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Performance bounds and statistical analysis of
DOA estimation

Jean Pierre Delmas

. INTRODUCTION

Over the last three decades, many direction of arrival (D&g#tjmation and source number detection methods
have been proposed in the literature. Early studies orsttati performance were only based on extensive Monte
Carlo experiments. Analytical performance evaluatiohaf &llow one to evaluate the expected performance,
as pioneering by [47], have since attracted much excellEsgarch.

The earlier works were devoted to the statistical performeaanalysis of subspace-based algorithms. In
particular the celebrated MUSIC algorithm has been extehsinvestigated (see e.g., [80], [82], [67], [103]
among many others). But curiously, these works were basdulstorder perturbations of the eigenvectors and
eigenvalues of the sample covariance matrix, and thus\vadol/ery complicated derivations. Subsequently,
[51] carried out a performance analysis of two eigenstmgchased DOA estimation algorithms, using a series
expansion of the orthogonal projectors on the signal ansenmilbspaces, allowing considerable simplification of
the previous approaches. Motivated by this point of viewesa unified analyses of subspace-based algorithms
have been presented (see e.qg., [57], [40], [58]). In pdrali¢hese works, a particular attention has been paid
to the statistical performance of the exact and approxiratiaximum likelihood algorithms (ML), in relation
to the celebrated Cramer-Rao bound (see e.g., [81], [68] tla@ tutorial [64] with the references therein).

The statistical performance analysis of the difficult aniical problem of the detection of the number of
sources impinging on an array, has been based on princig@hdard techniques of the statistical detection
literature. In particular, the information theoreticaiteria and especially the minimum description length
(MDL), as popularized in the signal processing literatuye[®9], have been analyzed (see e.g., [106] [33],
[26]). Related to the DOA estimation accuracy and to theal®te of the number of sources, the resolvability
of closely spaced signals in terms of their parameters efrést have been also extensively studied (see e.g.,
[78], [59)).

The aim of this chapter is not to give a survey of all perforoeanalysis of DOA estimation and source
detection methods that have appeared in the literatureratiuer, to provide a unified methodology introduced
in [11] and then specialized to second-order in [19] to stthdytheoretical statistical performance of arbitrary
DOA estimation and source number detection methods andckdetéhe resolvability of closely space sources.
To illustrate this framework, several examples are detaflech as the conventional MUSIC algorithm, the
MDL criterion and the angular resolution limit based on thetedtion theory.

This chapter is organized as follows. Section Il presengsrtfathematical model of the array output and
introduce the basic assumptions. General statisticas foolperformance bounds and statistical analysis of DOA
estimation algorithms are given in Section Il based on &fional approach providing a common unifying
framework. Then, Section IV embarks on statistical perfamge analysis of beamforming-based, maximum
likelihood and second-order algorithms with a particultéemtion paid to the subspace-based algorithms. In
particular the robustness w.r.t. the Gaussian distribytibe independence and narrowband assumptions, and
array modeling errors are considered. Finally some elesnehstatistical performance analysis of high-order
algorithms complete this section. A glimpse into the detecof the number of sources is given in Section V
where a performance analysis of the minimum descriptiogtleiiMDL) criterion is derived. Finally, Section
VI is devoted to criteria for resolving two closely spacedises.

Jean Pierre Delmas is with TELECOM SudParis, Départememt, NRS UMR 5157, 91011 Evry Cedex, France, e-mail:jean-
pierre.delmas@it-sudparis.eu, phone: +(33).1.60.78246ax: +(33).1.60.76.44.33.
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The following notations are used throughout this chaptée) and O(e) denote quantities such that
lim._,o0(€)/e = 0 and|O(e)/¢| is bounded in the neighborhood ef= 0, respectively.

[I. MODELS AND BASIC ASSUMPTION
A. Parametric array model

Consider an array of/ sensors arranged in an arbitrary geometry that receivesdlhieforms generated by
P point sources (electromagnetic or acoustic). The outpeiach sensor is modeled as the response of a linear
time-invariant bandpass system of bandwidth The impulse response of each sensor to a signal impinging
on the array depends on the physical antenna structure,ett@ver electronics and other antennas in the
array through mutual coupling. The complex amplitudg@) of these sources w.r.t. a carrier frequerfgyare
assumed to vary very slowly relative to the propagation @mess the array (more precisely, the array aperture
measured in wavelength, is much less than the inversewelbindwidthf,/B). This so-called narrowband
assumption allows the time delays, , of the pth source at thenth sensor, relative to some fixed reference
point, to be modeled as a simple phase-shift of the carregjuency. Ifn(t) is the complex envelope of the
additive noise, the complex envelope of the signals cakett the output of the sensors is given by applying
the superposition principle for linear sensors by:

P
x(t) = Y a(0,)sp(t) +n(t) = A(0)s(t) +n(t), 1
p=1

ef

wheres(t) o s1(t), ..., sp(t)]T and@, may include generally azimuth, elevation, range and prdtion of the
pth source. However, we will here assume that there is onlypamameter per source, referred as the direction
of arrival (DOA) 6. a(6,,) is the steering vector associated with itk source. The array manifold, defined as
the set{a(#),0 € ©} for some regior® in DOA space, is perfectly known, either analytically or bgasuring

it in the field. It is further required for performance anddythata(f) be continuously twice differentiable w.r.t.
0. A(0) = [a(01),...,a(fp)] is the M x P steering matrix withd = [0y, ..., 0p]”.

To illustrate the parameterization of the steering veet@r), assume that the sources are in the far field of
the array, and that the medium is non-dispersive, so thavétveforms can be approximated as planar. In this
case, thenth component o&(0) is Simplygm(ﬁ)e_ikTrm whereg,,(0) is the directivity gain of thenth sensor,

dof @u, c represents the speed of propagatiaris a unit vector pointing in the direction of propagation
andr,, is the position of thenth sensor relative the origin of the different delays.

The by far most studied sensor geometry is that of uniforradinarray (ULA), where thé/ sensors are
assumed to be identical and omnidirectional over the DOAyeaof interest. Referenced w.r.t. the first sensor
that is used as the origim,,(0) = 1 andk’r,, = (m — 1)@dsin(9) = (m — 1)2%0‘[ sin(@), where\q is the
wavelength. To avoid any ambiguity, must be less than or equal @ The standard ULA had = % that
ensures a maximum accuracy on the estimatiofl. dh this case

3(9) — [1’ eiwsin(@)’ - 6z'(M—1)7r sin(G)]T. (2)

B. Signal assumptions and problem formulation

Each vector observatior(¢) is called a snapshot of the array output. Let the proogss be observed
at N time instants{¢,...,tx}. x(t) is often sampled at a slow sampling frequeng{i’s; compared to the
bandwidth ofx(¢) for which {x(¢)}:, ..+, are independent. Temporal correlation between successa@shots
is generally not a problem, but implies that a larger numiBesf snapshots is needed for the same performance.
We will prove in Subsection IV-C that the parameter that fittess performance is naV¥, but the observation
interval ' = NT,. The signals{s,(t)},=1,..p andn(t) are assumed independknor well calibrated arrays,

!Note that only the uncorrelation assumption is requiredémond-order based algorithms, in contrast to fourthrdvesed algorithms,
that require the independent assumption. However, thisrlane simplifies the statistical performance analysis.
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n(t) is often assumed to be dominated by thermal noise in theveseiwhich can be well modeled as zero-
mean temporally and spatially white circular Gaussian oamgrocess. In this cas&[n(t;)n” (t;)] = 026, ;1

and E[n(t;)n’ (¢;)] = 0, for which the spatial covariance and spatial complemgntawariance matrices are

given by R, & En(t)nf(t)] = ¢2I and C,, % En(t)n” ()] = 0, respectively. A common, alternative

model assumes thai(t) is spatially correlated wherR,, is known up to a scalar multiplicative terag, i.e.,
R, = 023, whereX, is a known definite positive matrix. In this case(t) can be pre-multiplied by an
inverse square-root factcE;l/2 of X,,, which renders the resulting noise spatially white and gme=s model
(1) by replacing the steering vectas$d) by 2;1/2a(0).

Two kind of assumptions are used ¢s,(t)},—1,. p. In the first one, called stochastic or unconditional

model (see e.g., [63] and [81}s,(t)},=1,.. p are assumed to be zero-mean random variables for which the

most commonly used distribution is the circular Gaussia@ with spatial covarianc® uf E[s(t)s ()] and

spatial complementary covarian€g, def E[s(t)s” (t)] = 0. R, is nonsingular for not fully correlated sources
(called also noncoherent) or near-singular for highly elaied sources. In the case of coherent sources (specular
multipath or smart jamming, where some signals impinginghenarray of sensors can be sums of scaled and
delayed versions of the other®,; is singular. In this chapteR; is usually assumed nonsingular. For these
assumptions, the snapshet&) are zero-mean complex circular Gaussian distributed wotradance matrix

R, = A(O)R,AP(0) + 021 (3)

This circular Gaussian assumption lies not only in the faett tircular Gaussian data are rather frequently
encountered in applications, but also because optimattigteand estimation algorithms are much easier to
deduce under this assumption. Furthermore, as will be ségzliin Section 1V, under rather general conditions
and in large samples [86], the Gaussian CRB is the largestl @RB matrices corresponding to different
distributions of the sources of identical covariance maRi;. This stochsatic model can be extended by
assuming thas(¢) is arbitrarily distributed with finite fourth-order momenf19] including the case where
C; # 0 associated with the second-order noncircular distrilmstio

A common alternative assumption, called deterministic @nditional model (see e.g., [63] and [81]) is
used when the distribution of(¢) is unknown or/and clearly nonGaussian, for example in rahat radio
communications. Hers(t) is nonrandom, i.e., the sequen{&t)};, ., is frozen in all realizations of the
random snapshotsx(t)}+, .. +,. Consequently{s(t)}:, . . is considered as a complex unknown parameter in
CNP. For this assumption, the snapshets) are complex circular Gaussian distributed with me%(@)s(t)
and covariance matrix?1.

With these preliminaries, the main DOA problem can now benfdated as follows: Given the observations,
{x(t)}+,....+y and the described model (1), detect the numBeaf incoming sources and estimate their DOAs

{ep}pzl,...,P-

C. Parameter identifiability

Once the distribution of the observatiofis(t) }+, .. ;, has been fixed, the question of the identifiability of the
parameters (including the DO, },—1... p) must be raised. For example, under the assumption of imdiee,
zero-mean circular Gaussian distributed observatiohgnfarmation in the measured data is contained in the
covariance matriR, (3). The question of parameter identifiability is thus reslilito investigating under which
conditionsR, determines the unknown parameters. Thus, if no a prioririnédion onR; is available, the
unknown parametetx of R, contains the followingP + P? + 1 real-valued parameters:

o = [91, veey (9]3, [Rs]l,h veey [Rs]P,Pa Re([RS]QJ), Im([RS]Zl)’ ceey Re([RS]pJD_l), Im([RS]P,P—1)7 U%]T (4)

and the parametet is identifiable if and only ifR.(a()) = R (a®) = all) = a®. To ensure this
identifiability, it is necessary thaA (6) be full column rank for any collection aoP, distinctf, € ©. An array
satisfying this assumption is said to be unambiguous. Mdtiat this requirement is problem-dependent and,
therefore, has to be established for the specific array wstddy. For example, due to the Vandermonde structure
of a(f) in the ULA case (2), it is straightforward to prove that theAJls unambiguous i©® = (-7 /2, +7/2).
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In the case where the rank B;, that is the dimension of the linear space spannes|(byis known and equal
to r, different conditions of identifiability has been given metliterature. In particular, the condition

M , . :
P < % (which reduces ta? < M whenR; is nonsingulay (5)

has been proved to be sufficient [100] and practically nesggdé1].

When s(t) are not circularly Gaussian distributed, the identifiaypilcondition is generally much more
involved. For example, whes{t) is noncircularly Gaussian distributexl(t) is noncircularly Gaussian distributed
as well with complementary covariance

C. = A(6)C,AT(6) #0 (6)

and the distribution of the observations are now charadrby bothR, andC,. Consequently, the condition
of identifiability will be modified w.r.t. the circular casevgn in (5). This condition has not been presented
in the literature, except for the particular case of undatesl and rectilinear (called also maximally improper)

€

sources impinging on a ULA for which, the augmented covagamatrix R; dof Ex(t)x ()] with x(t) =
(xT(t),x ()" is given by
P
R: =Y _ova(fy, ¢p)a” (0, 6,) + oo, 7)
p=1
wherea(0,, ¢,) aef [aT(0,), e 2% all(0,)]T with ¢, is the second-order phase of noncircularity defined by
E[sg(t)] = 62i¢PE|s§(t)| = egi%ag. (8)

Due to the Vandermonde-like structure of the extended isggenatrix A (0, ¢) o [a(b1,¢1),....,a(0p,op)],
the condition of identifiability is now her® < 2M — 1.

Note that whers(t) is discrete distributed (for example whey(#) are symbols;, .., of a digital modulation
taking ¢ different values), the condition of identifiability is noivial despite the distribution at(¢) is a mixture
of ¢© circular Gaussian distributions of me@§:1 Spk(p)@(0p) and covariance 1.

I[Il. GENERAL STATISTICAL TOOLS FOR PERFORMANCE ANALYSIS O OA ESTIMATION
A. Performance analysis of a specific algorithm

1) Functional analysisTo study the statistical performance of any DOA’s estimébdften called an algorithm
as a succession of different steps), it is fruitful to adofurgctional analysis that consists in recognizing that
the whole process of constructing the estim@fe is equivalent to defining a functional relation linking this
estimate to the measurements from which it is inferred. Asegaly 6y are functions of some statistigsy
(assumed complex-valued vector@) deduced fromx(t));, we have the following mapping

et

(X(O}ran — 8N 5 By )

Many often, the statisticgy are sample moments or cumulants »ft). The most commun ones are

second-order sample moments xft) deduced from the sample covariance and complementary icovar

ance matricesR, v < LSV x(t,)xf(t,) and C,y & LN x(t,)xT(t,), respectively. For

nonGaussian symmetric sources distributions, even saimigle-order cumulants ofk(¢) are also used,

in particular the fourth-order sample cumulants deduceunfithe sample quadrivariance matric€s. v,
’ 9 def * * / def
Q, vy andQ, y where[Qqli ;- nymrra-nym = Cum(z;(t),z7 (1), 25 (1), z1(1), [Quliv-nMmrra-—1m =

€

Cum(a;(t), 25 (1), 21 (8), 22(1)) and [QUlironarpsa-ny = Cum(a(t),2;(t), a1, (t), 2,(1)), estimated
through the associated fourth and second-order sample memia these cases, the algorithms are called
second-order, high-order and fourth-order algorithmspeetively.

The statisticgy generally satisfies two conditions:

(i) gn converges almost surely (from the strong law of large nusjberE(gy) when N tends to infinity,
that is a function of the DOAs and other parameters deng{éd,
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(if) the DOAs @ are identifiable fromg(0), i.e., there exists a mapping ) — 6.

Furthermore, we assume that the algorithig satisfiesalg[(g(0)] = 6 for all & € ©. Consequently the
functional dependencéy = alg(gy) constitutes a particular extension of the mappg({@) — 0 in the
neighborhood og(#) that characterizes all algorithm based on the statgstic

Note that for circular Gaussian stochastic and deternénmbdels of the sources, the likelihood functions
of the measurements depend éx(t)}, ...+, through only the sample covariand®, n, and therefore the
algorithms called respectively stochastic maximum liketid (SML) and deterministic maximum likelihood
(DML) algorithms are second-order algorithms [64]. The Skigorithm has been extended to noncircular
Gaussian sources, for which the ML algorithm is built frontb®, x and C, x [21].

However, due to their complexity, many suboptimal algenighwith much lower computational requirements
have been proposed in the literature. Among them, many iigis are based on the noise (or signal)
orthogonal projectolI, n onto the noise (or signal) subspace associated with thelsazoparianceR, v .
These algorithms are called subspace-based algorithneanokt celebrated is the MUSIC algorithm that offers
a good trade-off between performance and computationas$.clbs statistical performance has been thoroughly
studied in the literature (see e.g., [47], [80], [34], [31]) these cases, the mapping (9) becomes

(X} rtn — Ron — Ty 28 By, (10)

where the mappinglg characterizes the specific subspace-based algorithm. $biiese algorithms have
been extended for noncircular sources through subspamstegorithms based o(rl‘[x,N,H;,vN) or IT; v
where H;N and IT; v are the orthogonal projectors onto the noise subspace iassbavith the sample
complementary covarianc€, y and the sample augmented covarialte def % ff:l X(t,)x" (t,) with
X(tn) ¥ (xT(t,),x" (t,))T, respectively [3].

2) Asymptotic distribution of statisticsDue to the nonlinearity of model (1) w.r.t. the DOAs paragret
the performance analysis of detectors for the number ofcesuand the DOA's estimation procedures are not
possible for a finite numbeN of snapshots. But in many cases, asymptotic performandgsasaare available
when the numbelN of measurements, the signal-to-noise ratio (SNR) (see[€X4]) or the number of sensors
M converges to infinity (see e.g., [92]). In practi®® SNR andM are naturally finite and thus available
results in the asymptotic regime are approximations, wtdiseain of validity are specified through Monte
Carlo simulations. We will consider in this chapter, onlymptotic properties w.r.tN and thus, the presented
results will be only valid in practice wheiV > M. When N is of the same order of magnitude thai,
although very large, the approximations given by the asgtipptegime w.r.t.N are generally very bad.

To derive the asymptotic distribution, covariance and lésestimated DOAs w.r.t. the numbe¥ of
measurements, we first need to specify the asymptotic llisivh of some statisticgy .

For the second-order statistics

e (Rus Con) = = 3 [X () ©x(02)
gN = Vi Ny Yz, N) — N Z X(tn) ® X(tn) ;
wherevec(.) and® denote, respectively, the vectorization operator thatstar matrix into a vector by stacking

the columns of the matrix one below another and the standaodidCker product of matrices, closed-form
expressions of the covariankg(gy — g)(gn — )" | and complementary covariange (gy — g)(gy — 8)” |

matrices (whereg def g(0) for short), and their asymptotic distributicnsave been given [25] for independent

2Throughout this chapteNz(m; R), Nc(m; R) and No(m; R, C) denote the real, circular complex, arbitrary complex Giauss
distribution, respectively, with meam, covarianceR and complementary covarian€g.
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measurements, fourth-order arbitrary distributed sausgel Gaussian distributed noise:

1 Rr Rg, c
E[(gy —8)gy —8)"] = —< . )
[( )( )" N \RZ o Re,
1 Cr, Cr,c,
E [(gn — -] = o Co
(v —g)(gn — )" ] N (ngcm Cc, >’

L ( Rr. Rr.c. Cr, Cg,c,
\/N (VeC(RJJ,N7C$,N) - VeC(va Cm)) — NC <07 (ngcw RC, ) ) <C£L,CL CCE )) ) (11)

with
Rp, = RIOR, +K(C,®C) + (A*®A)Q, (AT ® AH) (12)
Re, = R,9R, +KR, ®R,) +(A®A)Q, (A"  AM)
Cr, = RpK
Co, = Co®C+K(C,0C,)+ (A®A)Q (AT ® AT)
Rp.c. = CioR, +KR,®Ci)+ (A" ®A)Q, (A" @ AM)
Cr.c, = RI®C,+K(C,®R}) +(A*2A)Q, (AT ® AT),

whereA A(0) for short andK denotes the vec-permutation matrix which transformag C) to vec(CT) for

any square matriC. Q,, Q, andQ; are defined as fox(t) defined previously anfQ; |+ ;—1)pr+u-1)p dof

111

Cum(s;(t), s5(t), sp(t), 57 (1), Qs lit(j—1)Ph+a—1)P of Cum(s;(t), s3(t), s.(t), s7(t)). Note that the asymp-
totic distribution of R, y has be extended to non independent measurements withagylidistributed sources
and noise of finite fourth-order moments wi, arbitrarily structured in [18] in [19].

Consider now the noise orthogonal projecgof = vec(II, y). Its asymptotic distribution is deduced from
the standard first-order perturbation for orthogonal riojes [46] (see also [51]):

§(TI, n) = —TL6 (R, n)S™ — ST6(Ry v, + 0 (6(Rav)) (13)

where 6(I1, ) def II, v — I, 6(RyN) def R, — R, and S# is the Moore-Penrose inverse 8f =

A(0)R;AH (0). The remainder in (13) is a standar@(R.. v)) for a realization of the random matriR, v,
but ano, (6(R,,~)) if R, n is considered as random. The relation (13) proves ghais differentiable w.r.t.
vec(R,, ) in the neighborhood ofec(R,) and its differential matrix (called also Jacobian matrixpleated
atvec(R;) is

Dp,, = — (8% @ I, + 11, © $%). (14)

Then using the standard theorem of continuity (see e.qg, tfizB, p.124]) on regular functions of asymptotically
Gaussian statistics, the asymptotic behavior§lgfy andR, y are directly related:

VN (vec(IL, y) — vee(I,)) 5 Ne (0; Ry, , Ry, K) (15)

where Ry, is given for independent measurements, fourth-order rariitdistributed sources and Gaussian
distributed noise, using (12) by:

Ri, = Dg, i, Re, D 5, =, @ U+ U* @ I1,, (16)

with U = a%S#RxS#. We see thaRy;, does not depend of; and the quadrivariances of the sources.
Consequently, all subspace-based algorithms are robustetalistribution and to the noncircularity of the
sources; i.e., the asymptotic performances are those aftéamelard complex circular Gaussian case. Note that
the asymptotic distribution ofII, y, H'm ~) andII; y have also been derived under the same assumptions in
[3], where it is proved that they do not depend on the quadaraes of the sources, as well. The asymptotic
distributions ofIT, n, (II, v, H;:,N) andII; y will allow us to derive the statistical performance of ardiy
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subspace-based algorithms based on these orthogonattpreje the Section IV-D.

Note that the second-order expansionldf y w.r.t. R, x has been used in [51] to analyse the behavior of
the root-MUSIC and root-min-norm algorithms dedicated toAJbut is useless as far as we are concerned
by the asymptotic distribution of the DOAs alone, as it hasrbepecified in [3], where an extension of the
root-MUSIC algorithm to noncircular sources has been psepo

Finally, consider now the asymptotic distribution of thgrsil eigenvalues oR, y that is useful for the
statistical performance analysis of information thearetiteria (whose MDL criterion popularized by Wax and
Kailath [99] is one of the most successful), for the detectbthe numbeP of sources. Ledy, ..., A\p, Apy1 =
o2 ...,y = o2 denote the eigenvalues @&, ordered in decreasing order ang, ..., vp the associated
eigenvectors (defined up to a multiplicative unit modulusnptex number) of the signal subspace. Then,
suppose that for a "small enough” perturbatRn v — R, the largest” associated eigenvalues of the sample
covarianceR, y are\; y > ... > Apy. It is proved in [26], extending the work by [47] to arbitraaistributed
independent measurements (1) with finite fourth-order nmmeot necessarily circular and Gaussian, the
following convergence in distribution.

VN (Ax —A) 5 Nr(0;Ry), (17)

with Ay = [)\17N,...,)\P7N]T, A= [)\1,...,)\P]T and [Rk]i,j = )\?51‘7]' + |)\i,j|2 + )‘Z'JJ,J' fori,j =1,...P, (51'73'
is the Kronecker delta); ; o vf{va;f and A; . o vl ® vf)Qx(v,’; ® vy). In contrast to the circular
Gaussian distribution [47], we see that the estimated e&@jeas{\; y},—1,. p are no longer asymptotically

mutually independent. Furthermore, it is proved in [26]ttfa i, 5 = 1, ... P:

1 Nk + ik 4 Nikik 1
E\ — . - ) KL, - 1
had = Ntr Y el Fo(3p) (18)
1<k#i<M
1 1
Covlhin, Ajn] = & (AF6ig + [ Xigl? + Xiijj) + o()- (19)

We note that these results are also valid for the augmenteatiaace matrixR; y whereM andP are replaced
by 2M and the rank oR; v — 021, respectively.

3) Asymptotic distribution of estimated DOAn the following, we consider arbitrary DOA algorithms that
are in practice "regular" enoughMore specifically, we assume that the mappidg is R—differentiable w.r.t.
gy € CLin the neighborhood of(9), i.e

Oy = alg(gy) = alg(g) + D2%(gy — ) + D25 (gn — )" + ol lgy — gll, (20)

with alg(g) = € and P x L matrix Dalg is the R—differential matrix (Jacobian) of the mappirgy i GN
evaluated ag(@). In practice, this matrlx is derived from the chain rule bycomposing the algorithm as
successive simpler mappings, and in each of these mappisgmatrix is simply deduced from first-order
expansions. Then, applying a simple extension of the stdnttieeorem of continuity [75, th.B, p.124] (also
called A-method), it is straightforwardly proved the following a@mgence in distribution:

VN (By — 6) 5 Nr(0;Rg)  with Ry =2 |D4R,(D%)" + Re ( D5C,(D alg)T)}, 1)

whereR, andC, are the covariance and the complementary covariance @sicthe asymptotic distribution
of the statisticsgy. We note that for subspace-based algorithms and secomed-algbrithms based oR, x
or R; v, gy = Kgn (because the orthogonal projector matrices and the coxaianatrices are Hermitian
structured), and generally for statistigg; that contain all conjugate of its components, the mappihg is
C—differentiable w.r.t.gy in the neighborhood og(6) and (20) and (21) become respectively:

Oy = alg(gn) = alg(g) + Dy §(gv — &) + ollgy — &ll; (22)

3This is the case, for example whéy maximizes w.r.to, a real-valued functiorf (e, g) that is twiceR differentiable w.r.t.cx
andgy.
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where now,D‘;% is the C—differential matrix of the mappingy 218 51\/ evaluated ag(#) and

VN (Bx —0) 5 NR(0;Rg)  with Ry = D%R,(D%)". (23)

4) Asymptotic covariance and biasJnder additional regularities of the algorithalg, that are generally
satisfied, the covariance #fy is given by
~ 1 1
COV(GN) = NR@ + O(N)
Using a second-order expansion alg(gy) and CR—calculus, wherealg is assumed to be twice-
R—differentiable, the bias is given by

(24)

al
. Tr(Rgngl) .
E —0=— : — 2
Tr(Rgngp)

. oale\ g H?
whereH> = 2 (ﬂ) = 9,9,k 9.0k | is the complex augmented Hessian matrix [74, A2.3]

9.0,k — 9g \ Og H® HD

9,0,k 9,0,k

of the kth component of the functioalg at pointg(6) andR; = R, €, is the augmented covariance

C: R!
of the asymptotic distribution ofy. In the particular case wherdg ig twicge-C—differentiable (see e.g., the
examples given fofC—differentiable algorithms (22)), i.e.,

al
-~ 1 Hgvgvl
Oy = alg(gy) = alg(g) + Dyf(gy —8) +5[Ir® ey~ )] | | ley — gl +ollan —gl, (26)
Halg
q,0,P
(25) reduces to |
) Tr(R,HY ) )
E@N) -0 = — : —). 27
On) = 0= 5% » +o() (27)
Tr(RgngP)

We note that relations (24), (25) and (27) are implicitly digethe signal processing literature by simple first
and second-order expansions of the estingatew.r.t. the involved statistics without checking any neeegs
mathematical conditions concerning the remainder ternthefirst and second-order expansions. In fact these

conditions are very difficult to prove for the involved mapgs g 2le 51\/- For example, the following
necessary conditions are given in [56, Th. 4.2.2] for seeandér algorithms: (i) the measuremefugt)};,

----- tn
are independent with finite eighth moments, (ii) the map@rg 218 O is four timesR—differentiable, (iii)
the fourth derivative of this mapping and those of its squaecbounded. These assumptions that do not depend
on the distribution of the measurements are very strongfdstinately (24), (25) and (27) continue to hold in
many cases in which these assumptions are not satisfiedrtinytar for Gaussian distributed data (see, e.g.,
[56, Ex. 4.2.2]).

In practice, (24), (25) and (27) show that the mean squame €4SE)

E||§n — 0] = |[E(@x) — 8] + Tr[Cov(6)] (28)

is then also of ordet/N. Its main contribution comes from the variance term, sim@edquare of the bias is
of order1/N2. But as empirically observed, this bias contribution maystmificant when SNR ofV is not
sufficiently large. However, there are very few contribntion the literature, that have derived closed-form bias
expressions. Among them, [104] has considered the biaseoMidSIC algorithm, whose derivation ought to
be simplified by using the asymptotic distribution of thehogonal projectodI, y, rather than those of the
sample signal eigenvecto(e; y,...,ep n).
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B. Cramer-Rao bounds (CRB)

The accuracy measures of performance in terms of covariandeias of any algorithm, described in the
previous section may be of limited interest, unless one hadea of what the best possible performance is. An
important measure of how well a particular DOA finding algum performs is the mean square error (MSE)
matrix E[(0 —6)(60—6)"] of the estimation errof y —0. Among the lower bounds on this matrix, the celebrated
Cramer-Rao bound (CRB) is by far the most commonly used. We that this CRB is indeed deduced from
the CRB on the complete unknown parameteof the parametrized DOA model, for example, given by (4) for
the circular Gaussian stochastic model. Furthermoreraiggly speaking, this CRB ought to be only used for
unbiased estimators and under sufficiently regular digiohs of the measurements. Fortunately, these technical
conditions are satisfied in practice and due to the propésdy the bias contribution is often weak w.r.t. the
variance term in the mean square error (28) fors- 1, the CRB that lower bounds the covariance matrix of
any unbiased estimators is used to lower bound the MSE maitriany asymptotically unbiased estimédtor

E[(@ - a)(@ - a)'] > CRB(a) (29)
with CRB(«) is given under weak regularity conditions by:
CRB(a) = FIM !(a), (30)
whereFIM(«) is the Fisher information matrix (FIM) given elementwise by
[FIM(a)l; = —E K%)] (31)

associated with the probability density functip(x; o) of the measurements = [x” (1), ...,x” (tn)]7.

The main reason for the interest of this CRB is that it is ofiegmptotically (when the amom¥ of data is
large) tight, i.e., there exist algorithms, such that tleelsastic maximum likelihood (ML) estimator (see IV-B),
whose covariance matrices asymptotically achieve thimto&uch estimators are said to be asymptotically
efficient. However, at low SNR and/or at low numbh®rof snapshots, the CRB is not achieved and is overly
optimistic. This is due to the fact that estimators are galhebiased in such non-asymptotic cases. For these
reasons, other lower bounds are available in the literating are more relevant to lower bound the MSE
matrices. But unfortunately, their closed-form expressiare much more complex to derive and are generally
non interpretable (see e.g., the Weiss-Weinstein boun@ii).[

In practice, closed-form expressions of the FIM (31) ardialift to obtain for arbitrary distributions of
the sources and noise. In general, the involved integrata@n(31) are solved numerically by replacing the
expectations by arithmetical averages over a large humbeomputer generated measurements. But for
Gaussian distributions, there are a plethora of closeu-fexpressions o€RB(0) in the literature. And the
reason of the popularity of this CRB is the simplicity of thiMFor Gaussian distributions of.

1) Gaussian stochastic cas@®n way to derive closed-form expressions(@RB(0) is to use the extended
Slepian-Bangs [77], [7] formula, where the FIM (31) is givelementwise by

OR OR
T R- 1 T
60&]g r 60&1

[FIM(av)]k,; = 2Re + Tr [ R, ! (32)

for a circulaP GaussianV¢(m,; R,) distribution ofx. But there are generally difficulties to derive compact
matrix expressions of the CRB for DOA parameters alone gihwen

CRB(0) = [FIM (o)) w:n.1:p)

“Note that for for finitelV, the estimato& is always biased and (29) does not apply. Additionally, éxaestimators may exist whose
MSE matrices are smaller than the CRB (see, e.g., [83]).

°Note that this Slepian-Bangs formula has been extendedroincalar GaussiaWc (m,; R, C..) distribution in [22] where (32)

becomesFIM (e, = (42)" Ry &me 4 4y [ReR; 1 SRR with ms 2 (m, miT)T andR; & {g ool

Doy oy dayp ~ T Oy
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with o = (87, 37)T where 3 gathers all the nuisance parameters (in many applicatimmg,the DOAs are
of interest). Another way, based on the asymptotic effigieoicthe ML estimator (under certain regularity
conditions) has been used to indirectly derive the CRB onDd& parameter alone (see 1V-B).

For the circular Gaussian stochastic model of the souraesdimced in Subsection [I-B, compact matrix
expressions offRB(6) have been given in the literature, when no a priori inforomatis available on the
structure of the spatial covarian& of the sources. For example, Storegal. [87] have derived the following
expression for one parameter per source and uniform whiser(@e.,R,, = o2I)

2 -1
CRBcg(6) = ;—]% {Re [(DH I,D) © (R,AY R;lARS)T” , (33)
where ® denotes the Hadamard product (i.e., element-wise muiipdin), IT, is the orthogonal projector
on the noise subspace, i.dL, = 15 < I - A(A#A)"'A# andD ¥ djl(fll),..., dzggpp) . We note the

surprising fact that when the sources are known to be cohérenR; singular), the associated Gaussian CRB
CRBc¢(0) that includes this prior, keeps the same expression (33) [85

As is well known, the importance of this Gaussian CRB formiida in the fact that circular Gaussian data
are rather frequently encountered in applications. Armathportant point is that under rather general conditions
that will be specified in Subsection IV-B, the circular compiGaussian CRB matrix (33) is the largest of all
CRB matrices among the class of arbitrary complex distidimst of the sources with given covariance matrix
R, (see, e.g., [86, p. 293]). Note that many extensions of (28 tbeen given. For example this formula has
been extended to several parameters per source (see e.§pdéndix.D], to nonuniform white noise (i.e.,
R, = Diag[o?,...,03,] and unknown parameterized noise field (iR.,, = (o)) in [65] and [105], [39],
respectively. Due to the domination of the Gaussian digtidn, these bounds have often been denoted in the
literature as stochastic CRB (e.g., in [63]) or uncondiio@RB (e.g., in [81]), without specifying the involved
distribution.

Furthermore, all these closed-form expressions of the CRE: lbeen extended to the noncircular Gaussian
stochastic model of the sources in [22], [2] and [4, ApperBxgiven associate@RBncq(0) expressions
satisfying

CRBnca(0) < CRBcc(0)
corresponding to the same covariance maRix For example, for a single source, with one paraméier

CRBnce(61) decreases monotonically as the second-order noncirguleate v, (defined byE|s?(t)] =
1% E[s2(t)] and satisfying) < +; < 1) increases from 0 to 1, for which we have, respectively,

1 (1 [0 1 o L (L [ Lo
Bog(h) == — | 2+ ——5—2 Brea(0) =5\ 7, 152+ 2a@)E of 3
CRBoc(01) = 7 <h1 L% ! Ha(el)H?ai‘D’ CHBrecl®) =y <h1 L% +2Ha(91>H2ff?D’ o

whereh; is the purely geometrical factdrd"‘;@(f1)l'IE{1 dz(:ll) with Hjl def y M— %ﬁ;ﬁfl)

If the source covarianc® is constrained to have a specific structure, al.e., if a pdorR; is taken
into account), a specific expression GRBc (0), which integrates this prior ought to be derived, to assess
the performance of an algorithm that uses this prior. Bubtohately, the derivation o€ RBcg(0) is very
involved and lacks any engineering insight. For examplegiwit is known that the sources are uncorrelated,
the expression given in [44, theorem 1] 6RBc¢(0) includes a matrixB, defined as any matrix, whose
columns span the null space f*(6;) ® a(6;),...,a*(0p) ® a(dp)]. And to the best of our knowledge no
closed-form expression @fRBc (@) has been published in the important case of coherent sowbes the
rank of R; is fixed strictly smaller tharP.

Finally, note that the scalar field modeling one componerglettromagnetic field or acoustic pressure (1)
has been extended to vector fields with vector sensors, vasseiated stochastic CRBs for the DOA (azimuth
and elevation) alone have been derived and analyzed forgéessource. In particular, the electromagnetic (six
electric and magnetic field components) and acoustic (thetecity components and pressure) fields have been
considered in [62] and [42], respectively.
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2) Gaussian deterministic casé:or the deterministic model of the sources introduced ins8ation 11-B,
the unknown parametex of R, is now

T
o = [91,...,9p,{Re[ST(tn)],Im[ST(tn)]}n:Lm’N,Jrﬂ . (35)
AS(tl)
Applying the extended Slepian-Bangs formula (32) to theutar GaussianN¢ : 02Ty
AS(tN)

distribution of x, Stoicaet al. [81] have obtained the following CRB for the DOA alon€RBp.(0) =
% {Re [DFI,D © R, ]} ', whereR, y % L SN (1,,)s” (t,). Furthermore, it was proved in [80] that

n=1
CRBpet(0) decreases monotonically with increasiig (and M). This implies, that if the sourcegt,) are
second-order ergodic sequencBs,y has a limitR; when N tends to infinity, and we obtain for larg¥, the

following expression denoted in the literature as deteisticdCRB or conditional CRB (e.g., in [81])

CRBpet(0) = % {Re [(DPTI,D) o R,]} . (36)

Finally, we remark that the CRB for near-field DOA localizatihas been much less studied than the far-
field one. To the best of our knowledge, only papers [28], |8l £7] have given and analyzed closed-form
expressions of the stochastic and deterministic CRB, aritddtmore in the particular case of a single source
for specific arrays. For a ULA where the DOA parameters areattimuthé and the range-, based on the
DOA algorithms, the steering vector (2) has been approxthat [28] by

80, P, ar = R,

wherew and¢ are the so-called electric angles connected to the physizameters andr by w = 27rAiO sin(6)
d2

and¢ = w5 cos?(6). Then in [8], the exact propagation model

j2mr (/14 20m=1)dsin®) | (m—1)2d? _1>
[a(e’r)]mil,...M = 62 Po <\/ r 2 ’

has been used, that has revealed interesting features &@ngr@tations not shown in [28]. Very recently, the
uniform circular array (UCA) has been investigated in [27)which the exact propagation model is now:

. 2
(W 1270 cos(0- 52 sin(o)+ 1)

[a(9’¢’r)]m:1,,,,M =€ ,

whererg, 6 and ¢ denote the radius of the UCA, the azimuth and the elevatioth@fsource. Note that in
contrast to the closed-form expressions given in [28] afdtf@ ones given in [27] relate the near and far-field
CRB on the azimuth and elevation by very simple expressions.

3) Non Gaussian caseThe stochastic CRB for the DOA appears to be prohibitive tmmate for non-
Gaussian sources. To cope with this difficulty, the deteistimmodel for the sources has been proposed for its
simplicity. But in contrat to the stochastic ML estimatdretcorresponding deterministic (or conditional) ML
method does not asymptotically achieve this determiniSRRB, because the deterministic likelihood function
does not meet the required regularity conditions (see &tibsdV-B). Consequently, this deterministic CRB is
only a nonattainable lower bound on the covariance of anyaseld DOA estimator for arbitrary nonGaussian
distributions of the sources. So, it is useful to have expégpressions of the stochastic CRB under non-
Gaussian distributions.

To the best of our knowledge, such stochastic CRBs have oeén lgiven in the case of binary phase-
shift keying (BPSK), quaternary phase-shift keying (QPSkghal waveforms [23] and then, to arbitrakyary
square QAM constellation [9], and for a single source ontythese works, it is assumed Nyquist shaping
and ideal sample timing apply so that the intersymbol ieterfice at each symbol spaced sampling instance
can be ignored. In the absence of frequency offset but wisipte phase offset, the signals at the output of

-----
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distributed random symbols taking values for BPSK symbols and+(2k — 1)a £ i(2l — 1)a}; j—; 901
with L = 227 for L-ary square QAM symbols, wheg is the intersymbol distance in the 1/Q plane, which is
adjusted such thdt|e; (t)|? = 1. For these discrete sources, the unknown parameter ofttibastic model is

o = [91,¢1,U%,U%]T

and it has been proved in [23] and [9] that the paramétrss; ) and (07, 02) are decoupled in the associated
FIM. This allows one to derive closed-form expressions @ $lo called non-data-aided (NDA) CRBs on the
parametep; alone. In particular, it has been proved [23] that for a BP8K @PSK source, that is respectively
rectilinear and second-order circular, we have

B
CRBBPSK(el) _ 1 and CR QPSK(Hl) _ 1 37)

CRBnoc(01) (1 —g(p))(1 + 5;) CRBeca(f) — (1—g(5)(1+1)

Mo?

2
Un

whereCRBycq(01) andCRBcg(0:1) are given by (34) and with def

2
def ¢—r rtoo %

function of p: g(p) = Nord wdu. (37) is illustrated in Fig.1 for a ULA of\f sensors spaced a
T oo cosh(uy/2p) . .

half-wavelength apart. We see from this figure that the CRBdeu the non-circular [resp. circular] complex
Gaussian distribution are tight upper bounds on the CRBgwtite BPSK [resp. QPSK] distribution at very
low and very high SNRs only. Finally, note that among the nwome results of [23] and [9], these stochastic
NDA CRBs have been compared with those obtained with diffieeepriori knowledge. In particular, it has
been proved that in the presence of any unknown phase offeet fon-coherent estimation), the ultimate
achievable performance on the NDA DOA estimates holds alrties same irrespectively of the modulation
order L. However, the NDA CRBs obtained in the absence of phasetdifse, coherent estimation) vary, in
the high SNR region, from one modulation order to another.

andg is the following decreasing

ACH)

0.85 I I I I I I I
-10 -5 o 5 10 15 20 25 30

P (@B)
def Mo?

def CRB 6 .
Lef ORBarsi (1) a5 g function ofp & L

. . def
Fig.1 Ratiosr(6:) = Grpezsclu) andr (01) < SGpgess

Finally note that the ML estimation of the DOAs of these diersources has been proposed [52], where
the maximization of the ML criterion (which is rather inveld) is iteratively carried out by the expectation
maximization (EM) algorithm. Adapted to the distributiohtbese sources, this approach allows one to account
for any arbitrary noise covariand®,, as soon asi(t) is Gaussian distributed.

C. Asymptotically minimum variance bounds (AMVB)

To assess the performance of an algorithm based on a spdeifistic gn built on {x(¢)}s, . +,, it is
interesting to compare the asymptotic covariaRge(21) or (23) to an attainable lower bound that depends on
the statisticgy only. The asymptotically minimum variance bound (AMVB) iscé a bound. Furthermore, we
note that the CRB appears to be prohibitive to compute for@auossian sources and noise, except in simple
cases and consequently this AMVB can be used as an usefuhinanic against which potential estimaigs
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are tested. To extend the derivations of Porat and Friedlal@8] concerning this AMVB to complex-valued
measurements, two additional conditions to those intreduo Subsection I1I-A1 must be satisfied:

(iii) the involved functionalg that defines the considered algorithm must®edifferentiable, i.e., must
satisfy (22). In practice, it is sufficient to add conjugatemponents to all complex-valued componentgpf
as in example (41);

(iv) the covarianceR, of the asymptotic distribution ofy must be nonsingular. To satisfy this latter
condition, the components agfy that are random variables, must be asymptotically lineardependent.
Consequently the redundanciesgry must be withdrawn. R

Under these four conditions, the covariance maRix of the as%/mptotic distribution of any estimat@y
built on the statisticgy is bounded below byG” (6)R,'G(0))

a a _ —1
Ry = DX%R,(D25)" > (G"(O)R,'G(9)) (38)

whereG(0) is the L x P matrix d’i—%‘”.
def

Furthermore, this lowest bound AMV(B () = (G#’i’(@)R;lG(@))*1 is asymptotically tight, i.e., there
exists an algorithnalg whose covariance of its asymptotic distribution satisf88 (vith equality. The following
nonlinear least square algorithm is an AMV second-ordeorélgm.

O = arg min [gy — g(a)] "R (o) gy — g(a)], (39)

where we have emphasized here the dependend®,obn the unknown DOA«. In practice, it is difficult
to optimize the nonlinear function (39), where it involvéx® tcomputation oR;l(a). Porat and Friedlander
proved for the real case in [35] that the lowest bound (38)Iss abtained if an arbitrary weakly consistent
estimateR, x of Ry(a) is used in (39), giving the simplest algorithm:

~

Oy = arg min [gy — g(@)]"Ry,v[gy — g(e)). (40)

This property has been extended to the complex case in [69].

This AMVB and AMV algorithm have been applied to second-oralgorithms that exploit botlR, y and
C,,~ in [21]. In this case, to fulfill the previously mentioned abions (i-iv), the second-order statistigs;
are given by

vec(Ry )
gN = v(Cz,N) ) (41)
v(Cin)

wherev(.) denotes the operator obtained frorc(.) by eliminating all supradiagonal elements of a matrix.
Finally, note that these AMVB and AMV DOA finding algorithm Ve been also derived for fourth-order
statistics by splitting the measurements and statigfigsnto its real and imaginary parts in [69].

D. Relations between AMVB and CRB: projector statistics

The AMVB based on any statistics is generally lower boundethe CRB because this later bound concerns
arbitrary functions of the measuremefts(t)};, . +,. Butit has been proved in [4], that the AMVB associated
with the different estimated projectof$,. v, (IT, v, II, ,) andII; v introduced in Subsection 11-A2, which
are functions of the second-order statistics of the meémmts, attains the stochastic CRB in the case of circular
or noncircular Gaussian signals. Consequently, thereyahegist asymptotically efficient subspace-based DOA
algorithms in the Gaussian context.

To prove this asymptotic efficiency, i.e.,

AMVBveC(Hw,N)(O) = CRBcq(0) (42)
and
AMVB, .1, 11 ,)(0) = AMVByeeq, ,)(8) = CRBxcc(6), (43)

z,N
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the condition (iv) of Subsection IlI-C that is not satisfiel] for these statistics ought to be extended and
consequently the results (38) and (39) must be modified als bedause her®, is singular.

In this singular case, it has been proved [1] that if the ctmdli(iv) in the necessary conditions (i-iv) is
replaced by the new conditidfpan(G(0)) C Span(R,(0)), (38) and (39) becomes respectively

R, = DY%R,(D%)" > (GH(O)RfG(H))A (44)
and R
Oy = arg min gy — g(e)]"RY (@) [gn — g(e)). (45)

And it is proved that the three statistiesc(IT, ), vec(IL, n,II, ) and vec(II; x) satisfy the conditions
(i,ii,iii,v) and thus satisfy results (44) and (45). ’

Finally, note that this efficiency property of the orthogbpaojectors extends to the model of spatially
correlated noise, for whiclR,, = 02X, where X, is a known positive definite matrix. In this case, for
example, the orthogonal projectdl,, n defined after whitening

satisfies

2

AMVBL 1., ) (6) = ORBEG(6) = o {Re[(DFTL, D) & (R.AYR;AR,)| L

whereIl,, % 51— R-1A(A#X 1A)~'5-HAH is insensitive to the choice of the square radY > of

3,., and is no longer a projection matrix.

IV. ASYMPTOTIC DISTRIBUTION OF ESTIMATEDDOA

We are now specifying in this section the asymptotic siatisperformances of the main DOA algorithms that
may be classified into three main categories, namely beamrigrbased, maximum likelihood and moments-
based algorithms.

A. Beamforming-based algorithms

Among the so-called beamforming-based algorithms, aléermexl to as low-resolution, compared to the
parametric algorithms, the conventional (Bartlett) beamming and Capon beamforming are the most referenced
representatives of this family. These algorithms do noteraky assumption on the covariance structure of the
data, but the functional form of the steering vecif) is assumed perfectly known. These estimathisare
given by theP highest (supposed isolated) maximizer and minimized iof the respective following criteria

all(a)Rya(a) and a(a)R;'a(e) (46)

whereﬁx is the unbiased sample estim®e. y and R;! is either the biased estimaRe;}V or the unbiased
estimate[(N — M)/N|R}, (that both give the same estimafig;). Note that these algorithms extend do
parameters per source, wherds replaced by = (a1, ...,aq) in (46).

For arbitrary noise field, (i.e., arbitrary noise covariait;,) and/or an arbitrary number of sources, the
estimatef  given by these two algorithms are nonconsistent, i.e.,

Jim B £

and asymptotically biased. The asymptotic a$ias(€) can be straightforwardly derived by a second-order
expansion of the criterioa” (a)RSa(a) around each true valugsy)p=1,..p (With € = +1 [resp.,e = —1]
for the conventional [resp. Capon] algorithm), but notihgttlim . E(6, ) is @ maximizer or minimizer
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0, of al’(a)R,a(a) or a’’ ()R, *a(«), respectively. The following value is obtained [91]

Rela'"(6,)Rga(d,)]
a'f(0,)R5a/(0),) + Re[a (0,)Rga” (6))]

AsBias(0),) CF im E(H N) —b0p=—

N—oo

(47)

with a(6,) < 227) anda”(g,) € <2 2,
Following the methodology of Subsection I1I-A2, the adulital bias for finite value ofV, that is of order
1/N can be derived, which gives

) . b 1
E(0, n) — 0, = AsBias(0,) + Np + O(N)’
see e.g., the involved expressionigffor the Capon algorithm [91, rel. (35)].

In the same way, the covarian&g(6y — E(ON))(GN E(ON)) | which is of orderl /N can be derived.

It is obtained withd ! [01,...,0p]"

By — B(Bx))@x — E@x))"] = El@y - 0)@x — 8] + o) = 2 1 o(+).

see e.g., the involved expression [42, rel. (24)Rof associated with a source for several parameters per source.
The relative values of the asymptotic bais, additional lsiad standard deviation depend on the SNRand
N, but in practice the standard deviation is typically dominaver the asymptotic bais and additional bias
(see examples given in [91]).

Finally, note that in the particular case of a single souncéform white noiseR,, = aQI) and an arbitrary
numberd of parameters of the source (hete= (1, ...,0,4)7), it has been proved [38], thﬂtN given by these
two beamforming-based algorithms is asymptotically useia@AsBias(6,) given by (47) is zero), if and only
if [|a(@)|| is constant. Furthermore, based on the general expresgighsf the FIM

2Not
on (o7 + [la(@)|?03)
whereD(0) is defined here byoa(0)/00,,--- ,0a(0)/00,], for d parameters associated with a single source,

and expression [42, rel. (24)] &, specialized tdR,, = ¢21, it has been proved th%Rg = FIM1(0), i.e.,
the conventional and Capon algorithms are asymptoticdfigient, if and only if ||a(@)|| is constant.

FIM(0) = Re [||a(6)[|*D(8)"D(0)-D(8)"a(6)a (6)D(0)] (48)

B. Maximum likelihood algorithms

1) Stochastic and deterministic ML algorithm#és discussed in Subsection II-B, the two main models for
the sensor array problem in Gaussian noise, correspondirsothastic and deterministic modeling of the
source signals lead to two different Gaussian distribstiohthe measuremen{s(t)}, .. +,, and consequently
to two different log-likelihoodd(a) = In p(x; ), where the unknown parameter is respectively given by
(4) and (35).

With some algebraic effort, the stochastic ML criteriéfax) can be concentrated w.rR, and o2 (see
e.g., [43],[84]), thus reducing the dimension of the regdinumerical maximization to the requirétd DOAs

(01, ...,0p) and giving the following optimization problem:

@SVML = arg min Jsmr[0, Rq v], (49)
0coP
with
JsmL[0, R n] = In[det(A(0)Rs v (0) AT (8) + o7, (0)T)], (50)
where
1
R, n(0) = A*(0)[Roy — o2 1 (O)IA#7(6) and o2 (0) = = TIX(OR.y),  (51)

®For one parameterd(= 1) or ||a(8)|| constant, (48) can be simplified by withdrawing the real afmr[67, rel. (49)].
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whereIT; (0) = I— A(8)A# () is the orthogonal projector onto the null spaceAof . Despite its reduction
of the parameter spacésnir, |6, R, v] is @ complicated nonlinear expressiordinthat cannot been analytically
minimized. Consequently, numerical optimization progeduare required.

Remark that in this modeling, the obvious a priori inforroatthatR; is positive semi-definite has not been
taken into account. This knowledge, and more generallyptiw thatR, is positive semi-definite of rank
smaller or equal tha® can be included in the modeling by the parametrizai®n= LL’/, whereL is a
P x r lower triangular matrix. But this modification will have ndfect for "large enoughV" since R, given
by (51) is a weakly consistent estimate Rf [64]. And since this new parametrization leads to signifilyan
more involved optimization, the unrestricted parametiiraof R, used in (50) appears to be preferable.

Due to the quadratic dependence of the deterministic Mlewaih /() in the parameter§s(t)}:,, . ¢y, its
concentration w.r.t{s(t)}: . andc?2 is much more simpler than for the stochastic ML criteriongiltes

the following new ML estimator AL
/G\N = arg emé)n JDML [9, Rx,N]a (52)
c P

with
JDML[G, R%N] = TI"[Hi(O)RLN]. (53)

Comparing (563) and (50), we see that the dependenéedhthe DML criterion is simpler than for the SML
criterion. But both criteria require nonlinedrth-dimentionnal minimizations with a large number of local
minima that give two different estimatés except for a single source for which the minimization of)(88d
(50) reduce to the maximization of the common criteria

aH(Q)Rz,Na(H)
la(@)*

This implies that when the norm of the steering veci¢f) is constant (which is generally assumed), the
conventional and Capon beamforming, SML and DML algorittoosicide and thus conventional and Capon
beamforming and DML algorithms inherit the asymptoticdicéncy of the SML algorithm. Note that this
property extends to several parameters per source.

2) Asymptotic properties of ML algorithmdMe consider in this Subsection, the asymptotic propertfes o
DML or SML algorithms used under the respectively, deteistin and circular Gaussian stochastic modeling
of the sources. In the field of asymptotic performance charaation of DML or SML algorithms, asymptotic
generally refers to either the numbat of snapshots or the SNR value.

First, consider the asymptotic properties w.h, that are the most known. Under regularity conditions that

. g . . . . ~SML . .
are satisfied by the SML algorithm, the general propertieBlbfestimation states tha,,  is consistent and
asymptotically efficient and Gaussian distributed, momecizely

VN @3~ 0) & N(0: RSMY) with REME = NCRBog(6), (54)

where CRBc(0) is given by (33). This property of the SML algorithm extendsrntonuniform white and
unknown parameterized noise field in [65] and [39], respebtj and to general noncircular Gaussian stochastic
modeling of the sources with the associateBBxcg(0) [22], [2]. Note that to circumvent the difficulty to
extract the & corner” from the inverse dFIM (), a matrix closed-form expression 6RBcq (@) has been
first obtained in an indirect manner by an asymptotic analgéithe SML estimator [81], [63]. Then, only ten
years later, this CRB has been obtained directly from theraled Slepian-Bangs formula [87], [39].

As for the DML algorithm, since the signal waveforms themsslare regarded as unknown parameters, it
follows that the number of unknown parameterg35) in the modeling, grows without limit with increasing
N, the general asymptotic properties of the ML no longer apllgre precisely, the DML estimate @ is
weakly consistent, whereas the DML estimate{seft,,) },,—1..n IS inconsistent. The asymptotic distribution

of gzML has been derived in [82], [93]

VN (@ "= 0) 5 Np(0; RPVL) (55)

-----
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with
RyMY = NCRBpet(0) + 2N?CRBpet (0)Re [(DYIL,D) ® (A" A)~"] CRBpet(6), (56)

where CRBp(6) is given by (36). Note that the inequalitg RPM < CRBpe(0) in (56) does not follow
from the Cramer-Rao inequality theory directly, becaugeG@hamer-Rao inequality requires that the number of
unknown parameters be finite. As the number of real-valuedmpaters in (35) is P+ 2N P + 1, it increases
with N and the Cramer-Rao inequality does not apply here. NotetitieaDML estimates ofs(,,)}n=1,..~

are indeed asymptotically unbiased, despite being nosistamt.

Furthermore, it has been proved in [82], that if the DML alton is used under the circular Gaussian
stochastic modeling of the sources, the asymptotic didgtab (54) of §BML is preserved. But under this
assumption on the sources, the DML algorithm is suboptiraal] thus +RPMY > CRBcq(6). Finally
comparing directly the expressions (33) and (36) of the @raRao bound by applying the matrix inversion
lemma, it is straightforward to prove thaRBcg(0) > CRBpe(8). This allows one to relat®HML, RGME,
CRBcc(0) and CRBpet (0) by the following relation:

1 1
NREML > NREML = CRBcg(0) > CRBpe(0). (57)
In particular, for a single source with parameters, we have
2
CRBeg(0) = <1 + W) CRBpei(6), (58)

with CRBcg(0) = FIM~1(0), whereFIM (@) is given by (48).

Finally, note an asymptotrc robustness %roperty [81], [6Bthe SML and DML algorithms that states that
the asymptotic distribution 09N i and BN is preserved whatever the modeling of the source: circular
Gaussian distributed witR[s(¢)s’ (t)] = R, or modeled by arbitrary second-order ergodic signals Rith=
limpy 00 % ij:l s(t,)s™ (t,). We will present a more general asymptotic robustness propleat applies
to a large category of second-order algorithms in SubsedWeC. The fact that the SML algorithm always
outperforms (forP > 1) the DML algorithm, provides strong justifications for thppaopriateness of the
stochastic modeling of sources for the DOA estimation paobl

Consider now, the asymptotic properties of the SML and DMgodathms w.r.t. SNR, used under their
respective source model assumptions. It has been provetlijnthat under the circular Gaussian assumption

~SML . . . . .
of the sources, the SML estimatés;, is asymptotically (w.r.t. SNR) non-Gaussian distributed axon-
_ . -~ ~SML . L . . . . .
efficient, i.e.,0,, d_ef 1 -0y —0) converges in distribution to a non-Gaussian distributiwhen o,, tends

to zero, with N frxed wrth limy, 0 E[6,, 0 ] > limg, 0 2 oz CRBcc(0). In practice, @?\}ML is non-Gaussian
distributed and nonefficient at high SNR, onIy for a very ‘dmalmber N of snapshots For example, for a
single source, using (37), it is proved in [71] that

~T N N 1
ghrBoE[a o) = =7 Jm, U_CRBCG(Q) N— <Nhlo%> ’
(see (34) for the second equality), whergis defined just after (34). These properties contrast wighRIML

algorithm used under the deterministic modeling of H]Le sesir which is proved [70] to be asymptotically
(w.r.t. SNR) Gaussian distributed and efficient, i--( Oy —0) 5 Ng (0; 7 {Re [(DTI,D) ® R,] }_1)
or

whenao,, tends to zero, withV arbitrary fixed. These results are consistent with those3df. [In practice
very high SNR and "not too smallV, (57) becomes

NRDML RgML = CRBcg(0) ~ CRBpe(0). (59)

’In practice the approximate covariances deduced from thegstic analysis w.r.t. the number of snapshots are ald fer high
SNR with fixed "not too small number" of snapshots for the seeorder DOA algorithms. But note that there is no theoattiesult
on the asymptotic distribution of the sample projectortwthe SNR.
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Furthermore, it has been proved in [81], that (59) is alsadviar A/ > 1. The asymptotic distribution of the
DOA estimate w.r.tM (for finite data) of the SML and DML algorithms has been stddie [96]. The strong
consistency has been proved for both ML algorithms. Funtioee, unlike the previously studied large sample
case, the asymptotic covariance matrices of the DOA estgnavincide with the deterministic CRB (36) for
the SML and DML algorithms. The asymptotic distribution dietDOA estimates given by subspace-based
algorithms has been studied in [92], wh&h N — oo, whereas\//N converges to a strictly positive constant.
In this asymptotic regime, it is proved, in particular, thlagse traditional DOA estimates are not consistent.
The threshold and the so-called subspace swap of the SML &8l algorithms have been studied w.Rf,
M and SNR (see e.g., [45]). Furthermore, a new consistenpacbshased estimate has been proposed, which
outperforms the standard subspace-based methods fosva@ligé and N of the same order of magnitude [92].
3) Large sample ML approximationsSince the SML and DML algorithms are often deemed exceegling|
complex, suboptimal algorithms are of interest. Many sulgordghms have been proposed in the literature
and surprisingly, some of them are asymptotically as ateuas the ML algorithms, but with a reduced
computational cost. These algorithms have been derivéldereby approximations of the ML criteria by
neglecting terms that do not affect the asymptotic propenif the estimates, or by using a purely geometrical
point of view. We present this latter approach that allows tmunify a large number of algorithms [64]. These
algorithms rely on the geometrical properties of the spécecomposition of the covariance matiRy,:

R, = E,AEX + 02E, EX

with E; = [eq,...,e;], Ay = Diag(\y,...,\,) andE,, = [e,1,...,ens] Wherer is the rank ofR;, associated
with the consistent estimates

N
Row ™ £ 37 x(0)x (1) = By As By + 0% v B NE . (60)
n=1
These algorithms can be classified as signal subspace-badedbise subspace-based fitting algorithms. The
former algorithms based dspan(E,) C Span(A(€)) are given by the following optimization:

~SSF
0y = arg emé)n Tr[IT4 (0)E, yWEZ ], (61)
cor ’

where W is a weightingr x r positive definite matrix to be specified. And the latter algpons based on
EZA(0) = 0, that is valid only if the source covariance matrix is nogsilar ¢- = P), are given by

/GBESF = arg 19m(lalrl Tr[UAY(0)E, NEX yA(0)], (62)
€or ’

whereU is a weightingP x P positive definite matrix to be specified.
Introduced from a purely geometrical point of view, these talasses of algorithms present unexpected
relations with the preV|ousI¥ descrlbed ML algorithms.sEirffor arbitrary positive definite weighting matrices

W andU, the estlmateﬁN and GN given respectively by (61) and (62), are weakly conS|st§et:ond
for the weighting matrices that give the lowest covarianadrix of the asymptotic distribution 00 N " and
9 N , that are respectively given [64] by

Wopt = (As — 02D)?A;1 and U,y = A (0))E; WoptEHA#H(HO)

wheref, denotes here the true value of the DOASs, the assomateda&ese}\, anddy, N " are asymptotically
~SSF ~SML ~NSF  ~S
equivalent toON (| e,.VN@O@y —65 )—0andvN(@Oy -— GN ) — 0 in probability asN — oo0) and

thus have the same asymptotic distribution that the SMLrélgn. Furthermore and fortunately, this property
extends for any weakly consistent estimaWsy and Uy of respectivelyW,,, and U, €.9., derived from
the spectral decomposition of the sample covariance ma@trixy (60) with o2 ,; is the average of\l — r
smallest eigenvalues @&, x and with 8, is replaced by a weakly consistent estimate® ofrhis implies a
two steps procedure to run the optimal noise subspace-Iissegl algorithm Due to this drawback, the signal
subspace-based fitting algorithm with the weightMgy = (A v — an N )2A !, denoted weighted subspace
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fitting (WSF) algorithm, is preferred to the noise subspbased fitting algorithms.

Finally, note that this algorithm is based on eigenvalues$ @igenvectors of the sample covariance matrix
R, ~. This contrasts with the subspace-based algorithms wisyseotic statistical properties will be studied
in Subsection IV-D that are based on the noise or signal gathal projectodI, n associated wittR, n only.
Note that general properties of subspace-based estinfatarsed on asymptotic invariance of these estimators
have been given in [12].

C. Second-order algorithms

Most of the narrowband DOA algorithms presented in thediigne are second-order algorithms, i.e., are based
on the sample covarian®, def + N x(t,)x" (t,) or more generally oz y def + N ()% (L)
To prove common properties of this class of algorithm, it $&ful to use the functional analysis presented in
Subsection 11I-Al

al ~
{X(t)}tl,...,t,v — Rx,N é GN, (63)
in which any second-order algorithm is a mappalg that generally satisfies
alg (A(0)R,A () + o21) = 6 forany 6 € ©F, (64)

but not necessarily for alP x P Hermitian positive semi-definite matriR;. Depending on the a priori
knowledge abouRy, that is required by the second-order algorithalg different constraints are satisfied by
the C—differential matrixDj%fﬁ of the algorithm at the poinR, (22). In particular, it has been proved the
following main two constraints [19]:

D?%lig (A(@) ® A(6)) = 0 for Ry unstructured (65)
D}}lig (a(b,) ®a(d,)) = 0,p=1,..,P for Ry structured diagonal (66)

Using these constraints, the general expres®gn of the covariance of the asymptotic distribution of the
sample covariancR, y [18] obtained under mild conditions for non independent saeaments with arbitrary
distributed sources and noise of finite fourth-order momsieand the general relation (23), that links;, and
Dj%j@ to the covarianc®y of the asymptotic distribution oy, allows one to prove the following two results,
that extend a robustness property presented in [10]:

« For any second-order algorithms basedRpy, that do not require the sources spatially uncorrelated and
when the noise signalgn(t)}:, ..., are temporally uncorrelate®, is invariant to the distribution, the
second-order noncircularity and the temporal distributid the sources, but depends on the distribution
of the noise through its second-order and fourth-order nmisaén particular for circular Gaussian noise,
the asymptotic distribution ol are those of the standard complex circular Gaussian case.

« For any second-order algorithms based Rp x that require the sources spatially uncorrelated and/or
when the noise signalén(t)}:, ... are temporally correlated®, is sensitive to the distribution, the
second-order noncircularity and the temporal distributid the sources.

Note that the majority of the second-order algorithms (étgg beamforming, ML, MUSIC, Min Norm, ESPRIT
algorithms) does not require spatially uncorrelated sesirtn contrast, second-order techniques based on state-
space realizations (e.g., the Toeplitz approximation o{TAM), see [57]) and Toeplitzation or augmentation
with ULA or uniform rectangular arrays, require this un@ation, and thus the asymptotic distributionéf

will be generally (except for a single source, for which ttenstraint (66) reduces to (65)) sensitive to the
distribution, the second-order noncircularity or the temgb distribution of the sources, even when the noise is
temporally uncorrelated.

To illustrate this sensitivity to the source distributiomewn the noise is temporally uncorrelated, we consider
in Fig.2, the case of two equipowered and spatially uncateel sources impinging on a ULA of 10 sensors,
0, = 20° and 6, = 30°, where the DOAs are estimated by the standard MUSIC algordafter Toeplization.
The sources are either white Gaussian, ARMA Gaussian (gesteby a (10,10) Butterworth filter driven by
a white circular Gaussian noise, where the bandwidth is fire@.5) or harmonic. The centered frequencies
of the ARMA and the frequencies of the harmonics ar@25 and 0.25. Fig.2 shows that the Toeplization
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improves the performance for very weak SNR only, wherea®ig 8ensitive to the distribution of the sources
for high SNR.

107

10771

107

MSE

10°L

10°

10’7 i i i i i i i
-10 -5 o 5 10 15 20 25 30
SNR(dB)

Fig.2 Theoretical and estimated MSE (with 500 Monte Carlo runsy.ofrersus the SNR, for respectively white), colored (+)
and harmoniq %) signals forN = 100 after Toeplitzation (—) and without Toeplitzation (- - -)..

Usually, performance analyses are evaluated as a functit,ecnumberN of observed snapshots without
taking the sampling rate into account. In fact, dependinthenvalue of this sampling rate, the collected samples
x(t,) are more or less temporally correlated and performanceféstafi. Thus, the interesting question arises
as to how the asymptotic covariance of the DOA estimatorendted herefr) varies with this sampling
rate Ti for a fixed observation interval’ = NT. This question has been investigated in [19], in which the
continuous-time noise envelopst) is spatially white and temporally white in the bandwidthZ, +Z]. It
has been proved:

« If the signalsx(t) are oversampled¥ > B)

~ ~ 1
E[(@r —0)(0r — Q)T] ~ —Ry > =Ry for N > 1,

irrespective of the sample ratg'Ty.
« If the signalsx(t) are subsamplediﬂf < B)

. o~ T, 1 1
E[(67 —0)(0r —0)"] ~ TRG = NR@ > ﬁRg for N> 1 and BT, > 1.

Consequently the array must be temporally oversampled,th@dparameter of interest that characterizes
performance ought not to be the numlérof snapshots, but rather the observation intefval

D. Subspace-based algorithms

We concentrate now on the family of second-order algoritimased on the orthogonal nofsprojector
IT, n (10). These algorithms estimaé either by extrema-searching approaches (MUSIC, Min-Ngrrby
polynomial rooting approaches (Pisarenko, root MUSIC ammt Min-Norm for ULA), or by matrix shifting
approaches (ESPRIT, TAM, Matrix pencil method). The modelmated of these algorithms is the MUSIC
algorithm, wheref is estimated as th& deepest minima in d-dimensional (ford parameters per source) of
the following localisation functiowusic (¢, I1, v]

Juusic[d, . y] = a™ (0)TL, ya(f), (67)

8Note that sincdl, + IT: = I andII, n + HiN =1, all algorithm based on the orthogonal signal projector e®rdown to an
algorithm based on the orthogonal noise projector.
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of the so-called spatial null spectrum (or equivalently las P highest peaks (maxima) of its inverse). This
algorithm has given a plethora of variants. For examplehégdarticular case of the ULA, this standard MUSIC
algorithm have been favorably replaced by the root MUSI@atlgm. Using the general methodology presented
in Subsection IlI-A2, the asymptotic distribution 6fy given by any subspace-based algoritrmigs is simply

derived from the expression of thié—differential matrix DE"lg of the mappingII, x 2lg Oy evaluated
at IT,.(0). For example, for the standard MUSIC algorlth]ﬁMUSIC is straightforwardly obtained from the

first-order expansion o(m%(:m”)e b sy = 0 that gives for one parameter per source
=0p+00, N
df
. 1 ’ !
DNISOSIC Wlth dzll; - _h_ <(aT(‘9p) ® aH(Hp)) + (aT(HP) ®a H(Qp))) y D= 17 R P7 (68)
d? i
with a'(6,) = def da(9 ) andh, % 2a'H(6,)I,a’(6,). Using (68) with (16) and (23) allow one to directly prove

that the sequencasé_(BN 9) converges in distribution to the zero-mean Gaussian bligtan of covariance
matrix given elementwise bfR}'">'), | Re < (af?(6,;)Ua(6y,)) (a’H(Hk)Hxa'(Hl))) and compactly by

h; hy
RYVSIC = 2(HOI)'Re (Ho (ATUA)T)HOT) !, (69)

where (H),, ,, o h, and U has been defined in Subsection [lI-A2. Note that these esjmes have been
derived in [80] by much more involved derivations based om élsymptotic distribution of the eigenvectors
of the sample covariance matrR,. . Finally, note that if the sample orthogonal noise projedib, y is
replaced by an adaptive estimatbk, , of IL,, where~ is the step-size of an arbltrary constant step-size
recursive stochastic algorithm (see e.g., [16] and [17]has been proved in [16] thau/_(e -0) converges

in distribution to the zero-mean Gaussian distribution o¥aziance matrix given also bRYVSIC, whered.,

is an adaptive estimate @ given by the MUSIC algorithm based on the specific adaptitenase IT, ., of

II, studied in [16].

Using a similar approach [34], it has been proved that thet RidSIC algorithm associated with the ULA,
presents the same asymptotic distribution, but slightlpedorms the standard MUSIC algorithm outside the
asymptotic regime. This analysis has been extended to MUlEdGalgorithms applied to the orthogonal noise
projectorsII), y [resp.Il; y] associated with the complementary sample covarigigey [the augmented
sample covanancRm .~] matrices for the DOA estimation of arbitrary noncirculaedp. rectilinear] sources
[3]. Finally, note that with our general methodology, aletlexpressions of the covarianE%AUSIC can be
straightforward extended for several parameter per source R

The expression of the covariance (69) of the asymptotiaibigion of 6 given the standard MUSIC
algorithm has been analyzed in detail (see e.qg., [67], [88])particular it has been proved that the MUSIC
algorithm is asymptotically efficient for a single source, arbitrary number of parameters per source and
lla(61)]] depending or¥y, e.g., for one parameter per source

MUSIC 1 1 0721 1 0—;11
R = ORBea) = ¢ (5 |2+ i)
For several sources, the MUSIC algorithm is in general asgtigally inefficient, in particular for correlated
sources for which the efficiency degrades when the coroeldietween the sources increases. The degradation
of performances are considerable for highly correlatedcasufor any value of the SNRs. In contrast, for
uncorrelated sources, the MUSIC algorithm is asymptdyicfficient whenas? tends to zero, in the following
sensdim,2_,o[+ Ry VSIC][CRBc(0)] ! = I. So, in practice, for uncorrelated sources, the MUSIC étigor

is asymptotlcally efficient for high SNRs of all the sources.

It is of utmost importance to investigate in what region/éfand SNR, the asymptotic theoretical results
can predict actual performance. But unfortunately, onlynkéoCarlo simulations can specify this region. We
illustrate in the following the SNR threshold region for t8&IL, DML and MUSIC algorithm.

Consider two zero-mean circular Gaussian sources imginginan ULA (2) withM = 6 (for which the 3dB
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bandwidth is aboug°) and a spatially uniform white noise (3). The sousgét) consist of a strong direct path
at 6, = 0° relative to array broadside and a weaker (multipath,at 4° at —3dB w.r.t. s;(¢). The correlation

1 0.7 .
0.7 0.5]. Fig.3 shows the

root mean square error (RMSE) of the estimated D@Aoy the MUSIC algorithm w.r.t. the SNR defined by
o? /02, compared with the theoretical standard deviation (T%@(R%USIC)M and the square root of the
stochastic CRB,/CRBcc(61). We see from this figure that the MUSIC algorithm is not effitiat all for

highly correlated sources. Furthermore, the domain ofitgliof the asymptotic regime is here very limited,
i.e., for N = 1000, SNR > 30dB is required.

betweens; (t) and sy (t) is 0.99 giving thus the source covariance matk = [

. .
S I I >k RMSEnusic(@1)
e e e Ly === STDyusic(61)

VCRBca(0))

10

SNR (dB)

Fig.3 RMSE of 0 estimated by the MUSIC algorithm (averaged on 1000 runs)peoed with the theoretical standard deviation and
the square root of the stochastic CRB, as a function of the 8XRV = 1000.

With the same parameters, Fig.4 shows the RMSE of the esihOAd; by the SML and DML algorithms

which are compared with the TSR/ 5 (R§™")1.1 and |/ (RP™")11 and the square roots of the CRBs
v/CRBcg(01) and /CRBpgr(01). We see from this figure that the numerical values of the foipressions
of (57) are very close and the performance of the two ML atborg are very similar except for the SNR
threshold region for which the SML algorithm is efficient 8SNR > 0dB with N = 1000. Finally, comparing
Fig.3 and Fig.4, we see that both ML algorithms largely otfgpen the MUSIC algorithm for highly correlated
sources.

4 : : : : : : —+ RMSEpum(61)
(o] | | ! | I | | RMSEgnr, (6

10 R i R A R R T S T * - SY\A"(‘)
i B S s [ TSDca(61)
SROLTT T | 1 | i i L TSDpa(6)

STD

SNR (dB)

May 18, 2016 DRAFT



23

Fig.4 RMSE of 9, estimated by the SML and DML algorithms (averaged on 100G)rwompared with the theoretical standard
deviations and the square root of the stochastic and detestini CRBs, as a function of the SNR fé&f = 1000.

E. Robustness of algorithms

We distinguish in this subsection, the robustness of the B¥8#imation algorithms w.r.t. the narrowband
assumption and to array modeling errors, because for tlag anodeling errors, the model (1) remains valid
with a modified steering matrix, in contrast to the violatioihhnarrowband assumption, for which (1) must be
modified.

1) Robustness w.r.t. the narrowband assumptiaathe wideband assumption generally requires an increased
computational complexity compared to the narrowband oites, of interest to examine if the narrowband
methods can be used for a sufficiently wide bandwidth witheadrificing performance. Some responses to
this question have been given in [79] for symmetric spectra.vthe demodulation frequency and in [20] for
non-symmetric spectra and/or offset of the centered valubeospectra w.r.t. the demodulation frequenfgy
In these assumptions, the model (1) of the complex enveldpeeomeasurements becomes

P r+B/2 .
x() =Y [ " ally. o+ N () + no) (70)
»—1/-B/2
wherea(6,, v) W (e2mmn L e2mmns] T (with a(0,, fo) = a(0,)) and p,(f) is the spectral measure of the

pth source. Using the general methodology explained in Suioselll-A, based on a first-order expansion of the
DOA estimated y = alg(II, ) in the neighborhood oI, (whereIl, y andII, are the orthogonal projectors
onto the noise subspace associated with the covarianceOpfafrd (1), respectively), general closed-form
expressions of the asymptotic (w.r.t. the number of snagshied source bandwidth) for arbitrary subspace-
based algorithm have been derived in [20]. It is found that blehavior of these DOA estimators strongly
depends on the symmetry of the source spectra w.r.t. thetes value and on the offset of this centered
value w.r.t.fy. It is showed that the narrowband SOS-based algorithms ach more sensitive to the frequency
offset than to the bandwidth.

In particular for source spectrés(f) symmetric w.r.t. the demodulation frequengy, it is proved that
the estimated DOAs given by any narrowband subpace-bagedtaim are asymptotically unbiased w.r.t. the
number of snapshots and signal bandwidth. More precisely

E(Oy)—6 = Gj) b2l& 1 O G:) +0(N)

where £, [ffB Se(f)f2df/ f_BB S.(f)df]*/? is the definition used for the bandwidth. Furthermore, for a
single sourceR, = R, © a(f1)a’’(6;) + 021, where the nuisance parameters are now the terms of the
Hermitian matrixR,, ando?. This new parameterization allows to derive the circulau&san stochastic CRB
issued from a non-zero bandW|d@RBNZB(01). It is related to the standaldRBcc(61) by the relation

ensigon = cnseoy (1-0¢() +0 (5)).

where the expression afis given in [20].

2) Robustness to array modeling errorBnprecise knowledge of the gain and phase characteristitiseo
array sensors, and of the sensor locations and possibleahadupling, can seriously degrade the theoretical
performance of the DOA estimation algorithms. Experimesystems attempt to eliminate or minimize these
errors by careful calibrations. But even when initial cedifion is possible, system parameters may change over
time and thus the array modeling errors cannot be complelahinated. Consequently, it is useful to qualify
the sensitivity of the DOA estimator algorithms to these wlod) errors, i.e., to study the effect of difference
between the true and assumed array manifel),6 € ©} caused by modeling errors, on DOA estimator
algorithms. This analysis has received relatively littteeation in the literature.
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In these studies, to simplify the analysis, the covarianegrimmR, is assumed perfectly known, i.e., the
effects of a finite number of samples is assumed negligibét.~L gather the array parameters which are
the subject of the sensitivity analysis. For exampjemay contain the sensors gain, phases or location, or
other parameters such as the mutual coupling coefficientaeofirray sensors. A DOA estimation algorithm
uses the steering matriA(6,~,) = [a(01,7y),..-.a(fp,)], corresponding to a nominal valug, of the
array parameters that differs from the true steering mairi®, v), where~y is slightly different from~, (see
particular parameterizations studied in [36] and [30]). M&er to the difference between the true and assumed
array parameters as a modeling error. The sensitivity stiidy particular DOA estimation algorithm consists
to provide a relation betweei® = 6., — 6 and the modeling erra¥y = v — = in the mapping

alg(v,)
R.(7) = A(0,7)RAM(0,7) + 021 "% 0, (72)
where naturalyR (7y,) a}ﬂ‘)) 0, if alg(y,) denotes an arbitrary second-order algorithm based on timénad

array. Using a first order perturbation of (71) in the neighiood ofv,, through those of the orthogonal projector
on the noise subspadé&,(v), a relationd@ = h(d~) + o(é-) whereh is linear has been given for the MUSIC
and DML algorithms in [36], [90] and [37], respectively. Beeworks model the error&y by zero-mean
independent random variable&y(= o,u whereu is a random vector whose elements are zero-mean unit
variance random variables). They lead to estimates thaagpeoximatively unbiased (i.ek(65) — 0 = o(0-))

and where their approximative variances depend only on d¢oersl-order statistics of the modeling errors
(more preciselyVar (6, ) = cpa$ + o(o—g), p = 1,..., P). However, by confronting these theoretical results
with numerical experiments, one notices that the MUSIC amdlalgorithms are biased in the presence of
multiple sources and these theoretic and experimentaivees do not agree with larger modeling errors. More
precisely, these theoretical results are valid only up ephbint where the probability of resolution is close to
one (see [31)).

To take into account these larger modeling errors, a morarate relation betweefi® and §~, based on
a second-order expansion ®f,(v) around~y, (provided by a recursiveith order expansion ofIL, w.r.t.
6R, [51]) as been given in [31] and [32] for analyzing the sew#itiof the MUSIC and DML algorithms
to larger modeling errors. Modeling the errarg as previously, an approximation of the biEgf,) — 6 that
depends on the second-order statistics of the modelingseramd of the variance that now depends on the
fourth-order statistics of the modeling errors, are givEimese refined closed-form expressions can predict the
actual performance observed by numerical experimentsafget modeling errors, in particular in the threshold
regions of the MUSIC and DML algorithms.

Note that the sensitivity of DOA estimators to modeling esrof the noise covariance matrix, that includes
the presence of undetected weak signals, has also beerdsindihe literature (see e.g., [94]). Finally, note
that the combined effects of random array modeling errodsfanite samples have been analyzed for the class
of so-called signal subspace fitting (SSF) algorithms in.[@b addition to deriving the first-order asymptotic
expressions for the covariance of the estimation error,dafitianal weighting matrix has been introduced in
(61) that has been optimized for any particular random amagleling errors.

F. High-order algorithms

When the sources are non Gaussian distributed, they combesgihle statistical information in their moments
of order greater than two (this is in particular true when sidaring communications signals). In these
circumstances, it makes sense to consider DOA estimaticdmigues using this higher order information.
Of particular interest are the algorithms based on highderocumulants of the measuremefigt)}:, .+,
due to their additivity property in the sums of independeminponents. Furthermore, these cumulants show
the distinctive property of being in a certain sense, ingigesto additive Gaussian noise, making it possible
to devise consistent DOA estimates without it being neagstgaknow, to model or to estimate the noise
covarianceR,,. As generally, the distributions of the sources are evegir thdd order moments are zero and
thus to cope with these signals, only the even high-orderutamts of the measurements are used.

Computational considerations dictate using mainly fowrtler cumulants. To use these approaches, we
consider the assumptions of Subsection II-B, in which wethdtthe sources,(t)},=1,... p have nonvanishing
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fourth-order cumulants. Furthermore, we assume that thements are finite up to the eighth-order, to study
the statistical performance of these algorithms.

Of course, there are many more quadruples than pairs of dadiand consequently a very large
number of cumulantsCum(xi(t),xj(t),x;;(t),xl(t)), i,j,k,l = 1,...,M for circular sources (and more,
Cum(z;(t), z}(t), zx(t), z(t)) and Cum(z;(t), z;(t), zx(t), z:(t)), i, 4, k, 1 = 1,..., M for noncircular sources)
can be exploited despite their redundancies, to identiéyDIOA parameters with unknown noise covariance.
For example, for circular signals, the maximum set of noanednt cumulants is

Cum(w;(t), 2} (1), v (t), 7 (1)) with 1 <i <M, 1 <1 <4, 1 <j<iandl <k <j.

The asymptotically minimum variance (AMV) algorithm (seabSection IlI-C) based on a subset of fourth-
order cumulants that can identify the DOA parameters, iswthdinear least square algorithm (40) in whigh
gathers the involved cumulants. To implement this AMV alidjon, one has to decide which cumulants should
be included ingy. The best estimate would be obtained when all nonredundantiiants are selected. This,
however, may require excessive computationd/ifis large. However it is sufficient to deal with a reduced
set of cumulants, although there do not seem to be any simptielgnes in this matter [69]. In practice, a
good tradeoff between computational complexity and aaguigto devise suboptimal algorithms that require
an overall computational effort similar to the second-omgorithms, while retaining a fourth-order cumulants
subset, sufficient for DOA indentification. Such algorithimeve been proposed in the literature such as the
diagonal slice (DS), the contracted quadricovariance (@ the so called 4-MUSIC [69] algorithms. The
first two algorithms are fourth-order subspace-based iitgos built on the following rank defectivé/ x M
matrices

(Q2%)i; = Cum(z;(t),z} (1), @} (t), z;(t))
M

QS5 = 3 Cumlai(t), 2} (6), a5 (1), 2 ().
m=1

They requireP < M sources and their statistical performance has been amhlyzfl1] with the general
framework explained in Subsection IlI-A. In particular,ist has been proved that for a single source and a
ULA in spatially uniform white noise, these two fourth-orddgorithms have similar performance to the MUSIC
algorithm, except for low SNR, for which the MUSIC algoritroatperforms both fourth-order algorithms. The
4-MUSIC algorithm is built from the rank defectivi/? x M? matrix

QMUY oy a-nm = Cum(a; (8), 25 (t), 2} (), m (1))
It is proved in [69] that
Q; MUSIC = [A%(0) ® A(0)]Q.[A*(0) ® A(0))7,

where (Qq)ir(j—1)pr+-1p = Cum(si(t), s¥(t), s;(t), si()), i,4,k, 1 = 1,..., P. Q3 MUSI% is indefinite in
general and its rank igle rg where theP sources are are divided i@ groups, withr, in the gth group.
The sources in each group are assumed to be dependent, whilees belonging to different groups are
assumed independent. Because the vecit(8,) ® a(d,), p = 1,..,P are P columns of A*(0) ® A(9),
the 4-MUSIC algorithm is obtained by searching tRedeepest minima of the following localisation function
Js-music |0, TLz N]

Janusicld, T, v = [a*(0) @ a(0)] " T1, y[a*(0) @ a(6)], (72)

whereTI, v is now, the orthogonal projector onto the noise subspactefsample estimat€’ MUSIC of

QA~MUSIC | practice the statistical dependence of the sourcesraoeown. [69] has proposed to retain only
M? — P2, ratherM? — Zle rg eigenvectors corresponding to the smallest singular BMQ‘;;@AUSIC. We

note that, to the best of our knowledge, no complete staisgierformance analysis of this algorithm has yet
appeared in the literature. Despite its higher variancet(vthe MUSIC algorithm under the assumption of
spatially uniform white noise), this fourth-order algbrit presents some advantages, aside from its capacity

to deal with unknown Gaussian noise fields. Using the concoépirtual array, it is proved in [13] that this
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algorithm can identify up talM/?> — M sources when the sensors are identical and up/to— 1 sources

for different sensors. Furthermore, it is shown that itoh&son for closely spaced sources and robustness to
modeling errors is improved with respect to the MUSIC altdion. To increase even more its number of sources
to be processed, resolution and robustness to modelingsgaxtensions of this 4-MUSIC algorithms, giving
rise to the 2-MUSIC (with ¢ > 2) has been proposed [14].

V. DETECTION OF NUMBER OF SOURCES

One of the more difficult and critical problems facing passsensor arrays systems is the detection of
the numberP of sources impinging on the array. This is a key step in mosthef parametric estimation
techniques that were briefly described in Section IV. Thesmitecomposition based techniques require in
addition, information on the dimensionof the signal subspace. If the source covariaRgehas full rank, i.e.,
there are no coherent sources preséhgndr are identical. Moreover, the solution of the detection pgob
has, in many cases, value of its own, regardless of the DO/asbn problem.

A natural scheme for detecting the numtrf sources is to formulate a likelihood ratio test based @n th
SML estimator (49). Such a test is often referred to as a gdined likelihood ratio test (GLRT). This test can
be implemented by a sequential test procedure (see e.q.Sf#4 4.7.1]). For each hypothesis, the likelihood
ratio statistic is computed and compared to a threshold. ddoepted hypothesis is the first one for which
the threshold is crossed. The problem with this method isstiigective judgment required for deciding on
the threshold levels or the associated probabilities afefallarm related by the asymptotic distribution of the
normalized likelihood ratio.

Another important approach to the detection problem is f@ieation of the information theoretic criteria
for model selection. Unlike the conventional hypothesstitg based approaches, these criteria do not require
any subjective threshold setting. Among them, the minimwscdption length (MDL) criterion introduced by
Schwartz and Rissanen [73] is the most widely used becauigs obnsistency. This technique has been used
for detecting the signal subspace dimensid®9], and also for detecting the number of sourée§l01]. We
concentrate now on the detectionof

A. MDL criterion

The information theoretic criteria approach is a generatho for detecting the order of a statistical
model. That is, given a parameterized probability densitycfionp(x; a(")) for various order, detect such
that 7 = argmin,{—In[p(x; ayp)] + g(r)}, whereayy; is the ML estimate ofa(™) and g(r) is a penalty
function. For the MDL criterion which is based on a partieyt@nalty function; is given for N independent

identically distributed measurementst,,), by
= arg mrin [— In (p(x; a(k?L)) + %card(am) In(N)|, (73)

where card(a(”)) denotes the number of free real-valued parameters(ih. Depending on the distribution
of the measurements and its parametrizatiom, different implementations of the MDL criterion have been
proposed.

The most often used assumption, is the zero-mean circularsstn distribution associated with the
parametrization (1) in which all the elements of the stapmnmatrix A are assumed unknown with the only
restriction thatA has full column rank with\/ > P. For this modeling, the measurements can be parameterized
by the parameter

r T T 21T
o) = VI Vi s ALy ey Ay 0]

where; > .. >\, > o—,% = ..,o—,% are the eigenvalues @&, andvy,...,v,, the eigenvectors associated with the
largestr eigenvalues, and the general MDL criterion (73), which femed to as the Gaussian MDL (GMDL),
becomes [99]

. a\ 1
7= Argmin A, with A, % N(M —r)In (f-) +5r(2M — )l N, (74)
T

9r

May 18, 2016 DRAFT



27

with @, 9 2 M\ and g, def | /) where Xy > Ay > ... > Ay are the eigenvalues of

the sample covariance matrik SN x(tn)x(t,), denoted here bR.,.

B. Performance analysis of MDL criterion

This GMDL criterion has been analyzed in [106], and it hasnbgt®own to be a consistent estimator of the
rank r, i.e., the probability of error decreases to zero as the mumbof measurements increases to infinity.
Moreover, under mild regularity conditions, like finite s&cl moments, it is a consistent estimator of the rank
r, even if the measurements are non-Gaussian. This propentyasts with the Akaike information criterion
(AIC) that yields an inconsistent estimate of that tendgngsotically, to overestimate [99].

The GMDL criterion has been further analyzed by considetirgevents” < » and7 > r, called underes-
timation and overestimation, respectively. Si’m@)r:o,..,M_1 are functions of the eigenvalue&-)i:L,,,M of

~

R, the derivation of the probabilitieB (7 > r) and P( < r) needs the joint exact or asymptotic distribution of
(Xi)i=1,..m. This asymptotic distribution is available for circularnsplex Gaussian distribution [6] and more
generally for arbitrary distributions with finite fourttrder moments [26], but unfortunately, the functional
(Ar),—o ar—q (74) is too complicated to infer its asymptotically distriton. Therefore, for simplifying the
derivation of these probabilities, it has been argued [RH] and [104] by extended Monte Carlo experiments
(essentially forr = 1 andr = 2) that

Pr>r)~P(r=r+1)~P(Ay1 <A,) and P(r<r)=P(r=r—1)~ P(A_1 < A;). (75)

As the probability of overestimation is concerned, exaal approximate asymptotic upper bound of this
probability have been derived in [104] showing that gerer@(7 > r) < 1. Therefore, only the probability
of underestimation has been analyzed by many authors. ticylar, using the refinement introduced by [41]
~y_ 1 o v TEUE SR S o VAN
E(a,) = M — T(Tr(Rm) - ;E()‘z)) =op,t+ M—r ;()‘z E(\))

of the classical approximatioR(a,.) ~ o2 and the asymptotic bais (18) and covariance (19), a closed-f
expression of the probability of underestimation givenlwy GMDL criterion, used under arbitrary distributions
with finite fourth-order moments, has been given in [26].sThkpression has been analyzed o= r = 1
and P = r = 2 for different distributions of the sources in [26]. Fig.fustrates the robustness of the MDL
criterion to the distribution of the sources. We see frons fiqure that the probability of underestimation is
sensitive to the distribution of the source, particulady $ources of large kurtosis and for weak values of the
numberN of snapshots.

circ. Gauss. (th)

0.9 5K : R N\ ; *  circ. Gauss. (est)
: \ N BPSK (th)
084 % 20N © BPSK (est)

——— Impulse p=10 (th)
X Impulse p=10 (est)

— - — Impulse p=20 (th)
-+ Impulse p=20 (est)

o

Probability of underestimation
o)

SNR (dB)

Fig.5 P(#=0/r =1) as a function of the SNR for four distributions of the sourttes (impulsive takes the valugs-1, 0, +1} with
P(s(tn) = —1) = P(s(tn) = +1) = ﬁ) and two values of the numbéY of snapshots, for an ULA with 5 sensors.
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The general MDL criterion has been studied in [33], wheregishe approximation (75), a general analytical
expression of?(7 < r) has been given. This expression allows one to prove thestensy of the general MDL
criterion when the number of snapshots tends to infinite aaglbdeen specialized to particular parameterized
distributions. Among them, the Gaussian assumption asatiwith a parameterized steering matAx6)
has been studied and some numerical illustrations showtlteatise of this prior information about the array
geometry enables an improvement in performance of about Rutlly, note that the MDL criterion generally
fails when the sample size is smaller than the number of senbothis situation a sample eigenvalue based
detector has been proposed in [60].

VI. RESOLUTION OF TWO CLOSELY SPACED SOURCES

An important measure to quantify the statistical perforosarior the DOA estimation problem is the
resolvability of closely spaced signals in terms of theirgmaeters of interest. The principal question to
characterize this resolvability is to find the minimum SNRer{dted threshold array SNR (ASNR)) required

for a sensor array to correctly resolve two closely spacgdads for a given DOA distancAd def |0 — 01]
(called angular resolution limit (ARL) or statistical résgtion limit) between them. Generally in the literature
they are three different ways to describe this resolutiomitliThe first one is based on the mean null spectrum
concerning a specific algorithm. the second one is based emgtimation accuracy, more precisely on the
Cramer-Rao Bound. The last one is based on the detectionytneing the hypothesis test formulation.

A. Angular resolution limit based on mean null spectra

Based on the array beam-pattefify, ) = |a’()a(6)|, different resolution criteria have been defined
from its main lobe w.r.t. a look directiofly, as the celebrated Rayleigh resolutions such as the halépow
beamwidth or the null to null beamwidth that depends solelyttee antenna geometry, and consequently have
the serious shortcoming of being independent of the SNR.

For specific so-called high resolution algorithms, such ifferént MUSIC-like algorithms, based on the
search for two local minima of sample null spectfgg(0,II, »), two main criteria based on the mean null
spectrumE[J, (0,11, v)] have been defined. These criteria are justified by the prpplat the standard
deviation \/Var(Jaie (6, IL, x)) of the sample null spectrum associated with the converitibhaSIC and
Min-Norm algorithms is small compared to its mean vali{ga, (0, IL, v)] in the vicinity of the true DOAs
for N > M for arbitrary SNR [47].

For the first criterion, introduced by Cox [15], two sources eesolved if the midpoint mean null spectrum
is greater than the mean null spectrum in the two true sou@AD

Bl ats (O, T x)] > 5 (ELnig0h, T )] + ElTg(02, T v)]) with 6, 2 (01 4 05).
This criterion was first studied by Kaveh and Barabell [44R][in the resolution analysis of the conventional
MUSIC and Min-Norm algorithms for two uncorrelated equalagred sources and a ULA. This analysis has
been extended to more general classes of situations, @.gwd correlated or coherent equal-powered sources
with the smoothed MUSIC algorithm [66], then for two unegpaivered sources impinging on an arbitrary
array with the conventional and beamspace MUSIC algorith8}.[A subsequent paper by Zhed al. [109]
developed a resolution measure based on the mean null speamd compared their results to Kaveh and
Barabell's work.

For the second criterion, introduced by Sharman and Dufi#g]i and then studied by Forster and Villier
[34] in the context of the conventional MUSIC and Min-Norngatithms for two uncorrelated equal-powered
sources and a ULA, two sources are resolved if the secondadiga of the mean null spectrum at the midpoint
iS negative.

d?E[Jag (0,11, v)]
df? 10=0,,,

Resorting to an analysis based on perturbations of the rwisiectorII, y [51], instead of those of the
eigenvectors (e.g., [47] and [53]), these two criteria haeen studied for arbitrary distributions of the sources,

<0.
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for the conventional MUSIC algorithm. The following closéam expressions of the approximation of the
threshold ASNR given by these two criteria have been obthind3]:

- 2 QN N(AQ)Q - 1 [63Y) N(A9)2

where oy, and 3, are fractional expressions i/ specified in [3] for ULAs. These expressions (76) have
been extended in [3] to a noncircular MUSIC algorithm addpterectilinear signals, introduced and analyzed
in [5], for which (76) becomes

2 A0AG N o1 aene N

where A¢ def ¢2 — ¢1 IS the second-order noncircularity phase separation (8)vamere nOWOc]\A/[G’A(b and

Bff’w are expansions df/(A#)? without constant term, whose coefficients dependdnA¢ and the array
configuration. Closed-form expressions @ 0.5¢ and ﬁff’m are given in [3] for weak and large second-
order noncircularity phase separations and ULAs, where jiroved thatASNR; and ASNR, are decreasing
functions of A¢ and thus are minimum foA¢ = /2.

Fig.6 illustrates these two threshold ASNRs for two indefmmt equal-powered BPSK modulated signals
impinging on a ULA withM = 10 and T = 500. We clearly see in this figure that the noncircular MUSIC
algorithm outperforms the conventional MUSIC algorithncept for very weak second-order noncircularity
phase separations for which the ASNR thresholds of theseatgarithms are very similar. Furthermore, we
note that the behaviors of the ASNR threshold given by the aviteria are very similar although the ASNR
thresholds are slightly weaker for the Sharman and Durratd@rion than for the Cox criterion.

160 T T 160
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60 -
60

40
40

20
20

i i
107 10° 107 107" 107 107 107 107"
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@) (b)
Fig.6 Comparison of the threshold ASNRs given by the Cox (a) andr8&a and Durrani (b) criteria as a function of the DOA
separatiom\d associated with the conventional MUSIC (—) and noncircM&lSIC algorithms (- -) for three values of the second-order
noncircularity phase separatiag.

Moreover, several authors have considered (e.g., [54]7][1[08]) the probability of resolution or an
approximation of it, based on the Cox criterion applied te tull sample spectrum to circumvent the possible
misleading results given by these two criteria. Finallyentitat the resolution capability of the conventional and
Capon beamforming algorithms have been thoroughly andl{see e.g., [72]). Thanks to the simple expression
of their spatial null spectra (46), it is possible to deriveagproximation of the probability of resolution defined
as the probability that the dip in midway between the two sesiiis at least 3-dB less than the peak of either
source as a function of the SNR and DOA separation. Thusgfiaispecific high confidence level, this allows
one to predict the SNR required to resolve two closely spaoedces. The superiority of the Capon algorithm
is proved in [72], as the resolving power increases with SMR;ontrast, the Bartlett algorithm cannot exceed
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the Fourier/Rayleigh limit no matter how strong the signals

B. Angular resolution limit based on the CRB

Array resolution has been studied independently of anyreilgo by using the CRB. Based on the observation
that the standard MUSIC algorithm is unlikely to resolveselly spaced signals if the standard deviation of the
DOA estimates exceedd /8 [80], Lee [55] has proposed to define the resolution limittes DOA separation
A6 for which

max <\/CRB(01), \/CRB(02)> — ¢, (78)

for the two closely spaced sources, wherie somewhat arbitrarily chosen. This criterion ignores¢bapling
between the estimatés andd,. To overcome these drawbacks, Smith has proposed [78] toedibie resolution
limit as the source separation that equals the square ratd ofvn CRB, i.e.,

CRB(A0) = cAf, (79)

with ¢ = 1°. This means that the angular resolution limit or the thré&sRSNR are obtained by resolving
the implicit equations (78) and (79). This latter criterioas been applied to the deterministic modeling of the
sources in [78] and then extended to multiple parametersqnce in [29]. For the stochastic modeling of the
sources, the circular Gaussian distribution has been cadpa the discrete one in [24]. In particular it has
been proved that the threshold ASNR is inversely propoaliém the numberV of snapshots and to the square
of A# for the Gaussian case, in contrast to BPSK, MSK and QPSK é&asehich it is inversely proportional

to the fourth power ofAd.

C. Angular resolution limit based on the detection theory

The previous two approaches to characterize the angulalutes have in fact two different purposes. The
first one studies the capability of a specific algorithm toneste the DOAs of two closely spaced sources when
the number of sources is known. In contrast, the second oaimisg to define an absolute limit on resolution
that depends only of the array configuration and paramefargayest as the numbe¥/ of sensors and SNR.
But this latter approach based on the ad-hoc relationsfi@s dnd (79), essentially makes sense because the
CRB indicates the parameter estimation accuracy and iiglyitshould be related to the resolution limit. But
it suffers from two drawbacks. First, the resolution liméfahed by this approach is not rigorously grounded
in a statistical setting. Second, if the resolution limiteigpressible by (78) or (79), can the translation factor
¢, be analytically determined?

To solve these two problems, Liu and Nehorai have proposedéca hypothesis test formulation [59]. This
approach has been introduced in a 3D reference frame, bud tmiisistent with the notations of this section,
it is briefly summarized in the following in the 2D framewonkhere the DOA of a source is the parameter
0. As the source localization accuracy may vary at differe@AB, consider the resolution limit at a specific
DOA of interest. More precisely, assume there exists a goar@ known DOAJ, and we are interested in the
minimum angular separatioAf that the array can resolve between this sourcé, a&nd another source at a
directionf, close tod;. Quite naturally, the resolution of the two sources can beeaed through the binary
composite hypothesis test

Hy : A8 =0, one source is present
Hy : A6 >0, two sources are present

To rigorously define the resolution limiAg, we fix the values ofPra and Pp for this test. OtherwiseAd
could be arbitrary low, while the result of the test may be niegless. Leta = [A#, 3717 be the unknown
parameter of our statistical model, wheXé is the parameter of interest agidgathers all the unknown nuisance

®Note that this translation factaris somewhat arbitrarily chosen (see different values ditef59]).
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parameters. To conduct this test, the GLRT is consideredaltize unknown nuisance parameters.

5 E\ 3 H 1
p(X7 ?\71617 1) I; ’Y,’ (80)
p(x; By, Ho)

where p(x; A0, 8, H;) and p(x; 3, Hy) denote the probability density function of the measurement
(x”(t1),...,x" (tx)]" under the hypothesi¢l; and Hy, respectively.Af and B, are respectively the ML
estimate ofA¢ and 8 under H,, and 3, is the ML estimate of3 under Hy. The distribution of this GLRT
Lg(x, N) is generally very involved to derive, but hopefully, apgroations of the distribution of In L (x, V)

for large values ofV are available undef, and H;. First, underH,, Wilk’s theorem with nuisance parameters
(see e.g., [102, p.132]) can be applied without having tonktite exact form ofL;(x, V). This theorem states
the following convergence in distribution whé¥i tends toco

La(x,N) =

2In Lo(x, N) 5 x2(1) under Hy, (81)

wherex?(1) denotes the central chi-square distribution with one degfereedom (associated with the single
parameter\d). UnderH1, the derivation of the asymptotic distribution ®f L (x, V) is much more involved.
Using a theoretical result by Stroud [88], Stuatial [89, Ch. 23.7] have stated that whex® can take value$
near0, 2In Lg(x, N) is approximately distributéd as

2In La(x, N) & x?(1,\y) under Hi, (82)

where x?(1, A\y) denotes the noncentral chi-squared distribution witdegree of freedom and noncentrality
parameter\y given by (see [50, Section 6.5])

Ay = (A0 — 0)([FIM ™ (a)]1,1) (A0 - 0), (83)

whose dependence ¥ in the FIM of « is emphasized, and whefEIM ! (a)]; ; denotes the (1,1)th entry
of FIM~!(a). It is further shown ([50, App. 6C]) that a¥ is large, (83) is approximated by

Av & (A0)* ([FIM ™ (@)]1,1099) " = CRB™'(A6) ag0- (84)

Based on these limit and approximate distributiong bf L (x, N') under Hy and H; for which the GLRT in

(81) can be rewritten as

H,
2InLg(x,N) > v def 2In+/, (85)

the angular resolution limit (ARL) has been computed in [B9]using the two constraints

Pra = Qy2(y(7) and Pp = Q210 (7),

where the values oPra and Pp are fixed and wheré),=(;) andQ,»(1 5, denote the right tail probability of
the x%(1) and x?(1, A\y) distributions, respectively. It assumes the form

AO = /A /CRB(AO), ap—o,

where the factok/\x is analytically determined by the preassigned valuegaf and Pp. Note that the SNR
is embedded in the expression of CRY) that is proportional tok. The dependence on the SNR of the
CRB may vary according to the distribution of the sources.dxample, [24] proves that the CRB of the DOA
separation of discrete sources is very different from thafs€aussian sources.

%The following more formal condition is given in [88]\0 is embedded in an adequate sequence indexel liigat converges to
zero at the rateV—'/2 or faster, i.e.||Af|| = O(1/N'/?). Note the simplified condition given by Kay [50, A. 6AJAG|| = ¢/vV N
for some constant, that is reduced to the rough assumption of weak SNR [50,@e6t5].

"The accurate formulation Emyx_ o {P (2In La(x, N)] < t) — P(Vw < t)} = 0 Vt, where Vi has a noncentral chi-squared
distribution with one degree of freedom and noncentraldyameteruy that depends on the data length
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