.
The relative values of the asymptotic bais, additional biasand standard deviation depend on the SNR,M and
N , but in practice the standard deviation is typically dominant over the asymptotic bais and additional bias
(see examples given in [91]).

Finally, note that in the particular case of a single source,uniform white noise (Rn = σ2
nI) and an arbitrary

numberd of parameters of the source (hereθ = (θ1, ..., θd)
T ), it has been proved [38], that̂θN given by these

two beamforming-based algorithms is asymptotically unbiased (AsBias(θp) given by (47) is zero), if and only
if ‖a(θ)‖ is constant. Furthermore, based on the general expressions(48) of the FIM6

FIM(θ) =
2Nσ4

s

σ2
n(σ

2
n + ||a(θ)||2σ2

s)
Re
[
||a(θ)||2D(θ)HD(θ)−D(θ)Ha(θ)aH(θ)D(θ)

]
, (48)

whereD(θ) is defined here by[∂a(θ)/∂θ1, · · · , ∂a(θ)/∂θd], for d parameters associated with a single source,
and expression [42, rel. (24)] ofRθ specialized toRn = σ2

nI, it has been proved that1NRθ = FIM−1(θ), i.e.,
the conventional and Capon algorithms are asymptotically efficient, if and only if ‖a(θ)‖ is constant.

B. Maximum likelihood algorithms

1) Stochastic and deterministic ML algorithms:As discussed in Subsection II-B, the two main models for
the sensor array problem in Gaussian noise, corresponding to stochastic and deterministic modeling of the
source signals lead to two different Gaussian distributions of the measurements{x(t)}t1,...,tN , and consequently
to two different log-likelihoodsl(α) = ln p(x;α), where the unknown parameterα is respectively given by
(4) and (35).

With some algebraic effort, the stochastic ML criterionl(α) can be concentrated w.r.t.Rs and σ2
n (see

e.g., [43],[84]), thus reducing the dimension of the required numerical maximization to the requiredP DOAs
(θ1, ..., θP ) and giving the following optimization problem:

θ̂
SML

N = arg min
θ∈ΘP

JSML[θ,Rx,N ], (49)

with
JSML[θ,Rx,N ] = ln[det(A(θ)Rs,N (θ)AH(θ) + σ2

n,N (θ)I)], (50)

where

Rs,N (θ) = A#(θ)[Rx,N − σ2
n,N(θ)I]A#H(θ) and σ2

n,N (θ) =
1

M − P
Tr[Π⊥

A(θ)Rx,N ], (51)

6For one parameter (d = 1) or ||a(θ)|| constant, (48) can be simplified by withdrawing the real operator [67, rel. (49)].
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whereΠ⊥
A(θ) = I−A(θ)A#(θ) is the orthogonal projector onto the null space ofAH . Despite its reduction

of the parameter space,JSML[θ,Rx,N ] is a complicated nonlinear expression inθ, that cannot been analytically
minimized. Consequently, numerical optimization procedures are required.

Remark that in this modeling, the obvious a priori information thatRs is positive semi-definite has not been
taken into account. This knowledge, and more generally, theprior thatRs is positive semi-definite of rankr
smaller or equal thanP can be included in the modeling by the parametrizationRs = LLH , whereL is a
P × r lower triangular matrix. But this modification will have no effect for "large enoughN " sinceR̂s given
by (51) is a weakly consistent estimate ofRs [64]. And since this new parametrization leads to significantly
more involved optimization, the unrestricted parametrization of Rs used in (50) appears to be preferable.

Due to the quadratic dependence of the deterministic ML criterion l(α) in the parameters{s(t)}t1,...,tN , its
concentration w.r.t.{s(t)}t1 ,...,tN andσ2

n is much more simpler than for the stochastic ML criterion. Itgives
the following new ML estimator

θ̂
DML

N = arg min
θ∈ΘP

JDML[θ,Rx,N ], (52)

with
JDML[θ,Rx,N ] = Tr[Π⊥

A(θ)Rx,N ]. (53)

Comparing (53) and (50), we see that the dependence inθ of the DML criterion is simpler than for the SML
criterion. But both criteria require nonlinearP th-dimentionnal minimizations with a large number of local
minima that give two different estimatesθ, except for a single source for which the minimization of (53) and
(50) reduce to the maximization of the common criteria

aH(θ)Rx,Na(θ)

‖a(θ)‖2 .

This implies that when the norm of the steering vectora(θ) is constant (which is generally assumed), the
conventional and Capon beamforming, SML and DML algorithmscoincide and thus conventional and Capon
beamforming and DML algorithms inherit the asymptotical efficiency of the SML algorithm. Note that this
property extends to several parameters per source.

2) Asymptotic properties of ML algorithms:We consider in this Subsection, the asymptotic properties of
DML or SML algorithms used under the respectively, deterministic and circular Gaussian stochastic modeling
of the sources. In the field of asymptotic performance characterization of DML or SML algorithms, asymptotic
generally refers to either the numberN of snapshots or the SNR value.

First, consider the asymptotic properties w.r.t.N , that are the most known. Under regularity conditions that

are satisfied by the SML algorithm, the general properties ofML estimation states that̂θ
SML

N is consistent and
asymptotically efficient and Gaussian distributed, more precisely

√
N (θ̂

SML

N − θ)
L→ NR(0;R

SML
θ ) with RSML

θ = NCRBCG(θ), (54)

whereCRBCG(θ) is given by (33). This property of the SML algorithm extends to nonuniform white and
unknown parameterized noise field in [65] and [39], respectively, and to general noncircular Gaussian stochastic
modeling of the sources with the associatedCRBNCG(θ) [22], [2]. Note that to circumvent the difficulty to
extract the "θ corner" from the inverse ofFIM(α), a matrix closed-form expression ofCRBCG(θ) has been
first obtained in an indirect manner by an asymptotic analysis of the SML estimator [81], [63]. Then, only ten
years later, this CRB has been obtained directly from the extended Slepian-Bangs formula [87], [39].

As for the DML algorithm, since the signal waveforms themselves are regarded as unknown parameters, it
follows that the number of unknown parametersα (35) in the modeling, grows without limit with increasing
N , the general asymptotic properties of the ML no longer apply. More precisely, the DML estimate ofθ is
weakly consistent, whereas the DML estimate of{s(tn)}n=1,...,N is inconsistent. The asymptotic distribution

of θ̂
DML

N has been derived in [82], [93]
√
N (θ̂

DML

N − θ)
L→ NR(0;R

DML
θ ) (55)

May 18, 2016 DRAFT



17

with
RDML

θ = NCRBDet(θ) + 2N2CRBDet(θ)Re
[
(DHΠxD)⊙ (AHA)−T

]
CRBDet(θ), (56)

whereCRBDet(θ) is given by (36). Note that the inequality1NRDML
θ ≤ CRBDet(θ) in (56) does not follow

from the Cramer-Rao inequality theory directly, because the Cramer-Rao inequality requires that the number of
unknown parameters be finite. As the number of real-valued parameters inα (35) isP +2NP +1, it increases
with N and the Cramer-Rao inequality does not apply here. Note thatthe DML estimates of{s(tn)}n=1,...,N

are indeed asymptotically unbiased, despite being non-consistent.
Furthermore, it has been proved in [82], that if the DML algorithm is used under the circular Gaussian

stochastic modeling of the sources, the asymptotic distribution (54) of θ̂
DML

N is preserved. But under this
assumption on the sources, the DML algorithm is suboptimal,and thus 1

NRDML
θ ≥ CRBCG(θ). Finally

comparing directly the expressions (33) and (36) of the Cramer-Rao bound by applying the matrix inversion
lemma, it is straightforward to prove thatCRBCG(θ) ≥ CRBDet(θ). This allows one to relateRDML

θ , RSML
θ ,

CRBCG(θ) andCRBDet(θ) by the following relation:

1

N
RDML

θ ≥ 1

N
RSML

θ = CRBCG(θ) ≥ CRBDet(θ). (57)

In particular, for a single source withq parameters, we have

CRBCG(θ) =

(
1 +

σ2
n

‖a(θ)‖2σ2
s

)
CRBDet(θ), (58)

with CRBCG(θ) = FIM−1(θ), whereFIM(θ) is given by (48).
Finally, note an asymptotic robustness property [81], [63]of the SML and DML algorithms that states that

the asymptotic distribution of̂θ
SML

N and θ̂
DML

N is preserved whatever the modeling of the source: circular
Gaussian distributed withE[s(t)sH (t)] = Rs or modeled by arbitrary second-order ergodic signals withRs =
limN→∞

1
N

∑N
n=1 s(tn)s

H(tn). We will present a more general asymptotic robustness property that applies
to a large category of second-order algorithms in Subsection IV-C. The fact that the SML algorithm always
outperforms (forP > 1) the DML algorithm, provides strong justifications for the appropriateness of the
stochastic modeling of sources for the DOA estimation problem.

Consider now, the asymptotic properties of the SML and DML algorithms w.r.t. SNR, used under their
respective source model assumptions. It has been proved in [71], that under the circular Gaussian assumption

of the sources, the SML estimateŝθ
SML

N is asymptotically (w.r.t. SNR) non-Gaussian distributed and non-

efficient, i.e.,θ̃σn

def
= 1

σn
(θ̂

SML

N − θ) converges in distribution to a non-Gaussian distribution,whenσn tends

to zero, withN fixed, with limσn→0 E[θ̃σn
θ̃
T

σn
] ≥ limσn→0

1
σ2
n

CRBCG(θ). In practice,θ̂
SML

N is non-Gaussian
distributed and nonefficient at high SNR, only for a very small numberN of snapshots7. For example, for a
single source, using (37), it is proved in [71] that

lim
σn→0

E[θ̃σn
θ̃
T

σn
] =

N

N − 1
lim
σn→0

1

σ2
n

CRBCG(θ) =
N

N − 1

(
1

Nh1σ2
1

)
,

(see (34) for the second equality), whereh1 is defined just after (34). These properties contrast with the DML
algorithm used under the deterministic modeling of the sources, which is proved [70] to be asymptotically

(w.r.t. SNR) Gaussian distributed and efficient, i.e.,1
σn

(θ̂
DML

N −θ)
L→ NR

(
0; 1

2N

{
Re
[
(DHΠxD)⊙Rs

]}−1
)

whenσn tends to zero, withN arbitrary fixed. These results are consistent with those of [81]. In practice for
very high SNR and "not too small"N , (57) becomes

1

N
RDML

θ ≈ 1

N
RSML

θ = CRBCG(θ) ≈ CRBDet(θ). (59)

7In practice the approximate covariances deduced from the asymptotic analysis w.r.t. the number of snapshots are also valid for high
SNR with fixed "not too small number" of snapshots for the second-order DOA algorithms. But note that there is no theoretical result
on the asymptotic distribution of the sample projector w.r.t. the SNR.
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Furthermore, it has been proved in [81], that (59) is also valid for M ≫ 1. The asymptotic distribution of the
DOA estimate w.r.t.M (for finite data) of the SML and DML algorithms has been studied in [96]. The strong
consistency has been proved for both ML algorithms. Furthermore, unlike the previously studied large sample
case, the asymptotic covariance matrices of the DOA estimates coincide with the deterministic CRB (36) for
the SML and DML algorithms. The asymptotic distribution of the DOA estimates given by subspace-based
algorithms has been studied in [92], whenM , N → ∞, whereasM/N converges to a strictly positive constant.
In this asymptotic regime, it is proved, in particular, thatthese traditional DOA estimates are not consistent.
The threshold and the so-called subspace swap of the SML and MUSIC algorithms have been studied w.r.t.N ,
M and SNR (see e.g., [45]). Furthermore, a new consistent subspace-based estimate has been proposed, which
outperforms the standard subspace-based methods for values ofM andN of the same order of magnitude [92].

3) Large sample ML approximations:Since the SML and DML algorithms are often deemed exceedingly
complex, suboptimal algorithms are of interest. Many such algorithms have been proposed in the literature
and surprisingly, some of them are asymptotically as accurate as the ML algorithms, but with a reduced
computational cost. These algorithms have been derived, either by approximations of the ML criteria by
neglecting terms that do not affect the asymptotic properties of the estimates, or by using a purely geometrical
point of view. We present this latter approach that allows one to unify a large number of algorithms [64]. These
algorithms rely on the geometrical properties of the spectral decomposition of the covariance matrixRx:

Rx = EsΛsE
H
s + σ2

nEnE
H
n

with Es = [e1, ..., er], Λs = Diag(λ1, ..., λr) andEn = [er+1, ..., eM ] wherer is the rank ofRs, associated
with the consistent estimates

Rx,N
def
=

1

N

N∑

n=1

x(tn)x
H(tn) = Es,NΛs,NEH

s,N + σ2
n,NEn,NEH

n,N . (60)

These algorithms can be classified as signal subspace-basedand noise subspace-based fitting algorithms. The
former algorithms based onSpan(Es) ⊆ Span(A(θ)) are given by the following optimization:

θ̂
SSF

N = arg min
θ∈ΘP

Tr[Π⊥
A(θ)Es,NWEH

s,N ], (61)

whereW is a weightingr × r positive definite matrix to be specified. And the latter algorithms based on
EH

n A(θ) = 0, that is valid only if the source covariance matrix is nonsingular (r = P ), are given by

θ̂
NSF

N = arg min
θ∈ΘP

Tr[UAH(θ)En,NEH
n,NA(θ)], (62)

whereU is a weightingP × P positive definite matrix to be specified.
Introduced from a purely geometrical point of view, these two classes of algorithms present unexpected

relations with the previously described ML algorithms. First, for arbitrary positive definite weighting matrices

W andU, the estimateŝθ
SSF

N and θ̂
NSF

N given respectively by (61) and (62), are weakly consistent.Second,

for the weighting matrices that give the lowest covariance matrix of the asymptotic distribution of̂θ
SSF

N and

θ̂
NSF

N , that are respectively given [64] by

Wopt = (Λs − σ2
nI)

2Λ−1
s and Uopt = A#(θ0)EsWoptE

H
s A#H(θ0),

whereθ0 denotes here the true value of the DOAs, the associated estimatesθ̂
SSF

N and θ̂
NSF

N are asymptotically

equivalent tôθ
SML

N (i.e.,
√
N(θ̂

SSF

N − θ̂
SML

N ) → 0 and
√
N(θ̂

NSF

N − θ̂
SML

N ) → 0 in probability asN → ∞) and
thus have the same asymptotic distribution that the SML algorithm. Furthermore and fortunately, this property
extends for any weakly consistent estimatesWN andUN of respectivelyWopt andUopt, e.g., derived from
the spectral decomposition of the sample covariance matrixRx,N (60) with σ2

n,N is the average ofM − r
smallest eigenvalues ofRx,N and with θ0 is replaced by a weakly consistent estimates ofθ. This implies a
two steps procedure to run the optimal noise subspace-basedfitting algorithm. Due to this drawback, the signal
subspace-based fitting algorithm with the weightingWN = (Λs,N −σ2

n,NI)2Λ−1
s,N , denoted weighted subspace
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fitting (WSF) algorithm, is preferred to the noise subspace-based fitting algorithms.
Finally, note that this algorithm is based on eigenvalues and eigenvectors of the sample covariance matrix

Rx,N . This contrasts with the subspace-based algorithms whose asymptotic statistical properties will be studied
in Subsection IV-D that are based on the noise or signal orthogonal projectorΠx,N associated withRx,N only.
Note that general properties of subspace-based estimatorsfocused on asymptotic invariance of these estimators
have been given in [12].

C. Second-order algorithms

Most of the narrowband DOA algorithms presented in the literature are second-order algorithms, i.e., are based
on the sample covarianceRx,N

def
= 1

N

∑N
n=1 x(tn)x

H(tn) or more generally onRx̃,N
def
= 1

N

∑N
n=1 x̃(tn)x̃

H(tn).
To prove common properties of this class of algorithm, it is useful to use the functional analysis presented in
Subsection III-A1

{x(t)}t1 ,...,tN 7−→ Rx,N
alg7−→ θ̂N , (63)

in which any second-order algorithm is a mappingalg that generally satisfies

alg
(
A(θ)RsA

H(θ) + σ2
nI
)
= θ for any θ ∈ ΘP , (64)

but not necessarily for allP × P Hermitian positive semi-definite matrixRs. Depending on the a priori
knowledge aboutRs, that is required by the second-order algorithmsalg, different constraints are satisfied by
the C−differential matrixDalg

Rx,θ
of the algorithm at the pointRx (22). In particular, it has been proved the

following main two constraints [19]:

D
alg
Rx,θ

(A(θ)⊗A(θ)) = 0 for Rs unstructured (65)

D
alg
Rx,θ

(a(θp)⊗ a(θp)) = 0, p = 1, ..., P for Rs structured diagonal. (66)

Using these constraints, the general expressionRRx
of the covariance of the asymptotic distribution of the

sample covarianceRx,N [18] obtained under mild conditions for non independent measurements with arbitrary
distributed sources and noise of finite fourth-order moments, and the general relation (23), that linksRRx

and
D

alg
Rx,θ

to the covarianceRθ of the asymptotic distribution of̂θN , allows one to prove the following two results,
that extend a robustness property presented in [10]:

• For any second-order algorithms based onRx,N , that do not require the sources spatially uncorrelated and
when the noise signals{n(t)}t1,...,tN are temporally uncorrelated,Rθ is invariant to the distribution, the
second-order noncircularity and the temporal distribution of the sources, but depends on the distribution
of the noise through its second-order and fourth-order moments. In particular for circular Gaussian noise,
the asymptotic distribution of̂θN are those of the standard complex circular Gaussian case.

• For any second-order algorithms based onRx,N that require the sources spatially uncorrelated and/or
when the noise signals{n(t)}t1,...,tN are temporally correlated,Rθ is sensitive to the distribution, the
second-order noncircularity and the temporal distribution of the sources.

Note that the majority of the second-order algorithms (e.g., the beamforming, ML, MUSIC, Min Norm, ESPRIT
algorithms) does not require spatially uncorrelated sources. In contrast, second-order techniques based on state-
space realizations (e.g., the Toeplitz approximation method (TAM), see [57]) and Toeplitzation or augmentation
with ULA or uniform rectangular arrays, require this uncorrelation, and thus the asymptotic distribution ofθ̂N

will be generally (except for a single source, for which the constraint (66) reduces to (65)) sensitive to the
distribution, the second-order noncircularity or the temporal distribution of the sources, even when the noise is
temporally uncorrelated.

To illustrate this sensitivity to the source distribution when the noise is temporally uncorrelated, we consider
in Fig.2, the case of two equipowered and spatially uncorrelated sources impinging on a ULA of 10 sensors,
θ1 = 20◦ andθ2 = 30◦, where the DOAs are estimated by the standard MUSIC algorithm after Toeplization.
The sources are either white Gaussian, ARMA Gaussian (generated by a (10,10) Butterworth filter driven by
a white circular Gaussian noise, where the bandwidth is fixedto 0.5) or harmonic. The centered frequencies
of the ARMA and the frequencies of the harmonics are−0.25 and 0.25. Fig.2 shows that the Toeplization
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improves the performance for very weak SNR only, whereas is very sensitive to the distribution of the sources
for high SNR.
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Fig.2 Theoretical and estimated MSE (with 500 Monte Carlo runs) ofθ1 versus the SNR, for respectively white(o), colored(+)
and harmonic(∗) signals forN = 100 after Toeplitzation (—) and without Toeplitzation (- - -)..

Usually, performance analyses are evaluated as a function of the numberN of observed snapshots without
taking the sampling rate into account. In fact, depending onthe value of this sampling rate, the collected samples
x(tn) are more or less temporally correlated and performance is affected. Thus, the interesting question arises
as to how the asymptotic covariance of the DOA estimators, (denoted herêθT ) varies with this sampling
rate 1

Ts
for a fixed observation intervalT = NTs. This question has been investigated in [19], in which the

continuous-time noise envelopen(t) is spatially white and temporally white in the bandwidth[−B
2 ,+

B
2 ]. It

has been proved:

• If the signalsx(t) are oversampled (1Ts
> B)

E[(θ̂T − θ)(θ̂T − θ)T ] ≈ 1

BT
Rθ >

1

N
Rθ for N ≫ 1,

irrespective of the sample rate1/Ts.
• If the signalsx(t) are subsampled (1Ts

< B)

E[(θ̂T − θ)(θ̂T − θ)T ] ≈ Ts

T
Rθ =

1

N
Rθ >

1

BT
Rθ for N ≫ 1 andBTs ≫ 1.

Consequently the array must be temporally oversampled, andthe parameter of interest that characterizes
performance ought not to be the numberN of snapshots, but rather the observation intervalT .

D. Subspace-based algorithms

We concentrate now on the family of second-order algorithmsbased on the orthogonal noise8 projector
Πx,N (10). These algorithms estimateθ, either by extrema-searching approaches (MUSIC, Min-Norm..), by
polynomial rooting approaches (Pisarenko, root MUSIC and root Min-Norm for ULA), or by matrix shifting
approaches (ESPRIT, TAM, Matrix pencil method). The most celebrated of these algorithms is the MUSIC
algorithm, whereθ is estimated as theP deepest minima in ad-dimensional (ford parameters per source) of
the following localisation functionJMUSIC[θ,Πx,N ]

JMUSIC[θ,Πx,N ] = aH(θ)Πx,Na(θ), (67)

8Note that sinceΠx +Π⊥

x = I andΠx,N +Π⊥

x,N = I, all algorithm based on the orthogonal signal projector comes down to an
algorithm based on the orthogonal noise projector.
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of the so-called spatial null spectrum (or equivalently as the P highest peaks (maxima) of its inverse). This
algorithm has given a plethora of variants. For example, in the particular case of the ULA, this standard MUSIC
algorithm have been favorably replaced by the root MUSIC algorithm. Using the general methodology presented
in Subsection III-A2, the asymptotic distribution ofθ̂N given by any subspace-based algorithmsalg is simply

derived from the expression of theC−differential matrixDalg
Πx,θ

of the mappingΠx,N
alg7−→ θ̂N evaluated

at Πx(θ). For example, for the standard MUSIC algorithm,DMUSIC
Πx,θ

is straightforwardly obtained from the

first-order expansion of
(
∂JMUSIC(θ,Πx,N )

∂θ

)
θ=θp+δθp,N

= 0 that gives for one parameter per source

DMUSIC
Πx,θ =




dT
1
...

dT
P


 with dT

p = − 1

hp

(
(a

′T (θp)⊗ aH(θp)) + (aT (θp)⊗ a
′H(θp))

)
, p = 1, .., P, (68)

with a
′

(θp)
def
= da(θp)

dθp
andhp

def
= 2a

′H(θp)Πxa
′

(θp). Using (68) with (16) and (23) allow one to directly prove

that the sequences
√
N(θ̂N −θ) converges in distribution to the zero-mean Gaussian distribution of covariance

matrix given elementwise by
(
RMUSIC

θ

)
k,l

= 2
hkhl

Re
((

aH(θl)Ua(θk)
)
(a

′H
(θk)Πxa

′

(θl))
)

and compactly by

RMUSIC
θ = 2 (H⊙ I)−1Re

(
H⊙ (AHUA)T

)
(H⊙ I)−1 , (69)

where (H)p,p
def
= hp and U has been defined in Subsection III-A2. Note that these expressions have been

derived in [80] by much more involved derivations based on the asymptotic distribution of the eigenvectors
of the sample covariance matrixRx,N . Finally, note that if the sample orthogonal noise projector Πx,N is
replaced by an adaptive estimatorΠx,γ of Πx, where γ is the step-size of an arbitrary constant step-size
recursive stochastic algorithm (see e.g., [16] and [17]), it has been proved in [16] that

√
γ(θ̂γ − θ) converges

in distribution to the zero-mean Gaussian distribution of covariance matrix given also byRMUSIC
θ , whereθ̂γ

is an adaptive estimate ofθ given by the MUSIC algorithm based on the specific adaptive estimateΠx,γ of
Πx studied in [16].

Using a similar approach [34], it has been proved that the Root MUSIC algorithm associated with the ULA,
presents the same asymptotic distribution, but slightly outperforms the standard MUSIC algorithm outside the
asymptotic regime. This analysis has been extended to MUSIC-like algorithms applied to the orthogonal noise
projectorsΠ′

x,N [resp. Πx̃,N ] associated with the complementary sample covarianceCx,N [the augmented
sample covarianceRx̃,N ] matrices for the DOA estimation of arbitrary noncircular [resp. rectilinear] sources
[3]. Finally, note that with our general methodology, all the expressions of the covarianceRMUSIC

θ can be
straightforward extended for several parameter per source.

The expression of the covariance (69) of the asymptotic distribution of θ̂N given the standard MUSIC
algorithm has been analyzed in detail (see e.g., [67], [80]). In particular it has been proved that the MUSIC
algorithm is asymptotically efficient for a single source, an arbitrary number of parameters per source and
‖a(θ1)‖ depending onθ1, e.g., for one parameter per source

1

N
RMUSIC

θ1 = CRBCG(θ1) =
1

N

(
1

h1

[
σ2
n

σ2
1

+
1

‖a(θ1)‖2
σ4
n

σ4
1

])
.

For several sources, the MUSIC algorithm is in general asymptotically inefficient, in particular for correlated
sources for which the efficiency degrades when the correlation between the sources increases. The degradation
of performances are considerable for highly correlated sources for any value of the SNRs. In contrast, for
uncorrelated sources, the MUSIC algorithm is asymptotically efficient whenσ2

n tends to zero, in the following
senselimσ2

n→0[
1
NRMUSIC

θ ][CRBCG(θ)]
−1 = I. So, in practice, for uncorrelated sources, the MUSIC algorithm

is asymptotically efficient for high SNRs of all the sources.
It is of utmost importance to investigate in what region ofN and SNR, the asymptotic theoretical results

can predict actual performance. But unfortunately, only Monte Carlo simulations can specify this region. We
illustrate in the following the SNR threshold region for theSML, DML and MUSIC algorithm.

Consider two zero-mean circular Gaussian sources impinging on an ULA (2) withM = 6 (for which the 3dB
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bandwidth is about8◦) and a spatially uniform white noise (3). The sources1(t) consist of a strong direct path
at θ1 = 0◦ relative to array broadside and a weaker (multipath atθ2 = 4◦ at −3dB w.r.t. s1(t). The correlation

betweens1(t) and s2(t) is 0.99 giving thus the source covariance matrixRs =

[
1 0.7
0.7 0.5

]
. Fig.3 shows the

root mean square error (RMSE) of the estimated DOAθ̂1 by the MUSIC algorithm w.r.t. the SNR defined by

σ2
1/σ

2
n, compared with the theoretical standard deviation (TSD)

√
1
N (RMUSIC

θ )1,1 and the square root of the

stochastic CRB
√

CRBCG(θ1). We see from this figure that the MUSIC algorithm is not efficient at all for
highly correlated sources. Furthermore, the domain of validity of the asymptotic regime is here very limited,
i.e., for N = 1000, SNR > 30dB is required.

Fig.3 RMSE of θ̂1 estimated by the MUSIC algorithm (averaged on 1000 runs) compared with the theoretical standard deviation and
the square root of the stochastic CRB, as a function of the SNRfor N = 1000.

With the same parameters, Fig.4 shows the RMSE of the estimated DOA θ̂1 by the SML and DML algorithms

which are compared with the TSD
√

1
N (RSML

θ )1,1 and
√

1
N (RDML

θ )1,1 and the square roots of the CRBs√
CRBCG(θ1) and

√
CRBDET(θ1). We see from this figure that the numerical values of the four expressions

of (57) are very close and the performance of the two ML algorithms are very similar except for the SNR
threshold region for which the SML algorithm is efficient forSNR > 0dB withN = 1000. Finally, comparing
Fig.3 and Fig.4, we see that both ML algorithms largely outperform the MUSIC algorithm for highly correlated
sources.
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Fig.4 RMSE of θ̂1 estimated by the SML and DML algorithms (averaged on 1000 runs) compared with the theoretical standard
deviations and the square root of the stochastic and deterministic CRBs, as a function of the SNR forN = 1000.

E. Robustness of algorithms

We distinguish in this subsection, the robustness of the DOAestimation algorithms w.r.t. the narrowband
assumption and to array modeling errors, because for the array modeling errors, the model (1) remains valid
with a modified steering matrix, in contrast to the violationof narrowband assumption, for which (1) must be
modified.

1) Robustness w.r.t. the narrowband assumption:As the wideband assumption generally requires an increased
computational complexity compared to the narrowband ones,it is of interest to examine if the narrowband
methods can be used for a sufficiently wide bandwidth withoutsacrificing performance. Some responses to
this question have been given in [79] for symmetric spectra w.r.t. the demodulation frequency and in [20] for
non-symmetric spectra and/or offset of the centered value of the spectra w.r.t. the demodulation frequencyf0.
In these assumptions, the model (1) of the complex envelope of the measurements becomes

x(t) =

P∑

p=1

∫ +B/2

−B/2
a(θp, f0 + f)ei2πftdµp(f) + n(t), (70)

wherea(θp, ν)
def
= [ei2πντ1,p , . . . , ei2πντM,p ]T (with a(θp, f0) = a(θp)) andµp(f) is the spectral measure of the

pth source. Using the general methodology explained in Subsection III-A, based on a first-order expansion of the
DOA estimatêθN = alg(Πx,N ) in the neighborhood ofΠx, (whereΠx,N andΠx are the orthogonal projectors
onto the noise subspace associated with the covariance of (70) and (1), respectively), general closed-form
expressions of the asymptotic (w.r.t. the number of snapshots and source bandwidth) for arbitrary subspace-
based algorithm have been derived in [20]. It is found that the behavior of these DOA estimators strongly
depends on the symmetry of the source spectra w.r.t. their centered value and on the offset of this centered
value w.r.t.f0. It is showed that the narrowband SOS-based algorithms are much more sensitive to the frequency
offset than to the bandwidth.

In particular for source spectraSs(f) symmetric w.r.t. the demodulation frequencyf0, it is proved that
the estimated DOAs given by any narrowband subpace-based algorithm are asymptotically unbiased w.r.t. the
number of snapshots and signal bandwidth. More precisely

E(θ̂N )− θ =

(
f2
σ

f2
0

)
balg +O

(
f4
σ

f4
0

)
+O(

1

N
),

wherefσ
def
= [

∫ B
−B Ss(f)f

2df/
∫ B
−B Ss(f)df ]

1/2 is the definition used for the bandwidth. Furthermore, for a
single source,Rx = Rs1 ⊙ a(θ1)a

H(θ1) + σ2
nI, where the nuisance parameters are now the terms of the

Hermitian matrixRs1 andσ2
n. This new parameterization allows to derive the circular Gaussian stochastic CRB

issued from a non-zero bandwidthCRBNZB
CG (θ1). It is related to the standardCRBCG(θ1) by the relation

CRBNZB
CG (θ1) = CRBCG(θ1)

(
1 + c

(
f2
σ

f2
0

)
+O

(
f4
σ

f4
0

))
,

where the expression ofc is given in [20].
2) Robustness to array modeling errors:Imprecise knowledge of the gain and phase characteristics of the

array sensors, and of the sensor locations and possible mutual coupling, can seriously degrade the theoretical
performance of the DOA estimation algorithms. Experimental systems attempt to eliminate or minimize these
errors by careful calibrations. But even when initial calibration is possible, system parameters may change over
time and thus the array modeling errors cannot be completelyeliminated. Consequently, it is useful to qualify
the sensitivity of the DOA estimator algorithms to these modeling errors, i.e., to study the effect of difference
between the true and assumed array manifold{a(θ), θ ∈ Θ} caused by modeling errors, on DOA estimator
algorithms. This analysis has received relatively little attention in the literature.
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In these studies, to simplify the analysis, the covariance matrix Rx is assumed perfectly known, i.e., the
effects of a finite number of samples is assumed negligible. Let γ gather the array parameters which are
the subject of the sensitivity analysis. For example,γ may contain the sensors gain, phases or location, or
other parameters such as the mutual coupling coefficients ofthe array sensors. A DOA estimation algorithm
uses the steering matrixA(θ,γ0) = [a(θ1,γ0), ...,a(θP ,γ0)], corresponding to a nominal valueγ0 of the
array parameters that differs from the true steering matrixA(θ,γ), whereγ is slightly different fromγ0 (see
particular parameterizations studied in [36] and [30]). Werefer to the difference between the true and assumed
array parameters as a modeling error. The sensitivity studyof a particular DOA estimation algorithm consists
to provide a relation betweenδθ = θγ − θ and the modeling errorδγ = γ − γ0 in the mapping

Rx(γ) = A(θ,γ)RsA
H(θ,γ) + σ2

nI
alg(γ0)7−→ θγ , (71)

where naturallyRx(γ0)
alg(γ0)7−→ θ, if alg(γ0) denotes an arbitrary second-order algorithm based on the nominal

array. Using a first order perturbation of (71) in the neighborhood ofγ0, through those of the orthogonal projector
on the noise subspaceΠx(γ), a relationδθ = h(δγ)+ o(δγ) whereh is linear has been given for the MUSIC
and DML algorithms in [36], [90] and [37], respectively. These works model the errorsδγ by zero-mean
independent random variables (δγ = σγu whereu is a random vector whose elements are zero-mean unit
variance random variables). They lead to estimates that areapproximatively unbiased (i.e.,E(θγ)−θ = o(σγ))
and where their approximative variances depend only on the second-order statistics of the modeling errors
(more preciselyVar(θp,γ) = cpσ

2
γ + o(σ2

γ), p = 1, ..., P ). However, by confronting these theoretical results
with numerical experiments, one notices that the MUSIC and DML algorithms are biased in the presence of
multiple sources and these theoretic and experimental variances do not agree with larger modeling errors. More
precisely, these theoretical results are valid only up to the point where the probability of resolution is close to
one (see [31]).

To take into account these larger modeling errors, a more accurate relation betweenδθ and δγ, based on
a second-order expansion ofΠx(γ) aroundγ0 (provided by a recursiventh order expansion ofδΠx w.r.t.
δRx [51]) as been given in [31] and [32] for analyzing the sensitivity of the MUSIC and DML algorithms
to larger modeling errors. Modeling the errorsδγ as previously, an approximation of the biasE(θγ)− θ that
depends on the second-order statistics of the modeling errors, and of the variance that now depends on the
fourth-order statistics of the modeling errors, are given.These refined closed-form expressions can predict the
actual performance observed by numerical experiments for larger modeling errors, in particular in the threshold
regions of the MUSIC and DML algorithms.

Note that the sensitivity of DOA estimators to modeling errors of the noise covariance matrix, that includes
the presence of undetected weak signals, has also been studied in the literature (see e.g., [94]). Finally, note
that the combined effects of random array modeling errors and finite samples have been analyzed for the class
of so-called signal subspace fitting (SSF) algorithms in [95]. In addition to deriving the first-order asymptotic
expressions for the covariance of the estimation error, an additional weighting matrix has been introduced in
(61) that has been optimized for any particular random arraymodeling errors.

F. High-order algorithms

When the sources are non Gaussian distributed, they convey valuable statistical information in their moments
of order greater than two (this is in particular true when considering communications signals). In these
circumstances, it makes sense to consider DOA estimation techniques using this higher order information.
Of particular interest are the algorithms based on higher order cumulants of the measurements{x(t)}t1 ,...,tN
due to their additivity property in the sums of independent components. Furthermore, these cumulants show
the distinctive property of being in a certain sense, insensitive to additive Gaussian noise, making it possible
to devise consistent DOA estimates without it being necessary to know, to model or to estimate the noise
covarianceRn. As generally, the distributions of the sources are even, their odd order moments are zero and
thus to cope with these signals, only the even high-order cumulants of the measurements are used.

Computational considerations dictate using mainly fourth-order cumulants. To use these approaches, we
consider the assumptions of Subsection II-B, in which we addthat the sources{sp(t)}p=1,...,P have nonvanishing
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fourth-order cumulants. Furthermore, we assume that theirmoments are finite up to the eighth-order, to study
the statistical performance of these algorithms.

Of course, there are many more quadruples than pairs of indices, and consequently a very large
number of cumulantsCum(xi(t), x

∗
j (t), x

∗
k(t), xl(t)), i, j, k, l = 1, ...,M for circular sources (and more,

Cum(xi(t), x
∗
j (t), xk(t), xl(t)) andCum(xi(t), xj(t), xk(t), xl(t)), i, j, k, l = 1, ...,M for noncircular sources)

can be exploited despite their redundancies, to identify the DOA parameters with unknown noise covariance.
For example, for circular signals, the maximum set of nonredundant cumulants is

Cum(xi(t), x
∗
j (t), x

∗
k(t), xl(t)) with 1 ≤ i ≤ M, 1 ≤ l ≤ i, 1 ≤ j ≤ i and1 ≤ k ≤ j.

The asymptotically minimum variance (AMV) algorithm (see Subsection III-C) based on a subset of fourth-
order cumulants that can identify the DOA parameters, is thenonlinear least square algorithm (40) in whichgN
gathers the involved cumulants. To implement this AMV algorithm, one has to decide which cumulants should
be included ingN . The best estimate would be obtained when all nonredundant cumulants are selected. This,
however, may require excessive computations ifM is large. However it is sufficient to deal with a reduced
set of cumulants, although there do not seem to be any simple guidelines in this matter [69]. In practice, a
good tradeoff between computational complexity and accuracy is to devise suboptimal algorithms that require
an overall computational effort similar to the second-order algorithms, while retaining a fourth-order cumulants
subset, sufficient for DOA indentification. Such algorithmshave been proposed in the literature such as the
diagonal slice (DS), the contracted quadricovariance (CQ)and the so called 4-MUSIC [69] algorithms. The
first two algorithms are fourth-order subspace-based algorithms built on the following rank defectiveM ×M
matrices

(QDS
x )i,j = Cum(xi(t), x

∗
j (t), x

∗
j (t), xj(t))

(QCQ
x )i,j , =

M∑

m=1

Cum(xi(t), x
∗
j (t), x

∗
m(t), xm(t)).

They requireP < M sources and their statistical performance has been analyzed in [11] with the general
framework explained in Subsection III-A. In particular, itis has been proved that for a single source and a
ULA in spatially uniform white noise, these two fourth-order algorithms have similar performance to the MUSIC
algorithm, except for low SNR, for which the MUSIC algorithmoutperforms both fourth-order algorithms. The
4-MUSIC algorithm is built from the rank defectiveM2 ×M2 matrix

(Q4−MUSIC
x )i+(j−1)M,k+(l−1)M = Cum(xi(t), x

∗
j (t), x

∗
k(t), xl(t)).

It is proved in [69] that
Q4−MUSIC

x = [A∗(θ)⊗A(θ)]Qs[A
∗(θ)⊗A(θ)]H ,

where (Qs)i+(j−1)P,k+(l−1)P = Cum(si(t), s
∗
j (t), s

∗
k(t), sl(t)), i, j, k, l = 1, ..., P . Q4−MUSIC

x is indefinite in
general and its rank is

∑G
g=1 r

2
g where theP sources are are divided inG groups, withrg in the gth group.

The sources in each group are assumed to be dependent, while sources belonging to different groups are
assumed independent. Because the vectorsa∗(θp) ⊗ a(θp), p = 1, .., P are P columns ofA∗(θ) ⊗ A(θ),
the 4-MUSIC algorithm is obtained by searching theP deepest minima of the following localisation function
J4−MUSIC[θ,Πx,N ]

J4−MUSIC[θ,Πx,N ] = [a∗(θ)⊗ a(θ)]HΠx,N [a∗(θ)⊗ a(θ)], (72)

whereΠx,N is now, the orthogonal projector onto the noise subspace of the sample estimateQ4−MUSIC
x,N of

Q4−MUSIC
x . In practice the statistical dependence of the sources are unknown. [69] has proposed to retain only

M2 −P 2, ratherM2 −∑G
g=1 r

2
g eigenvectors corresponding to the smallest singular values of Q4−MUSIC

x,N . We
note that, to the best of our knowledge, no complete statistical performance analysis of this algorithm has yet
appeared in the literature. Despite its higher variance (w.r.t. the MUSIC algorithm under the assumption of
spatially uniform white noise), this fourth-order algorithm presents some advantages, aside from its capacity
to deal with unknown Gaussian noise fields. Using the conceptof virtual array, it is proved in [13] that this
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algorithm can identify up toM2 − M sources when the sensors are identical and up toM2 − 1 sources
for different sensors. Furthermore, it is shown that its resolution for closely spaced sources and robustness to
modeling errors is improved with respect to the MUSIC algorithm. To increase even more its number of sources
to be processed, resolution and robustness to modeling errors, extensions of this 4-MUSIC algorithms, giving
rise to the 2q-MUSIC (with q > 2) has been proposed [14].

V. DETECTION OF NUMBER OF SOURCES

0ne of the more difficult and critical problems facing passive sensor arrays systems is the detection of
the numberP of sources impinging on the array. This is a key step in most ofthe parametric estimation
techniques that were briefly described in Section IV. The eigendecomposition based techniques require in
addition, information on the dimensionr of the signal subspace. If the source covarianceRs has full rank, i.e.,
there are no coherent sources present,P andr are identical. Moreover, the solution of the detection problem
has, in many cases, value of its own, regardless of the DOA estimation problem.

A natural scheme for detecting the numberP of sources is to formulate a likelihood ratio test based on the
SML estimator (49). Such a test is often referred to as a generalized likelihood ratio test (GLRT). This test can
be implemented by a sequential test procedure (see e.g., [64, Sec. 4.7.1]). For each hypothesis, the likelihood
ratio statistic is computed and compared to a threshold. Theaccepted hypothesis is the first one for which
the threshold is crossed. The problem with this method is thesubjective judgment required for deciding on
the threshold levels or the associated probabilities of false alarm related by the asymptotic distribution of the
normalized likelihood ratio.

Another important approach to the detection problem is the application of the information theoretic criteria
for model selection. Unlike the conventional hypothesis testing based approaches, these criteria do not require
any subjective threshold setting. Among them, the minimum description length (MDL) criterion introduced by
Schwartz and Rissanen [73] is the most widely used because ofits consistency. This technique has been used
for detecting the signal subspace dimensionr [99], and also for detecting the number of sourcesP [101]. We
concentrate now on the detection ofr.

A. MDL criterion

The information theoretic criteria approach is a general method for detecting the orderr of a statistical
model. That is, given a parameterized probability density functionp(x;α(r)) for various orderr, detectr̂ such
that r̂ = argminr{− ln[p(x; α̂

(r)
ML)] + g(r)}, where α̂(r)

ML is the ML estimate ofα(r) and g(r) is a penalty
function. For the MDL criterion which is based on a particular penalty function,̂r is given forN independent
identically distributed measurementsx(tn), by

r̂ = argmin
r

[
− ln

(
p(x; α̂

(r)
ML)

)
+

1

2
card(α(r)) ln(N)

]
, (73)

wherecard(α(r)) denotes the number of free real-valued parameters inα(r). Depending on the distribution
of the measurementsx and its parametrizationα, different implementations of the MDL criterion have been
proposed.

The most often used assumption, is the zero-mean circular Gaussian distribution associated with the
parametrization (1) in which all the elements of the steering matrix A are assumed unknown with the only
restriction thatA has full column rank withM > P . For this modeling, the measurements can be parameterized
by the parameter

α(r) = [vT
1 , ...,v

T
r , λ1, ..., λr , σ

2
n]

T ,

whereλ1 ≥ .. ≥ λr > σ2
n = .., σ2

n are the eigenvalues ofRx andv1,...,vr, the eigenvectors associated with the
largestr eigenvalues, and the general MDL criterion (73), which is referred to as the Gaussian MDL (GMDL),
becomes [99]

r̂ = Argmin
r

Λr with Λr
def
= N(M − r) ln

(
âr
ĝr

)
+

1

2
r(2M − r) lnN, (74)
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with âr
def
= 1

M−r

∑M
i=r+1 λ̂i and ĝr

def
=
∏M

i=r+1 λ̂
1/(M−r)
i , whereλ̂1 > λ̂2 > ... > λ̂M are the eigenvalues of

the sample covariance matrix1N
∑N

n=1 x(tn)x
H(tn), denoted here bŷRx.

B. Performance analysis of MDL criterion

This GMDL criterion has been analyzed in [106], and it has been shown to be a consistent estimator of the
rank r, i.e., the probability of error decreases to zero as the number N of measurements increases to infinity.
Moreover, under mild regularity conditions, like finite second moments, it is a consistent estimator of the rank
r, even if the measurements are non-Gaussian. This property contrasts with the Akaike information criterion
(AIC) that yields an inconsistent estimate of that tends, asymptotically, to overestimater [99].

The GMDL criterion has been further analyzed by consideringthe eventŝr < r and r̂ > r, called underes-
timation and overestimation, respectively. Since(Λr)r=0,..,M−1 are functions of the eigenvalues(λ̂i)i=1,..,M of

R̂x, the derivation of the probabilitiesP (r̂ > r) andP (r̂ < r) needs the joint exact or asymptotic distribution of
(λ̂i)i=1,..,M . This asymptotic distribution is available for circular complex Gaussian distribution [6] and more
generally for arbitrary distributions with finite fourth-order moments [26], but unfortunately, the functional
(Λr)r=0,..,M−1 (74) is too complicated to infer its asymptotically distribution. Therefore, for simplifying the
derivation of these probabilities, it has been argued [98],[48] and [104] by extended Monte Carlo experiments
(essentially forr = 1 andr = 2) that

P (r̂ > r) ≈ P (r̂ = r + 1) ≈ P (Λr+1 < Λr) and P (r̂ < r) ≈ P (r̂ = r − 1) ≈ P (Λr−1 < Λr). (75)

As the probability of overestimation is concerned, exact and approximate asymptotic upper bound of this
probability have been derived in [104] showing that generally P (r̂ > r) ≪ 1. Therefore, only the probability
of underestimation has been analyzed by many authors. In particular, using the refinement introduced by [41]

E(âr) =
1

M − r
(Tr(Rx)−

r∑

i=1

E(λ̂i)) = σ2
n +

1

M − r

r∑

i=1

(λi − E(λ̂i))

of the classical approximationE(âr) ≈ σ2
n and the asymptotic bais (18) and covariance (19), a closed-form

expression of the probability of underestimation given by the GMDL criterion, used under arbitrary distributions
with finite fourth-order moments, has been given in [26]. This expression has been analyzed forP = r = 1
andP = r = 2 for different distributions of the sources in [26]. Fig.5 illustrates the robustness of the MDL
criterion to the distribution of the sources. We see from this figure that the probability of underestimation is
sensitive to the distribution of the source, particularly for sources of large kurtosis and for weak values of the
numberN of snapshots.
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P (s(tn) = −1) = P (s(tn) = +1) = 1

2p
) and two values of the numberN of snapshots, for an ULA with 5 sensors.
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The general MDL criterion has been studied in [33], where using the approximation (75), a general analytical
expression ofP (r̂ < r) has been given. This expression allows one to prove the consistency of the general MDL
criterion when the number of snapshots tends to infinite and has been specialized to particular parameterized
distributions. Among them, the Gaussian assumption associated with a parameterized steering matrixA(θ)
has been studied and some numerical illustrations show thatthe use of this prior information about the array
geometry enables an improvement in performance of about 2dB. Finally, note that the MDL criterion generally
fails when the sample size is smaller than the number of sensors. In this situation a sample eigenvalue based
detector has been proposed in [60].

VI. RESOLUTION OF TWO CLOSELY SPACED SOURCES

An important measure to quantify the statistical performance for the DOA estimation problem is the
resolvability of closely spaced signals in terms of their parameters of interest. The principal question to
characterize this resolvability is to find the minimum SNR (denoted threshold array SNR (ASNR)) required
for a sensor array to correctly resolve two closely spaced signals for a given DOA distance∆θ

def
= |θ2 − θ1|

(called angular resolution limit (ARL) or statistical resolution limit) between them. Generally in the literature
they are three different ways to describe this resolution limit. The first one is based on the mean null spectrum
concerning a specific algorithm. the second one is based on the estimation accuracy, more precisely on the
Cramer-Rao Bound. The last one is based on the detection theory using the hypothesis test formulation.

A. Angular resolution limit based on mean null spectra

Based on the array beam-patternG(θ0, θ) = |aH(θ0)a(θ)|, different resolution criteria have been defined
from its main lobe w.r.t. a look directionθ0, as the celebrated Rayleigh resolutions such as the half power
beamwidth or the null to null beamwidth that depends solely on the antenna geometry, and consequently have
the serious shortcoming of being independent of the SNR.

For specific so-called high resolution algorithms, such as different MUSIC-like algorithms, based on the
search for two local minima of sample null spectraJAlg(θ,Πx,N), two main criteria based on the mean null
spectrumE[JAlg(θ,Πx,N)] have been defined. These criteria are justified by the property that the standard
deviation

√
Var(JAlg(θ,Πx,N )) of the sample null spectrum associated with the conventional MUSIC and

Min-Norm algorithms is small compared to its mean valueE[JAlg(θ,Πx,N)] in the vicinity of the true DOAs
for N ≫ M for arbitrary SNR [47].

For the first criterion, introduced by Cox [15], two sources are resolved if the midpoint mean null spectrum
is greater than the mean null spectrum in the two true source DOAs.

E[JAlg(θm,Πx,N )] ≥ 1

2
(E[JAlg(θ1,Πx,N )] + E[JAlg(θ2,Πx,N )]) with θm

def
=

1

2
(θ1 + θ2).

This criterion was first studied by Kaveh and Barabell [47], [49] in the resolution analysis of the conventional
MUSIC and Min-Norm algorithms for two uncorrelated equal-powered sources and a ULA. This analysis has
been extended to more general classes of situations, e.g., for two correlated or coherent equal-powered sources
with the smoothed MUSIC algorithm [66], then for two unequal-powered sources impinging on an arbitrary
array with the conventional and beamspace MUSIC algorithm [53]. A subsequent paper by Zhouet al. [109]
developed a resolution measure based on the mean null spectrum and compared their results to Kaveh and
Barabell’s work.

For the second criterion, introduced by Sharman and Durrani[76] and then studied by Forster and Villier
[34] in the context of the conventional MUSIC and Min-Norm algorithms for two uncorrelated equal-powered
sources and a ULA, two sources are resolved if the second derivative of the mean null spectrum at the midpoint
is negative.

d2E[JAlg(θ,Πx,N)]

dθ2 |θ=θm
≤ 0.

Resorting to an analysis based on perturbations of the noiseprojectorΠx,N [51], instead of those of the
eigenvectors (e.g., [47] and [53]), these two criteria havebeen studied for arbitrary distributions of the sources,
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for the conventional MUSIC algorithm. The following closed-form expressions of the approximation of the
threshold ASNR given by these two criteria have been obtained in [3]:

ASNR1 ≈
2

N

αM

(∆θ)4

(
1 +

√
1 +

N(∆θ)2

2βM

)
and ASNR2 ≈

1

N

αM

(∆θ)4

(
1 +

√
1 +

N(∆θ)2

βM

)
, (76)

whereαM and βM are fractional expressions inM specified in [3] for ULAs. These expressions (76) have
been extended in [3] to a noncircular MUSIC algorithm adapted to rectilinear signals, introduced and analyzed
in [5], for which (76) becomes

ASNR1 ≈
2

N
α∆θ,∆φ
M

(
1 +

√
1 +

N

2β∆θ,∆φ
M

)
and ASNR2 ≈

1

N
α∆θ,∆φ
M

(
1 +

√
1 +

N

β∆θ,∆φ
M

)
, (77)

where∆φ
def
= φ2 − φ1 is the second-order noncircularity phase separation (8) and where nowα∆θ,∆φ

M and
β∆θ,∆φ
M are expansions of1/(∆θ)2 without constant term, whose coefficients depend onM , ∆φ and the array

configuration. Closed-form expressions ofα∆θ,∆φ
M and β∆θ,∆φ

M are given in [3] for weak and large second-
order noncircularity phase separations and ULAs, where it is proved thatASNR1 andASNR2 are decreasing
functions of∆φ and thus are minimum for∆φ = π/2.

Fig.6 illustrates these two threshold ASNRs for two independent equal-powered BPSK modulated signals
impinging on a ULA withM = 10 andT = 500. We clearly see in this figure that the noncircular MUSIC
algorithm outperforms the conventional MUSIC algorithm except for very weak second-order noncircularity
phase separations for which the ASNR thresholds of these twoalgorithms are very similar. Furthermore, we
note that the behaviors of the ASNR threshold given by the twocriteria are very similar although the ASNR
thresholds are slightly weaker for the Sharman and Durrani criterion than for the Cox criterion.
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Fig.6 Comparison of the threshold ASNRs given by the Cox (a) and Sharman and Durrani (b) criteria as a function of the DOA
separation∆θ associated with the conventional MUSIC (—) and noncircularMUSIC algorithms (- -) for three values of the second-order
noncircularity phase separation∆φ.

Moreover, several authors have considered (e.g., [54], [107], [108]) the probability of resolution or an
approximation of it, based on the Cox criterion applied to the null sample spectrum to circumvent the possible
misleading results given by these two criteria. Finally note that the resolution capability of the conventional and
Capon beamforming algorithms have been thoroughly analyzed (see e.g., [72]). Thanks to the simple expression
of their spatial null spectra (46), it is possible to derive an approximation of the probability of resolution defined
as the probability that the dip in midway between the two sources is at least 3-dB less than the peak of either
source as a function of the SNR and DOA separation. Thus, fixing a specific high confidence level, this allows
one to predict the SNR required to resolve two closely spacedsources. The superiority of the Capon algorithm
is proved in [72], as the resolving power increases with SNR;in contrast, the Bartlett algorithm cannot exceed
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the Fourier/Rayleigh limit no matter how strong the signals.

B. Angular resolution limit based on the CRB

Array resolution has been studied independently of any algorithm by using the CRB. Based on the observation
that the standard MUSIC algorithm is unlikely to resolve closely spaced signals if the standard deviation of the
DOA estimates exceed∆θ/8 [80], Lee [55] has proposed to define the resolution limit as the DOA separation
∆θ for which

max
(√

CRB(θ1),
√

CRB(θ2)
)
= c∆θ, (78)

for the two closely spaced sources, wherec is somewhat arbitrarily chosen. This criterion ignores thecoupling
between the estimateŝθ1 andθ̂2. To overcome these drawbacks, Smith has proposed [78] to define the resolution
limit as the source separation that equals the square root ofits own CRB, i.e.,

√
CRB(∆θ) = c∆θ, (79)

with c = 19. This means that the angular resolution limit or the threshold ASNR are obtained by resolving
the implicit equations (78) and (79). This latter criterionhas been applied to the deterministic modeling of the
sources in [78] and then extended to multiple parameters persource in [29]. For the stochastic modeling of the
sources, the circular Gaussian distribution has been compared to the discrete one in [24]. In particular it has
been proved that the threshold ASNR is inversely proportional to the numberN of snapshots and to the square
of ∆θ for the Gaussian case, in contrast to BPSK, MSK and QPSK case,for which it is inversely proportional
to the fourth power of∆θ.

C. Angular resolution limit based on the detection theory

The previous two approaches to characterize the angular resolution have in fact two different purposes. The
first one studies the capability of a specific algorithm to estimate the DOAs of two closely spaced sources when
the number of sources is known. In contrast, the second one isaiming to define an absolute limit on resolution
that depends only of the array configuration and parameters of interest as the numberM of sensors and SNR.
But this latter approach based on the ad-hoc relationships (78) and (79), essentially makes sense because the
CRB indicates the parameter estimation accuracy and intuitively should be related to the resolution limit. But
it suffers from two drawbacks. First, the resolution limit defined by this approach is not rigorously grounded
in a statistical setting. Second, if the resolution limit isexpressible by (78) or (79), can the translation factor
c, be analytically determined?

To solve these two problems, Liu and Nehorai have proposed touse a hypothesis test formulation [59]. This
approach has been introduced in a 3D reference frame, but to be consistent with the notations of this section,
it is briefly summarized in the following in the 2D framework,where the DOA of a source is the parameter
θ. As the source localization accuracy may vary at different DOAs, consider the resolution limit at a specific
DOA of interest. More precisely, assume there exists a source at a known DOAθ1 and we are interested in the
minimum angular separation∆θ that the array can resolve between this source atθ1 and another source at a
directionθ2 close toθ1. Quite naturally, the resolution of the two sources can be achieved through the binary
composite hypothesis test

H0 : ∆θ = 0, one source is present

H1 : ∆θ > 0, two sources are present.

To rigorously define the resolution limit∆θ, we fix the values ofPFA andPD for this test. Otherwise,∆θ
could be arbitrary low, while the result of the test may be meaningless. Letα = [∆θ,βT ]T be the unknown
parameter of our statistical model, where∆θ is the parameter of interest andβ gathers all the unknown nuisance

9Note that this translation factorc is somewhat arbitrarily chosen (see different values citedin [59]).
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parameters. To conduct this test, the GLRT is considered dueto the unknown nuisance parameters.

LG(x, N) =
p(x; ∆̂θ, β̂1,H1)

p(x; β̂0,H0)

H1

> γ′, (80)

where p(x;∆θ,β,H1) and p(x;β,H0) denote the probability density function of the measurementx =

[xT (t1), ...,x
T (tN )]T under the hypothesisH1 and H0, respectively.∆̂θ and β̂1 are respectively the ML

estimate of∆θ andβ underH1, and β̂0 is the ML estimate ofβ underH0. The distribution of this GLRT
LG(x, N) is generally very involved to derive, but hopefully, approximations of the distribution of2 lnLG(x, N)
for large values ofN are available underH0 andH1. First, underH0, Wilk’s theorem with nuisance parameters
(see e.g., [102, p.132]) can be applied without having to know the exact form ofLG(x, N). This theorem states
the following convergence in distribution whenN tends to∞

2 lnLG(x, N)
L→ χ2(1) under H0, (81)

whereχ2(1) denotes the central chi-square distribution with one degree of freedom (associated with the single
parameter∆θ). UnderH1, the derivation of the asymptotic distribution of2 lnLG(x, N) is much more involved.
Using a theoretical result by Stroud [88], Stuartet al [89, Ch. 23.7] have stated that when∆θ can take values10

near0, 2 lnLG(x, N) is approximately distributed11 as

2 lnLG(x, N)
a∼ χ2(1, λN ) under H1, (82)

whereχ2(1, λN ) denotes the noncentral chi-squared distribution with1 degree of freedom and noncentrality
parameterλN given by (see [50, Section 6.5])

λN = (∆θ − 0)([FIM−1(α)]1,1)
−1(∆θ − 0), (83)

whose dependence onN in the FIM of α is emphasized, and where[FIM−1(α)]1,1 denotes the (1,1)th entry
of FIM−1(α). It is further shown ([50, App. 6C]) that asN is large, (83) is approximated by

λN ≈ (∆θ)2([FIM−1(α)]1,1|∆θ=0)
−1 = CRB−1(∆θ)|∆θ=0. (84)

Based on these limit and approximate distributions of2 lnLG(x, N) underH0 andH1 for which the GLRT in
(81) can be rewritten as

2 lnLG(x, N)
H1

> γ
def
= 2 ln γ′, (85)

the angular resolution limit (ARL) has been computed in [59]by using the two constraints

PFA = Qχ2(1)(γ) and PD = Qχ2(1,λN )(γ),

where the values ofPFA andPD are fixed and whereQχ2(1) andQχ2(1,λN ) denote the right tail probability of
the χ2(1) andχ2(1, λN ) distributions, respectively. It assumes the form

∆θ =
√

λK

√
CRB(∆θ)|∆θ=0,

where the factor
√
λK is analytically determined by the preassigned values ofPFA andPD. Note that the SNR

is embedded in the expression of CRB(∆θ) that is proportional toK. The dependence on the SNR of the
CRB may vary according to the distribution of the sources. For example, [24] proves that the CRB of the DOA
separation of discrete sources is very different from thoseof Gaussian sources.

10The following more formal condition is given in [88],∆θ is embedded in an adequate sequence indexed byN that converges to
zero at the rateN−1/2 or faster, i.e.,‖∆θ‖ = O(1/N1/2). Note the simplified condition given by Kay [50, A. 6A]:‖∆θ‖ = c/

√
N

for some constantc, that is reduced to the rough assumption of weak SNR [50, Section 6.5].
11The accurate formulation islimN→∞ {P (2 lnLG(x, N)] < t)− P (VN < t)} = 0 ∀t, whereVN has a noncentral chi-squared

distribution with one degree of freedom and noncentrality parameterµN that depends on the data lengthN .
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