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ABSTRACT The remote centre of motion (RCM) mechanisms are increasingly used to develop robotic
surgical systems. Currently, parallelogram-based planar RCM mechanism are often combined with
single revolute joint to deliver the two degrees of freedom (DOFs) required in the minimally-invasive
surgical applications. However, parallelogram-based planar RCM mechanisms encounter issues as-
sociated with device footprint, which compromise optimal surgical functioning. The dual-triangular
linkage (DT-linkage) with RCM is proposed in the attempt to replace the parallelogram-based linkage
and resolve the footprint issue. This paper presents the work on the design and static analysis of cable-
based auxiliary mechanism for DT-linkage. The aim is to achieve backlash-free and singularity-free
mechanical constraint, such that the ROM of the original DT-linkage can be doubled without expand-
ing the device footprint. A constraint approach is conducted to solve for the force within the cable
sections. The analytical solution at singular configuration indicates tension in all cable sections hence
proved the functioning of the cable constraint. By utilising the QR decomposition, the numerical solu-
tion of minimum required cable stiffness is also calculated from the constraint approach.

1 Introduction

To promote safety, robotic surgical systems include remote center of motion (RCM) property as one of their
central function [1], which allows the manipulators to be pivoted around their incision ports. The RCM function
is normally achieved by the implementation of RCM mechanisms. By definition, if a link of the mechanism can
rotate around a fixed point distal from the mechanism, while there is no physical revolute joint at the fixed point,
the mechanism is referred to as an RCM mechanism [2, 3].

A remote center (RC) can be constrained virtually or mechanically [4]. Mechanical RCM mechanisms are more
reliable and considered suitable for clinical applications [2]. Mechanical RCM mechanisms that generate single
RC and are applied on surgical robots have been well documented, which include isocentres [5], circular tracking
arcs [6, 7], parallelograms [8, 9, 10, 11, 12, 13], synchronous transmissions [14] and spherical linkages [15]. There
are also RCM mechanisms that generate multiple RCs [16], but their applications in minimally-invasive surgeries
(MIS) are not yet explored.

Surgical manipulations through RC require two rotational and one translational degrees of freedom (DOF) to
fully define the position of the end-effector inside the patient’s body. In practice, the two rotational DOFs are often
generated by combining a one-DOF planar RCM mechanism with a single revolute joint [2], where the one-DOF
RC is located on the axis of the revolute joint. A mechanism that generates the translational DOF is then attached
to the output link of the planar RCM mechanism.

Such approach results in fully decoupled mechanism that has reduced complexity in control, promoted level of
confidence in safety as well as rapid and intuitive manual positioning of the entire mechanism or individual DOF
[17]. Alternatively, by trading off the decoupled motion [18] or the compact transverse dimension of the mech-
anism [19], the translational DOF can be achieved also by the planar RCM mechanisms, such that no additional
mechanical structure is required.



Parallelogram is selected as the planar RCM mechanism in many RCM robotic surgical systems based on the
aforementioned approach [2], including the most widely-deployed da Vinci series [10, 20, 21]. In addition, it can
also be used to generate the translational DOF [22]. However, most of the issues associated with a parallelogram-
based linkage (PB-linkage) are due to its footprint, which is closely related to the output joint of the parallelogram
[23]. For RCM mechanisms based on revolute joint with planar RCM mechanisms, the device footprint in 3D is
defined by rotating the enclosed area formed by boundary the planar RCM mechanism and the axis of the revolute
joint. In MIS, the presence of the output joint close to the RC leads to larger device footprint within the incision
port. Thus the chance of interference with neighbouring robotic surgical arms or human surgeons is increased. On
the other hand, pushing the output joint away from this region requires a longer output link, hence expands the
geometry of the parallelogram as well as the overall device footprint.

More significantly, for the RCM mechanisms with decoupled translational DOF, the use of PB-linkage intro-
duces negative impact on the integration of the translational mechanism [23]. To achieve the decoupled motion,
the translational mechanism is forced mounted directly onto the output link of the PB-linkage, which is operated
within the region near the RC. Therefore it further increases the device footprint as well as the chance of interfer-
ence. Poor access for bedside assistance [21] and larger chance of collisions or restricted workspace for individuals
have been reported, hence prevent optimal surgical functioning [24].

To avoid the issue associated with device footprint near the RC while maintaining the fully-decoupled mo-
tion and small overall device footprint, a novel planar RCM mechanism, named the dual-triangular linkage (DT-
linkage), was proposed to replace the PB-linkage. The DT-linkage is developed based on virtual four-bar linkage,
with two parallelograms to constrain the motion. The mathematical proof of RCM function as well as a passive
prototype built for validating the design concept are presented in [4]. Auxiliary mechanisms are introduced into the
second prototype [23], which removes the singularity of the DT-linkage and achieves doubling of range of motion
(ROM) without changing the dimension and footprint of the mechanism.

Several issues are discovered on the linkage and gear-train based auxiliary mechanisms in the second prototype.
Most significantly, the backlash introduced by the gear-train compromises the positioning accuracy and stiffness
of the system [23]. Apart from that, the parallelograms in both prototypes occupy additional space in between
the input joint and the RC. Such design conflicts with the design concept of minimising the device footprint near
the RC. Therefore it is desired that alternative constraining mechanisms are designed to remove the backlash and
reduce the footprint of the planar DT-linkage.

Cable transmission provides backlash-free transmission. In addition, cable transmission can replace the linkage-
based parallelograms to reduce device footprint. An example showing such reduction in footprint is the widely
deployed da Vinci surgical manipulators, from the linkage-constrained original model to the belt-constrained da
Vinci S/Si models [25]. Therefore the new constraining mechanisms are designed based on cable transmission.

This paper presents the work on the design, proof of functioning and load analysis of the cable-based auxiliary
mechanism for the DT-linkage. Section 2 briefs the structure, singularity and existing auxiliary mechanisms of
the DT-linkage. Section 3 presents the design of the cable transmission. Section 4 proofs the functioning of the
cable system mathematically. Section 5 covers the analysis to determine the minimum required cable stiffness with
respect to a given overall stiffness of DT-linkage.

2 The Dual-Triangular Linkage and Auxiliary Mechanisms

Details regarding the mechanical structure and mathematical proof of functioning of the DT-linkage are described
in [4, 23], along with the singularity analysis and the corresponding design of the auxiliary mechanisms for over-
coming singularity. For completeness of this paper, the key information is summarised below.

2.1 The unconstrained DT-Linkage

The concept of unconstrained DT-linkage is shown in Fig. 1, which is based on two pairs of similar triangles: one
pair of OFG and OAC and another pair of OHG and OEC. The outer shape of the DT-linkage, which is the virtual
four-bar linkage ACEO, adopts 2K-SLLS structure as classified in [26]. In such structure 2 stands for two link
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Fig. 1: Conceptual design using the DT-linkage

lengths, K stands for the symmetry kite shape, SLLS (short-long-long-short) stands for the configuration of links
in which the links with the same length are adjacent to each other, while the ground and output links being the
longer ones. By having shorter input and connector links, the SLLS arrangement ensures that the output joints
(Joints E and H) stay relatively distal from the RC, at a given distance between the input joint (Joint A) and the RC.
Such feature is the key to materialise the design concept of DT-linkage, as keeps the major linkages away from the
RC, leaving more collision-free space for the neighbouring robotic surgical arms or human surgeons to occupy.

Links AF (AO), AC, CE and EH (EO) are the ground, input, connector and output links, respectively. Point O
is the RC. Links BG, FG, DG and GH belong to Parallelograms ABGF and DEHG, which enforce the similarity
of the triangles. The straight link that is rigidly connected to output link EH represents the cantilever that connects
the DT-linkage and the surgical tool. Such cantilever is the only link from the entire DT-linkage, which is relatively
close to the RC.

With a given distance between Joint A and O, the geometry of the DT-linkage is fully defined by two parame-
ters, ν and r, expressed mathematically as

ν =
c

AO
(1)

and
r =

c
b
=

f
e

(2)

where
c = f

b = e
(3)

Where c, b, f and e are the lengths of Links AC, FG (AB), CE and GH (DE), respectively. Parameter ν defines the
length of the input and connector links when distance AO is given. Parameter r is a constant greater than 1, and it
defines the width of Parallelograms ABGF and CEHG. The larger the magnitude of r, the wider the parallelograms
are, hence occupies more space in between the input joint and the RC.

Referring to Fig. 1, The input-output function of the RCM mechanism can be found readily as

θout =π−2arctan
CJ
JO

=π−2arctan
AC sinθin

AO−AC cosθin

(4)

where θin and θout are the input angle measured from Link AO to AC counter-clockwise and the output angle
measured from AO to OE counter-clockwise, respectively.

The limit in ROM, i.e. the minimum θout , is reached at the fully stretched-out configuration where Links AC
and CE are in-line with each other. The other limit in ROM is the configuration where all the links are coincident
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with the ground axis behind the input joint. The corresponding θout is 180 degrees. Details regarding such con-
figuration are given in the next sub-section. At the fully stretched-out configuration, Link AC is perpendicular to
Line CO, thus the ROM is written as

ROM = 2arcsin(ν) (5)

2.2 Singularity Analysis and Existing Auxiliary Mechanisms

There are two fully stretched-out configurations on a DT-linkage, at above and below the ground axis, respectively.
Thus the theoretical ROM is limited in between the two fully stretched-out configurations as

ROM = 4arcsin(ν) (6)

Equation (6) indicates that the ROM is doubled comparing to the unconstrained case, and without expanding the
dimension of the linkage and hence the device footprint. To achieve so, the DT-linkage must be able to pass through
the singular configuration, where all the links are coincident with the ground axis.

The singularity of the unconstrained DT-linkage is sourced from both the virtual four-bar linkage ACEO and
the Parallelograms ABGF and DEHG. Since the four-bar linkage and the parallelograms encounter singularity at
the fully-folded configuration, such configuration is also the singular configuration of the DT-linkage. To overcome
the singularity, the four-bar linkage and the parallelograms must be constrained simultaneously. Therefore, one
auxiliary mechanism is designed for each of the four-bar linkage and the parallelogram, respectively.

For four-bar linkage, there are two possible configurations after passing the singular configuration, which are

6 ACE = 0 (7)

and
6 ACE = 2 6 OCA (8)

Where the former case is an undesired configuration where the output link stays overlapped with the ground axis
regardless of the input angle. To overcome the singularity, constraint as shown in Eqn. (8) is enforced.

Fig. 2: Configuration of auxiliary mechanism for four-bar linkage - right view

The design of auxiliary mechanism for four-bar linkage is shown in Figs. 2 and 3. The figures are the right
and left views, respectively. The auxiliary mechanism synchronises the angular positions of Links AC and CE
(coloured green, lower and upper, respectively) with respect to the centre line of the four-bar linkage, CO. To
accommodate for the change in length between Joints C and G, where CG is coincident with CO, a translational
joint is introduced. Link group CG is coloured blue in the figures. The synchronisation of angular positions is
achieved through a gear-train with five gears. Gears 1 and 5 (both green) are rigidly attached to Links AC and
CE,respectively. Gears 2 to 4 rotate freely on link group CG. Gear 2 (orange, visible in Fig. 2) measures 6 OCA.
Gear 3 (orange, visible in Fig. 3) is rigidly connected to and rotates with Gear 2, in order to reach Gear 4 (red,
visible in Fig. 3) on the other side of link group CG. Gear 4 measures 6 OCE. It engages with Gears 3 to ensure
the two angles stay in directions, thus achieves Eqn. (8).
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Fig. 3: Configuration of auxiliary mechanism for four-bar linkage - left view

For Parallelograms ABGF and DEHG, two auxiliary parallelograms are introduced, respectively. Parallel-
ograms AA’F’F and DD’G’G are rigidly attached to and angularly displaced from Parallelograms ABGF and
DEHG, respectively, as shown in Fig. 4. Each pair of original and auxiliary parallelograms are not in the singular
configuration simultaneously, hence are constraining each other to achieve singularity-free structure.

Fig. 4: Configuration of parallelograms with auxiliary links

3 Design of Cable System
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Fig. 5: Configuration of Loop PL and PU

The cable system consists of a translational joint and seven pulley that form three cable loops. Figs. 5 shows the
two cable loops, PL and PU, for replacing Parallelograms ABFG and DEHG, respectively. Figs. 6 and 7 illustrate
two halves of the cable loop that constrains the virtual four-bar linkage. The ones in Figs. 6 and 7 are named
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Fig. 6: Configuration of cable loop for four-bar linkage - Section FB1
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Fig. 7: Configuration of cable loop for four-bar linkage - Section FB2

Section FB1 and FB2, respectively. Each half of Loop FB constrains the DT-linkage in one direction of its motion.
Sections FB1 functions when DT-linkage moves from the fully stretched-out configuration below the ground axis
to the one above, while Section FB2 functions in the opposite direction. Sections FB1 and FB2 join at the blue and
red dots on pulleys at B and D, respectively. Note that for better illustration of structure, the dimension of four-bar
linkage BCDG is much larger the one on existing prototypes. The radius of pulleys, R, applies to all the pulleys
and is independent of the dimensions of links.

The translational joint is represented as Link Group CIG in the figures. The translational joint is located in
between Joints I and G, thus the distance between Joints C and G is fixed. Pulleys 1, 2, 6, and 7 are mounted at
Joints A, B, D and E, respectively, and are rigidly attached to Links AF, BG, DG and EH, respectively. Pulleys 3
and 5 are mounted at Joint C and can rotate freely. Pulleys 4 is mounted at Point I on diagonal link group CIG and
rotates freely.

In Figs. 6 and 7, Sections FB1 and FB2 are further divided into two subsections, coloured blue and red,
respectively. The blue subsection contains Pulleys 2 and 3, while the red subsection contains Pulleys 4 to 6. The
travel distances of the ends of the blue and red subsections (at the junction where two subsections connect) are
associated with Angles 6 GBC and 6 BCG, and Angles 6 GDC and 6 DCG, respectively. Assuming that the DT-
linkage stay in the desired configurations, the travel distances of the ends of subsections should be identical, and
vice versa. In this case the possibility of Eqn. (7) is eliminated, and the virtual four-bar linkage is fully-constrained.

To simplify the describe on position of pulleys in the mathematical model, the following lengths are assigned

L1 = AC =CE = νAO (9)

L2 = AB = DE =
L1

r
(10)

L3 = AF = BG = DG = EH = (1− 1
r
)AO (11)
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4 Static Analysis for Proof of Functioning of Cable System

The functioning of a cable system lies on the tension in cable. For proving the functioning of cable-based auxiliary
mechanism, it is essential to prove that the cable sections in between all pair of pulleys are in tension. In the static
analysis below, it is assumed that the cable is inextensible and there is no slip between the cable and the pulleys.

4.1 The Constraint Approach

A constraint approach described in [27] is utilised to determine the directions of forces within the cable sections.
To start with, the dynamics of a constrained physical system is described as [28]

Qi = Qc +Qe (12)

Where Qi, Qc and Qe are the generalised inertia, constraint and external forces applied on the generalised coordi-
nates q, respectively. The generalised constraint force Qc applied on q is related to the mechanical constraints of
the systems through

Qc =−CT
q λ (13)

Where λ is the Lagrange multiplier, which represents the generalised constraint force acting along the mechanical
constraints. Cq is the derivative of the constraint vector cq with respect to the generalised coordinates q, which is

Cq =
∂cq

∂q
(14)

Assuming that cq and q have dimensions of m and n respectively, the dimensions of Qc, Cq and λ are n×1, m×n,
and m×1, respectively.

In static analysis, the generalised inertia force Qi vanishes. Therefore, combining Eqns. (12) and (13) gives

Qe =CT
q λ (15)

or equivalently
Qei =CT

qiλ

Qed =CT
qdλ

(16)

Where Qei and Qed are the generalised external forces applied on qi and qd , respectively. Cqi and Cqd are the
derivative matrices determined using qi and qd , respectively. Given the generalised external forces Qe, Eqn. (15) is
used to determine the generalised constraint force λ acting along the mechanical constraints.

The direction of such constraint force is dependent on the way in which the constraint equation cq is written
in. An example is given below. Consider an arbitrary constraint equation that is defined as

cq = pa− pb (17)

Where pa and pb are the physical quantities of Bodies A and B, respectively, which are used to construct the
constraint equation. In this case the λ determined using such constraint equation is the generalised constraint force
acting on Body B by Body A. In the opposite case, if the positions are pa and pb are swapped in Eqn. (17), λ will
give the generalised constraint force acting on Body A by Body B. To determine the direction of force in between
each pair of pulleys, one constraint equation for each pair of pulleys must be obtained.

4.2 Generalised Coordinates q

To fully describe the cable-constrained linkage and derive the constraint equations for cable, twelve generalised
coordinates are selected. The independent generalised coordinate is the actuator input rotation of Link AC. The
dependent generalised coordinates include the angles of pulleys and links, the distances between joints and the
positions of joints.
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q Definition Reference
θ1 angle of Link AC positive ground axis
θ2 angle of Pulley 2 and Link BG Link AC along direction AC
θ3 angle of Pulley 3 Link AC along direction AC
θ4 angle of Pulley 4 Link CG along direction CG
θ5 angle of Pulley 5 Link CG along direction GC
θ6 angle of Pulley 6 and Link DG Link CE along direction CE
θ7 angle of Pulley 7 and Link EH Link CE along direction CE
θ8 angle of Link CG Link AC along direction AC
θ9 angle of Link CE Link CG along direction GC

LCG length of Link CG n/a
xH horizontal position of joint H Joint A
yH vertical position of joint H Joint A

Tab. 1: Link paths for Joints G and H

The generalised coordinates are listed in Table 1. All the angles are measured in the counter-clockwise direc-
tion. The ‘Reference’ column lists the datums which the generalised coordinates are measured with respect to.
The references for all the pulley or link angles are selected as the previous links they are attached to, respectively,
where the term previous is defined with respect to the direction from Joint A to Joint H of the DT-linkage.

4.3 Constraint Equations and Constraint Matrix

There are two sources of constraint equations in the cable-constrained DT-linkage, leading to twelve constraint
equations for each direction of motion of the DT-linkage. The first one is the constant cable length in between the
pulley pairs. The second one is the joint position derived from different links paths.

4.3.1 Constraint Equations from Cable

To reduce the amount of calculations, only the cable sections that are expected to be in tension are studied for each
direction of motion of the DT-linkage. Six constraint equations are obtained for seven pulleys, including one each
from Loops PL and PU, respectively, and four from Section FB1 or FB2 depending on the direction of motion.

To derive the constraint equation for a pair of pulleys, the cable connecting the pulleys is separated at an
arbitrary position in the middle. The off-pulley (not wrapped on pulley) lengths of the two separated cable sections
change corresponding to the rotations of the pulleys they are connected to, respectively. The sum of the off-pulley
lengths of the two cable sections is a constant, as the distance between the pulleys is constant. Therefore, the
rotations of the pulleys, which are two generalised coordinates, are related to each other in one constraint equation.
Such constraint equation is derived below.

Consider the cable connecting two arbitrary pulleys, Pulleys A and B. The two ends of the cable are fixed
on Pulleys A and B, respectively. The distance between the pulleys is L. The radius of the pulleys is R. Upon
separation, the lengths of the cable sections connected to Pulleys A and B are LA and LB, respectively. On Pulley
A, the cable ends where the angle is the generalised coordinate θA. The cable leaves Pulley A at angle is θ ′A (outlet
angle). On Pulley B, the cable starts to wrap on pulley at angle θ ′B (inlet angle), and ends at where the angle
is the generalised coordinate θB. Generalised coordinates θA and θB represent the rotations of Pulleys A and B,
respectively. The sum of length of Sections A and B that are off-pulley equals the distance between the pulleys,
which is expressed mathematically as(

LA− (θA−θ
′
A)R
)
+
(
LB− (θ ′B−θB)R

)
= L (18)
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The (θA− θ ′A)R and (θ ′B− θB)R terms in Eqn.(18) give the lengths of cable wrapping on Pulleys A and B,
respectively. The sequence of subtraction of angles is determined based on direction in which the cable is wrapped
on the pulley, in order to obtain a positive cable length. For cable that wraps clockwise on the pulley, the order of
subtraction is inlet angle (starts wrapping on pulley) minus outlet angle (leaves pulley). For the counter-clockwise
case, the order of subtraction is outlet angle minus inlet angle. In Eqn. (18), it is assumed that the cable wraps on
both pulleys in the clockwise direction.

Equation (18) is rearranged into the form of Eqn. (17) for justification of the direction of constraint force as(
L−

(
LB− (θ ′B−θB)R

))
−
(
LA− (θA−θ

′
A)R
)
= 0 (19)

The physical meaning of Eqn. (19) is that the off-pulley lengths of Section B, when calculated through two gen-
eralised coordinates θB (in first bracket) and θA (in second bracket), respectively, must be identical. According to
the definition of Eqn. (17), Eqn. (19) gives the constraint force applied on the Section A by Section B.

Since L, LA and LB are constant, which yield zero when the derivatives are taken for Cq, Eqn. (19) can be
simplified as

(θ ′B−θB)R+(θA−θ
′
A)R−L′ = 0 (20)

Where L′ is a constant containing L, LA and LB. As mentioned previously, the order of subtraction in (θ ′B−θB) and
(θA−θ ′A) can vary independently, according to the directions in which the cable wraps on the individual pulleys.
Equation (20) is the constraint equation for Pulleys A and B. When all constraint equations are put together into
the constraint vector cq and solved, the corresponding element of such constraint equation in λ should be positive
if the cable between Pulleys A and B is in tension.

To construct the pulley constrain equations with Eqn. (20), three angles need to be determined for each pulley:
the inlet and outlet angles, and the generalised coordinate θ . The generalised coordinate θ lies in between the inlet
and outlet angles and represents the rotation of the pulley. The inlet and outlet angles of a pulley are measured from
the same reference as that of the θ in between them, which is the previous link this pulley is attached to. The values
for cable Sections FB1 and FB2 are listed in Tables 2 and 3, respectively. In the tables, the column ‘Direction’
refers to the direction of cable wrapping on the pulleys, CW for clockwise and CCW for counter-clockwise.

Pulleys Inlet (rad) Rotation (rad) Outlet (rad) Direction
Pulley 2 n/a θ2 π/2 CW
Pulley 3 π/2 θ3 θ8 +π/2 CW
Pulley 4 π/2 θ4 −π/2− sin−1(2R/LCI) CW
Pulley 5 −π/2− sin−1(2R/LCI) θ5 θ9 CCW
Pulley 6 −π/2 θ6 n/a CCW

Tab. 2: Inlet, outlet and rotation (generalised coordinates) angles of pulleys corresponding to Section FB1

Pulleys Inlet (rad) Rotation (rad) Outlet (rad) Direction
Pulley 2 n/a θ2 −π/2 CCW
Pulley 3 −π/2 θ3 θ8−π/2 CCW
Pulley 4 −π/2 θ4 π/2+ sin−1(2R/LCI) CCW
Pulley 5 π/2+ sin−1(2R/LCI) θ5 θ9 CW
Pulley 6 π/2 θ6 n/a CW

Tab. 3: Inlet, outlet and rotation (generalised coordinates) angles of pulleys corresponding to Section FB2

The values of the three angles for Loops PL and PU are presented in Table 4. When Section FB1 is functioning,
the constraint equations are derived from left-hand half of Loop PL and the right-hand half of Loop PU. In the
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contrast, when Section FB2 is functioning, the constraint equations are derived from right-hand half of Loop PL
and the left-hand half of Loop PU.

Pulleys Inlet (rad) Rotation (rad) Outlet (rad) Direction
Pulley 1 θ1−π/2 0 θ1 +π/2 CW
Pulley 2 π/2 θ2 −π/2 CW
Pulley 6 −π/2 θ6 π/2 CW
Pulley 7 π/2 θ7 −π/2 CW

Tab. 4: Inlet, outlet and rotation (generalised coordinates) angles of pulleys corresponding to Sections PL and PU

4.3.2 Constraint Equations from Joint Position

The other six constraint equations come from the horizontal and vertical positions of Joints G and H. The general
form of such joint constraint equation is given by

xA|2− xA|1 = 0

yA|2− yA|1 = 0
(21)

Where the subscripts A|1 and A|2 refer to the positions of an arbitrary joint, Joint A, derived through two different
link paths, Paths 2 and 1, respectively. According to the definition of Eqn. (17), Eqn. (21) gives the constraint force
applied on the last link of Path 1 by the last link of Path 2. The link paths for Joints G and H are summarised in
Table 5. Note that for Joint H, the generalised coordinates xH and yH serve as the second link path to form the
constraint equations.

Joints Path 1 Path 2
G Links AB-BG Links AC-CG
G Links AB-BG Links AC-CD-DG
H Links AC-CE-EH xH and yH

Tab. 5: Link paths for Joints G and H

4.3.3 The Constraint Vector cq and Constraint Matrix Cq

The constraint vector cq is fully constructed by combining the constraint equations given by Eqns. (20) and (21), in
combined with the parameters presented in Tables 2, 3, 4 and 5. The sequence of the elements are constraint equa-
tions from cable Sections FB (four equations), then Loops PL and PU (two equations), followed by the constraint
equations from Joints G and H (six equations in the same sequence as presented in Table 5). The cq corresponding
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to the upward direction of motion of DT-linkage (Section FB1 functioning) is

cq1 =



R(θ2−θ3)+L′23
R(θ3−θ4−θ8)+L′34

R(θ4 +θ5)+L′45
R(−θ5 +θ6 +θ9)+L′56
−R(θ1 +θ2)+L′12
R(θ6−θ7)+L′67

(L1−L2)c1−L3c12 +LCGc18
(L1−L2)s1−L3s12 +LCGs18

(L1−L2)(c1− c189)−L3(c12 + c1689)
(L1−L2)(s1− s189)−L3(s12 + s1689)

xH −L1c1 +L1c189 +L3c1789
yH −L1s1 +L1s189 +L3s1789



(22)

The cq corresponding to the downward direction of motion of DT-linkage (Section FB2 functioning) is

cq2 =



−R(θ2−θ3)+L′23
−R(θ3−θ4−θ8)+L′34
−R(θ4 +θ5)+L′45

−R(−θ5 +θ6 +θ9)+L′56
R(θ1 +θ2)+L′12
−R(θ6−θ7)+L′67

(L1−L2)c1−L3c12 +LCGc18
(L1−L2)s1−L3s12 +LCGs18

(L1−L2)(c1− c189)−L3(c12 + c1689)
(L1−L2)(s1− s189)−L3(s12 + s1689)

xH −L1c1 +L1c189 +L3c1789
yH −L1s1 +L1s189 +L3s1789



(23)

Where the c and s in the elements of cq refer to cosine and sine, respectively. The subscripts of c and s represent
the summation of θ angles. The L′ terms are the constants containing cable lengths.

Once the constraint vectors are obtained, Eqn.(14) is used to obtain the Cq matrix. The dimensions of Cq, Cqi

and Cqd are 12x12, 12x1 and 12x11, respectively.

4.4 Analytical Solution of Cable Tension at Singular Configuration

Equation (15), or equivalently Eqn. (16), is used to determine the generalised constraint force λ along the me-
chanical constraints, hence the direction of generalised constraint force along each mechanical constraint can be
identified to prove the functioning of the cable system.

For the DT-linkage, the generalised external force is

Qe =
[

τ1 0 · · · 0 τ7 0 · · · 0 FHx FHy
]T (24)

Where τ1 is the actuator input torque, τ7, FHx and FHy are the torque and forces applied on Pulley 7 and Joint H,
respectively. The dimension of Qe is 12 by 1, and the sequence of its elements is the same as the sequence of the
generalised coordinates q shown in Table 1. The corresponding Qed contains all the elements in Qe except for τ1.

The cable-constraint DT-linkage has twelve generalised coordinates and twelve independent constraint equa-
tions, resulting in an over-constrained system. Hence Eqns. (15) and (16) cannot be solved directly for a generalised
analytical solution of λ . However, at the singular configuration, one mechanical constraint lapses, leading to fully-
constraint system that can be solved directly. Such mechanical constraint comes from link group CIG. Since CIG

11



contains a translational joint, it is unable to provide any constraint force in the horizontal direction at the singular
configuration. The corresponding constraint equation is the ninth element in the cq vectors in Eqns. (22) and (23).

The two directions of motion of the DT-linkage are simulated by applying vertical forces at Joint H. For upward
motion (towards the upper limit in ROM), a negative FHy is applied and the constraint vector is cq1. For downward
motion (towards the lower limit in ROM), a positive FHy is applied and the constraint vector is cq2.

Since the actuator input torque τ1 is unknown, Eqn. (16) with Qed and Cqd is used to determine the generalised
constraint force λ , instead of the original Qe and Cq. Qei which is the input torque, can be recovered afterwards
by Eqn. (16) with λ and Cqi. An analytical solution of λ is obtained, which contains some dependent generalised
coordinates. To eliminate such dependent generalised coordinates, they are represented using the independent
generalised coordinate θ1 as

θ2 =−θ1

θ6 = θ1 +π

θ7 = θ1 +π

θ8 =−θ1− tan−1 L1s1

Lrc−L1c1

θ9 =−θ1− tan−1 L1s1

Lrc−L1c1

LCG = (1− 1
r
)
√

(L1c1−Lrc)2 +(L1s1)2

(25)

Where Lrc is the distance between Joint A and the RC. c1 and s1 are the cosine and sine of θ1, respectively. Note
that Eqn. (25) corresponds to the relations at singular configuration only. The analytical solutions of λ at singular
configuration are (cable tension elements only, i.e. first six elements)

λ1 =



−FHyLrc
rR

−FHyLrc
rR

−FHyLrc
rR

−FHyLrc
rR

−
(
(1+r)L1+(−1+r)Lrc

)
FHyLrc

(L1+Lrc)rR

− (−1+r)FHyLrc
rR


(26)

and
λ2 =−λ1 (27)

for the upward and downward motion of the DT-linkage, respectively. In Eqn. (26), since FHy is negative and
r is greater than 1, all the elements in λ are positive, indicating tension in cable. Similarly, the positive FHy in
Eqn. (27) leads to positive elements. Therefore, the cable sections in between all pulley pairs are proven to be
in tension in both direction of motion of the DT-linkage, and hence the singularity-overcoming function of the
cable-based auxiliary mechanism is proven.

5 Cable Stiffness Calculation

The minimum required overall stiffness of the system is

k = ||
FHy

dyH
||= 1600N/m (28)

Where the magnitude of FHy is 8 N and the maximum allowed dyH is 5 mm. The stiffness of the cable must be
sufficient to achieve the overall stiffness. Since the tensions and elongation of cable in between different pulleys
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are different, the maximum stiffness must be selected as the minimum design requirement. Such stiffness of the
cable is defined as

kmin = max || λi

dLi
|| (29)

Where λi is the cable tension in between two pulleys and dLi is the elongation of cable in between two pulleys.
Equation (29) requires the λi and dLi terms to be calculated at all configurations of the DT-linkage.

5.1 Cable Tension

While Eqns (26) and (27) give the analytical solution for λ at the singular configuration, λ cannot be solved
directly by Eqn. (15) or (16) at all other configurations of the DT-linkage, due to over-constrained system. Thus for
non-singular configurations of the DT-linkage, the numerical solution of λ is calculated through QR decomposition

λ = Q1R−T
1 Qed (30)

where [
Q1 Q2

][ R1
0

]
= QRD(Cqd) (31)

Where 0 is a zero matrix. QRD stands for QR decomposition. The dimensions of λ , Q1, Q2, R1, zero matrix and
Qed are 12x1, 12x11, 12x1 11x11 and 1x11 and 11x1, respectively.

5.2 Cable Elongation

Since it is assumed the cable is inextensible, the conventional definition of elongation, which is the change in
length of cable, cannot be used in the analysis. Instead, the term elongation is defined as the infinitesimal travel
distance of cable with respect to an infinitesimal displacement at Joint H. Such infinitesimal travel distance of cable
is derived from the off-pulley length of a cable section connected to a pulley, which is similar to that described in
Eqns. (18) to (20). The cable elongation in the upward motion of the DT-linkage is

dL12 = Rdθ1

dL23 =−Rdθ2

dL34 = R(−dθ3 +dθ8)

dL45 =−Rdθ4

dL56 = R(dθ5−dθ9)

dL67 =−Rdθ6

(32)

Where the two subscripts indicate the indices of the pulleys, where the cable section is located in between. dL and
dθ are the infinitesimal displacements of cable and infinite rotation of pulley, respectively. The cable elongation
in the downward motion is derived similarly.

Equation (32) relates the cable elongation to the infinitesimal displacement of the generalised coordinates.
These generalised coordinates need to be further related to the infinitesimal displacement of Joint H, which is dyH .
The connection between other generalised coordinates and dyH is derived from the constraint approach, which
states that

∂c
∂qd

q̇d +
∂c
∂qi

q̇i =Cqd q̇d +Cqiq̇i = 0 (33)

Where the rate of change of the generalised coordinates q̇ terms are the dq terms in this analysis. By solving
Eqn. (33), independent generalised coordinate dθ1 is related to dyH . The rest of the dependent generalised coordi-
nates dθ can in turn be related to dyH through dθ1. However, Eqn. (33) cannot be solved for an analytical solution
due to the over-constrained system. Hence QR decomposition must be used, and the numerical solution is given
by

dqd =−R−1
1 QT

1 Cdidqi (34)
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Where Q1 and R1 are the same as the ones given in Eqn. (31). By combining Eqns. (32) and (34), the elongation
of cable can be calculated with respect to dyH . The outcomes of Eqns. (30), (26), (27) for cable tension, and
Eqns. (32) and (34) for cable elongation are substituted into Eqn. (29) to determine the minimum required stiffness
of the cable.

5.3 Numerical Results of Example Cable-Constrained DT-Linkage

The numerical solution of cable tension, actuator input torque and minimum cable stiffness are calculated for
the DT-linkage with the same dimension as that on the prototype in [23]. The physical parameters used in the
calculation are summarised below in Table 6. The range of actuator input angle θ1 is 80 to 280 degrees in the
analysis, which is slightly smaller than the actual range of 72.54 to 287.45 degrees. The interval of input angle θ1
is 10 degrees when θ1 is less than 160 degrees or greater than 210 degrees. To capture the rapid change in cable
tension near the singular configuration, the resolution is increased to 2 degrees in between 160 and 210 degrees.

Parameters Magnitude
AO mm 400

v 0.3
r 1.18

Pulley radius R mm 25
External force horizontal FHx N 0

External force vertical FHy N ±8
External moment Mθ7 N 0

Max tip deformation dyH mm 5

Tab. 6: Parameters of DT-linkage prototype

In the case where the DT-linkage moves upwards, a negative external force FHy is applied. The resulting cable
tension is presented in Fig. 8. The results for positive FHy when the DT-linkage moves downwards is identical to
Fig. 8.

Fig. 8: Cable forces for cable section A under negative load

Fig. 8 indicates that the constraint forces in Loops PL and PU are always positive in their designed directions
of motion. The maximum values are 69.59 and 19.52 N for the lower and upper cable loops, respectively. On the
other hand, Sections FB encounter changes in direction of constraint force in both directions of motion of the DT-
linkage. The changes occur at 110 and 250 degrees, where the constraint force is negative (compression) at smaller
than 110 degrees and greater than 250 degrees. However, such negative constraint force does not compromise the
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functioning of the cable system. This is because Sections FB are needed only at the singular configuration. In all
other configurations, Sections FB are redundant, as the four-bar linkage BCDG is constraining the mechanism. In
practice, pre-tension can also be applied to the cable to eliminate the negative regions. The maximum cable tension
is observed at the singular configuration, at 108.48 N.

Fig. 9: Actuator input torque under negative load

The actuator input torque τ1 under negative FHy, recovered with Eqn. (16) is illustrated in Fig. 9. The maximum
input torque required is 1.25 Nm at the singular configuration. The actuator torque under positive FHy is the same
in magnitude but has opposite sign.

Fig. 10: Minimum required stiffness

The minimum required stiffness with respect to input angle is presented in Fig.10. The black lines with marks
are the minimum required stiffness in each of the cable loops, while the red line represents the kmin of the cable-
constrained DT-linkage as a whole. In the regions near the singular configuration, the stiffness of Sections FB is
dominating. On the other hand, when θ1 is smaller than 150 degrees or greater than 210 degrees, the stiffness of
Loop PL determines the overall kmin. The maximum value is observed at singular configuration at 5.88e5 N/m,
thus the minimum required cable stiffness kmin is 5.88e5 N/m.

6 Conclusion

This paper presents the work on a cable-constrained planar RCM linkage. The cable system consists of seven
pulleys which form three loops. It provides backlash-free constraints on the planar RCM linkage, which removes
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singularity and achieves doubling of ROM (comparing to unconstrained DT-linkage) without expanding the device
footprint. In addition it reduces the device footprint taken by the parallelograms on the previous linkage-based
prototypes. Analysis based on constraint approach is carried out, leading to analytical solutions of cable force at
the singular configuration, as well as numerical solution through QR decomposition at all other configurations. The
functioning of cable-constraint system is proven, by observing positive cable force (tension) in cable sections in
between all pulley pairs. The minimum required stiffness of cable corresponding to overall stiffness is calculated
numerically, where QR decomposition is used twice to solve for the numerical solutions of both cable tension and
elongation.
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