
HAL Id: hal-01285927
https://hal.science/hal-01285927v1

Submitted on 25 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Controlling Parallel Robots during Singular Assembly
Mode Changing

Sébastien Briot, Nicolas Bouton, Pascal Bigras

To cite this version:
Sébastien Briot, Nicolas Bouton, Pascal Bigras. Controlling Parallel Robots during Singular Assembly
Mode Changing. 4th Joint International Conference on Multibody System Dynamics (IMSD2016),
May 2016, Montréal, Canada. �hal-01285927�

https://hal.science/hal-01285927v1
https://hal.archives-ouvertes.fr


116 The 4th Joint International Conference on Multibody System Dynamics

May 29 – June 2, 2016, Montréal, Canada
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ABSTRACT — In order to increase the reachable workspace of parallel robots, a promising solution
consists of the definition of optimal trajectories that ensure the non-degeneracy of the dynamic model
in the Type 2 (or parallel) singularity and allow to cross it. However, this assumes that the control law
can perfectly track the desired trajectory, which is impossible due to modeling errors.
This paper improves the results obtained previously by two of the authors of the present work that
defined a robust multi-model approach allowing parallel robots to cross Type 2 singularities. The
main idea was to shift near singularities the general dynamic model to a simplified one that can never
degenerate. However, because in Type 2 singularity, the robot is locally overconstrained, we will show
that the simplified dynamic model admits infinity of exact solutions. We propose to use the solution
leading to a null overconstraint in order to avoid undesirable effects near singularities, such as buckling
or unstability.
The mentioned multi-model control approach is modified accordingly and it is then applied on a proto-
type of five-bar mechanism to show the effects of correctly and not-correctly managed overconstraint.

1 Introduction

Probably, the most important drawback of parallel robots is the presence of Type 2 (or parallel) singularities [1]
in their workspace which divide it into different aspects (each aspect corresponding to one or more assembly
modes [2]) and near which their performance is drastically reduced. Many strategies for enlarging the size of the
operational workspace of parallel robots have been defined (e.g. optimal design [3], redundancy [4, 5], working
mode changing [6]). However, all these methods have some limitations: they require the architectural modifications
or they cannot necessary lead to the access of the total workspace.

In order to increase the size of the reachable workspace, methods for working mode or assembly mode changing
have been more recently proposed [6, 7, 8, 9]. One of them consists in crossing the Type 2 singularities [1]
by defining optimal trajectories respecting a criterion based on the analysis of the degeneracy conditions of the
dynamic model [8, 9]. This last approach is based on the following considerations.

As shown in [2, 8, 9], the inverse dynamic model, which allows the computation of the motor input efforts,
depends on the Jacobian matrix. In Type 2 singularity, the determinant of the inverse Jacobian matrix tends to
zero [1] (and thus, the Jacobian matrix cannot be computed). As a result, along a trajectory passing through a Type
2 singularity, the desired motor input efforts may tend to infinity near the singularity, leading to motion infeasibility.
However, the authors of [8] were the first to provide a physical criterion for changing assembly modes by passing
through the Type 2 singularities, which, mathematically speaking, can be summarized as follows: in order to avoid
the dynamic model degeneracy, the trajectory must be planned so that the efforts applied by the legs, the external
system and the internal dynamics to the platform are reciprocal to the null space of the matrix inverse Jacobian
matrix.

Thanks to the proposed approach, it was possible to plan optimal desired trajectories for crossing the singulari-
ties. However, due to modeling errors, a robot will never be able to perfectly follow the optimal trajectory whatever
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Fig. 1: A five-bar mechanism in a Type 2 singularity: in absence of any other effects, the torque τi of the motor i leads to the application of a force fi on
the end-effector. In singularity, f1 is collinear to f2. As a result, a motion is gained in the direction reciprocal to fi (i.e. the end-effector is underconstrained
along the direction of this uncontrollable motion) and, to produce a given force f along the axis x0, there is an infinity of solutions for the forces fi, i.e. the
mechanism is overconstrained along x0.

the controller efficiency, thus potentially leading to failure of the Type 2 singularity crossing approach. In order to
solve this issue, an advanced control law has been defined in [10] to finally ensure the change of assembly mode.
This controller is based on the definition of a multi-model computed torque control law (e.g. see [11]) including
two types of dynamic models:

1. a general dynamic model which is used for ensuring the robot trajectory tracking far from singularity,
2. a second simplified dynamic model which can never degenerate (due to the explicit deletion of the terms that

may degenerate in singularity), and which is only used when the robot is close from a Type 2 singularity. This
second dynamic model remain a good representation of the robot dynamics based on the fact that deleted
terms stay close to zero near the singularity by planning an optimal trajectory.

The switch between the two models in the controller was made near singularity by using a sigmoid function [10].
All these results, applied either on planar [9] or spatial robots [8], showed that it was possible to successfully

cross the Type 2 singularities and thus to enlarge the robot operational workspace.
Despite these rather encouraging results, some questions are still (partially or in totality) unanswered. One

of them concerns the management of the local overconstraints in singularity. Indeed, in Type 2 singularities,
the robot gains instantaneously an uncontrollable motion. This is due to the fact that the system of actuation
wrenches on the end-effector is degenerated. As a result, the end-effector is underconstrained along the direction
of the uncontrollable motion, but overconstrained along the other directions (Fig. 1). This overconstraint along
the controllable directions of the motion may lead to some undesirable effects on the robot, such as buckling or
instability of the end-effector [12].

To avoid the problems due to the local overconstraint, we propose in this work to modify the multi-model
computed torque control law [10] so that, near singularity, the part of the control input signal leading to mechanism
overconstraint is canceled.

The present paper is decomposed as follows. The next section makes necessary recalls on the parallel robot
dynamic model degeneracy conditions and gives all the possible solution of the inverse dynamic model in Type 2
singularities. Then, Section 3 presents a modification of the control law [10] in order to cancel the overconstraint
when crossing the singularity. In Section 4, we provide experimental results on a five-bar mechanism (DexTAR
robot from Mecademic) in order to show the relevance and the robustness of the proposed advanced control law
and the effect of an overconstraint when crossing the singularity. Finally, in Section 5, conclusions are drawn.
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2 Recalls and solutions of the dynamic model in Type 2 singularities

2.1 Recalls on the dynamic model degeneracy conditions in Type 2 singularities

As proven in [9], the inverse dynamic model of a general parallel robots takes the following form if there is no
(serial) leg singularities (out of the scope of the present analysis):

τ = wb−BTλ (1)

ATλ= wp (2)

where

• τ are the input torques / forces,

• λ is a vector of Lagrange multipliers,

• matrices A and B are defined though the first-order input-output kinematic constraint relation given by

Aẋ+Bq̇ = 0 (3)

in which

– A =
[

∂h
∂x

]
, B =

[
∂h
∂q

]
where h is the vector of the loop-closure equations [2]; matrices A and B are

square,

– q is the vector of the active joint coordinates (q̇ being its derivative with respect to time),

– x are the platform coordinates (ẋ being the derivative of the components of x with respect to time),

• wb and wp can be defined such that:

wb =
d
dt

(
∂L
∂ q̇

)
− ∂L

∂q
(4)

wp =
d
dt

(
∂L
∂ ẋ

)
− ∂L

∂x
(5)

in which L is the Lagrangian of the system which depends explicitly on q, x, q̇ and ẋ (only).

It is known from [1] that Type 2 singularities appear when the matrix A defined in (3) is rank-deficient. Outside
from Type 2 singularities, this matrix is invertible and the inverse dynamic model is given by

τ = wb +J−T
inv wp (6)

where Jinv = −B−1A is the inverse Jacobian matrix. Expression (6) can be obtained by finding the value of
λ= A−T wp thanks to (2) and then substituting it in (1).

In Type 2 singularities, the matrix A, and thus the inverse Jacobian matrix Jinv, are rank deficient. As a result,
the model (6) is no more valid. In order to avoid the dynamic model degeneracy, the following facts must be
considered. First, as the matrix A is rank deficient1, it exists a non-zero vector ts belonging to the null-space of A
such that:

Ats = 0⇔ tT
s AT = 0 (7)

ts represents the direction of the uncontrollable motion inside the singularity [2]. Thus, multiplying the left-hand
side of (2) by tT

s , we must obtain
tT
s ATλ= 0 (8)

1We consider here a loss of rank equal to 1, but a loss of rank of higher order could be considered.
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As a result, in order to have consistency in the dynamic equations, by also multiplying the right-hand side
of (2) by tT

s , the robot motion must ensure that, in the singularity, we have

tT
s wp = 0 (9)

This criterion was already provided in [8, 9] and, physically speaking, it can be summarized as follows: in order
to avoid the dynamic model degeneracy, the trajectory must be planned so that the efforts applied by the legs, the
external system and the internal dynamics to the platform (represented by the vector wp) are reciprocal to the null
space of the inverse Jacobian matrix (represented by the vector ts).

By planning a trajectory so that (9) is respected, the robot can cross a Type 2 singularity, as shown in several
examples validated through experimentations [8, 9].

2.2 Solutions of the inverse dynamic model in Type 2 singularities

A question arises: even if the criterion (9) is respected, what could be the solution(s) to the inverse dynamic model
given in (1) and (2)?

Mathematically speaking, if (9) is respected, it exists (at least) an exact and finite solution λ = λ∗ to the
equation (2) (see Appendix A). On the contrary, if the criterion (9) is not respected, there is no solution to this
equation. All the possible solutions λ∗ are given by:

λ∗ = AT +wp +
(
In−AT +AT )ξ (10)

where AT + is the Moore-Penrose pseudo-inverse of AT , In is the (n× n) identity matrix and ξ is a vector of
dimension n taking any values. This results in an infinity of possible values for λ∗, and thus from (1), for the input
efforts τ = wb−BTλ∗. Physically speaking, this means that, in Type 2 singularity, the system is overconstrained.
From this last expression of τ , it is quite difficult to estimate the value of the overconstraint. This is why it is
preferable to rewrite the dynamic model equations (6) as follows:

JT
invτ = JT

invwb +wp (11)

Expression (11) can be obtained by finding the value of λ=−B−T (τ −wb) thanks to (1) and then substituting it
in (2). Matrix B is of full rank in Type 2 singularities, while matrix JT

inv is not. If the criterion (9) is respected in
Type 2 singularities, then all possible exact solutions τ ∗ for the value of the motor input efforts are given by:

τ ∗ = JT +
inv

(
JT

invwb +wp
)
+
(
In−JT +

inv JT
inv
)
η (12)

where JT +
inv is the Moore-Penrose pseudo-inverse of JT

inv and η is a vector of dimension n taking any values. η is
called the overconstraint [13] and τ ∗ is of minimal norm when η = 0, i.e. when

τ ∗ = Gwb +JT +
inv wp (13)

with G = JT +
inv JT

inv. This solution is appealing because a too high overconstraint along the controllable direc-
tions of the motion may lead to some undesirable effects on the robot, such as buckling or instability of the
end-effector [12]. Therefore this solution should be considered when developing a controller for crossing Type 2
singularities. This is what we did in the next Section.

3 Design of a controller for crossing Type 2 singularities

3.1 Recalls on the previous works

As previously mentioned, since the robot will never be able to perfectly follow the optimal trajectory that should
be planned in order to respect the criterion (9), an advanced control law was defined in [14] to finally ensure the
change of assembly mode. This controller was based on the definition of a multi-model computed torque control
law (e.g. see [11]) including two types of dynamic models:
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1. a general dynamic model (6) which is used for ensuring the robot trajectory tracking far from singularity,

2. a second simplified dynamic model equal to τ ′ = wb which can never degenerate (due to the explicit deletion
of the terms J−T

inv wp from (6)), and which is only used when the robot is close from a Type 2 singularity.

This second dynamic model remain a good representation of the robot dynamics based on the fact that the desired
trajectory was planned so that the term wp and its m derivatives with respect to time are zero in singularity, thus
resulting in the fact that:

• wp = 0 respects the criterion (9),

• wp and its m derivatives with respect to time are zero allows wp to be zero not only in the singularity but
also around it.

3.1.1 Computed torque control law outside of Type 2 singularities

Starting from the definitions (4) and (5) and the fact that the Lagragian depends explicitly on q, x, q̇ and ẋ only,
we know from [15] that the terms wb and wp can be written under the following form:

wb =
d
dt

(
∂L
∂ q̇

)
− ∂L

∂q
= Mq(q,x)q̈+ cq(q̇,q, ẋ,x) (14)

wp =
d
dt

(
∂L
∂ ẋ

)
− ∂L

∂x
= Mx(q,x)ẍ+ cx(q̇,q, ẋ,x) (15)

It should be mentioned that the expressions of matrices Mq and Mx and vectors cq and cx do not degenerate in Type
2 singularities even if the criterion (9) is not respected [15].

By using the second-order kinematic constraint relations, obtained by differentiating (3) with respect to time
and given by

Aẍ+Bq̈ = b⇒ ẍ =−A−1Bq̈+b′ = J−1
inv q̈+b′ (16)

where b =−Ȧẋ− Ḃq̇ and b′ = A−1b, and then introducing them into (6), we get a general dynamic model of the
form:

τ = Mq̈+ c (17)

where

• M = Mq +J−T
inv MxJ−1

inv is the robot matrix of inertia

• c = cq +J−T
inv cx +J−T

inv Mxb′ is the vector of Coriolis, centrifugal effects, gravity and friction efforts.

Even though this model is not linear regarding the position and the velocities of the mechanism, it is linear
regarding its acceleration. Therefore, by replacing the angular acceleration q̈ in (17) by an adapted control signal
u, the dynamics of the system is linear with respect to the control variable:

τ = Mu+ c (18)

A double integrator between the control signal and the joint variables appears and thus, only a PD control law is
used to impose the control signal (it can be a PID if static friction is high) [11]:

u = q̈d +Kv(q̇− q̇d)+Kp(q−qd)⇒ ë+Kvė+Kpe = 0 (19)

where

• qd , q̇d and q̈d are the desired joint position, velocity and acceleration, respectively,
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• q, q̇ and q̈ are the current and measured joint position, velocity and acceleration, respectively,

• e = q−qd is the current tracking error in the joint space,

• Kv and Kp are two constant gain matrices.

This control signal is a classic second-order control law. The control input converts a complicated nonlinear
controller design problem into a linear system consisting of n decoupled subsystems. Of course, this controller is
based on the dynamic model of the mechanism. If this model is not accurate, the tracking error can therefore be
important, but the control signal still guarantees that this tracking error respects Eq. (19) and therefore tends to
zero with the desired second order dynamics. Consequently, the computed torque controller (CTC) computes the
input efforts that ensure the second order dynamics on the tracking error:

τ = M(q̈d +Kv(q̇− q̇d)+Kp(q−qd))+ c (20)

3.1.2 Computed torque control law around Type 2 singularities

As previously mentioned, thanks to an optimal trajectory planning around singularity, we impose the fact that
wp = 0 (and more specifically, that Mxẍ = 0 and cx = 0). As a result, the dynamic model is simplified into the new
model τ ′ = wb which can not degenerate in Type 2 singularities even if the criterion (9) is not respected [15] and
which takes the form, from (14),

τ ′ = wb = Mqq̈+ cq (21)

Therefore, by replacing the angular acceleration q̈ in (21) by an adapted control signal u, the dynamics of the
system is linear with respect to the control variable:

τ ′ = Mqu+ cq (22)

Then, as previously, imposing a PD control law (19) to the control signal u leads to

τ ′ = Mq(q̈d +Kv(q̇− q̇d)+Kp(q−qd))+ cq (23)

3.1.3 Multi-model control law

Finally, the multi-model control law defined in Fig. 2 is used. In this scheme, we switch from the general model
τ = Mq̈+ c (used far from singularities) to the simplified model τ ′ = Mqq̈+ cq (used in the neighborhood of
singularities).

The switch between the two models in the controller is made near singularity by using a sigmoid function σ

which depends on a criterion δ characterizing the proximity of singularity, as shown in [9, 14]. In what follows, it
is decided that, if ε is a threshold (positive) for the metrics δ characterizing the proximity to singularity, and that
|δ |< ε characterizes the presence of singularity. The control input sent to the robot is finally:

τ f = (1−σ)τ +στ ′ (24)

where σ is a piecewise continuous function defined such that:

• σ = 0 “far” from singularity (|δ | ≥ αε , where α is a positive number chosen by the user)

• σ = 1 “near” singularity (|δ |< ε)

• σ ∈ [01] in between (ε ≤ |δ |< αε), where σ is a smooth monotonic increasing function.
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The change of the values in σ is not discontinuous and there is a transition phase during which 0 < σ < 1.
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Fig. 3: The modified multi-model control scheme able to suppress the overconstraint during the singularity crossing.

3.2 Modification of the controller for canceling the overconstraint

The solution of the dynamic model that was chosen in the previous work was τ ′ = wb (for wp = 0) which is not
necessarily the solution leading to zero overconstraint in the system. From (13), this solution should be

τ ∗ = Gwb = G(Mqq̈+ cq) = Gτ ′ (25)

wp being considered null. In order to impose this solution in the controller, we multiply the signal τ ′ by the matrix
G (Fig. 3), so that the control signal when we are close from singularity becomes:

τ ∗ = G(Mqu+ cq) = G(Mq(q̈d +Kv(q̇− q̇d)+Kp(q−qd))+ cq) (26)

The control input sent to the robot is finally:

τ f = (1−σ)τ +στ ∗ (27)

where the function σ was defined in the previous section.

3.3 Note on the computation of the term G near singularities

We recall from (13) that G = JT +
inv JT

inv. JT +
inv is the Moore-Penrose pseudo-inverse of JT

inv and it can be computed
through SVD by the suppression or modification of the smallest singular value of JT

inv.
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(b) Kinematic architecture

Fig. 4: The five-bar mechanism under study.

In order to avoid computational issues due to imperfect trajectory tracking, it is preferable to ensure the can-
cellation of the smallest singular value of JT

inv when σ = 1, while it is not necessary to suppress it when σ = 0.
During the transition phase, in order to avoid discontinuities, it is better to use a transition function so that, if s is
the modified value of the smallest singular value of JT

inv, and s0 is the value when |δ |= αε , we have

• s = s0 “far” from singularity (|δ | ≥ αε , where α is a positive number chosen by the user)

• s = 0 “near” singularity (|δ |< ε)

• s ∈ [0 s0] in between (ε ≤ |δ |< αε), where s is a smooth monotonic increasing function.

4 Case study

In this section, we provide experimental results on a five-bar mechanism (DexTAR robot from Mecademic) in order
to show the relevance and the robustness of the proposed advanced control law and the effect of an overconstraint
when crossing the singularity. First, we presents the benchmark, and then show the experimental results.

4.1 Benchmark

The DexTAR robot (Fig. 4(a)) is a five-bar mechanism (Fig. 4(b)), i.e. a planar parallel robot composed of two
actuators located at the revolute joints positioned at points A and E and 3 passive revolute joints at points B, C and
D. The prototype of the five-bar was designed such that `i = 90 mm (i = 1, ...,4) and a = 118 mm.

To control the robot, the motors amplifiers receive a command proportional to the torques to deliver by the
actuator. To send this control command, a dSPACE 1104 control board was used. The controller sampling period
is 1 ms. The multi-model computed torque controller presented in the present paper was implemented on the robot.
To design the robot controller, the software Matlab/Simulink combined with the software dSPACE ControlDesk
has been used.

For implementing the multi-model computed torque controller, the dynamic model of the robot was necessary.
It was identified by using the procedure shown in [16] and it takes the following form:

τ =

[
zz1R 0

0 zz2R

][
q̈1
q̈2

]
+

[
f s1sign(q̇1)
f s2sign(q̇2)

]
+mRJ−T

inv

[
ẍ
ÿ

]
(28)
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where

• zz1R = 0.0137 kgm2±0.51 % and zz2R = 0.0145 kgm2±0.54 % are grouped moments of inertia around z,

• f s1 = 0.30 Nm ±1.43 % and f s2 = 0.37 Nm ±1.34 % are Coulomb friction terms in the actuated joints,

• mR = 0.51 kg ±1.26 % is a grouped mass on the end-effector,

• Jinv is the inverse Jacobian matrix,

• sign(u) is the sign function (sign(u) = +1 if u > 0, sign(u) =−1 if u < 0, and sign(u) = 0 if u = 0),

• x and y are the Cartesian coordinates of the end-effector along the axes x and y, respectively,

• q1 is the joint angle of motor located at point A while q2 is the joint angle of motor located at point E.

The terms zziR, f si and mR are the essential parameters [17], i.e. the parameters that are well-identified because
they represent the large majority of the robot dynamics effects. As a result, the model (28) is able to predict the
input torques of the DexTAR with an error lower than 10 %.

It should be mentioned that the computation of the platform accelerations and robot Jacobian matrix are de-
tailed in [9].

From (17), the model (28) can be written under the following matrix form:

τ = M
[

q̈1
q̈2

]
+ c (29)

where

• M = Mq +J−T
inv MxJ−1

inv , with Mq =

[
zz1R 0

0 zz2R

]
and Mx = mRI2

• c = cq +J−T
inv cx +J−T

inv Mxb′, where cq =

[
f s1sign(q̇1)
f s2sign(q̇2)

]
, cx = 0, and b′ is a bi-dimensional vector that can be

obtained from the second-order kinematics (16).

By identification with the simplified dynamic model given in (22), the simplified dynamics of the five-bar that
will be used in the controller near singularities is given by:

τ ∗ = G(Mqq̈+ cq) = G
([

zz1R 0
0 zz2R

][
q̈1
q̈2

]
+

[
f s1sign(q̇1)
f s2sign(q̇2)

])
(30)

Let us recall that G = JT +
inv JT

inv, in which JT
inv is rank deficient near singularity (see the section 3.3 for the computa-

tion of JT +
inv ).

4.2 Experimental results

Based on the criterion wp = 0⇒ ẍ = ÿ = 0 (which respects the criterion (9) and allows to use the control approach
developed in Section 3) and the cancellation of its first and second derivatives with respect to time, it was possible to
generate desired trajectory which avoids the degeneracy of the dynamic model in and around Type 2 singularities.

We planned a trajectory through singularity (Fig. 5) where the initial point is P0 = [00.15 m]T , the final point
is Pf = [00.02 m]T and the point at which we decide to cross the singularity is Ps = [00.084 m]T . Once point Pf is
attained, the robot do the reverse path. The duration for the full trajectory is of 0.8 sec while the robot must cross
the singularity at t = 0.3 sec and t = 0.5 sec.
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Results along this trajectory, when the controller shown in Fig. 3 is implemented, are presented in Fig. 6. They
showed that the robots was able to cross the singularity without any problem.2

Then, we decided to analyze the effect of a too high unmanaged overconstraint when crossing a singularity.
For that, instead of using the solution (13) of the dynamic model inside the singularity, we chose a more general
solution (12) where the overconstraint term η is different from zero and is equal η = [−2 2]T . Results along the
same trajectory are presented in Fig. 7. Around t = 0.3 sec, the input efforts are saturated (saturation fixed at
±8 Nm) and the robot is no more able to follow the trajectory. This results in growing tracking errors (up to
15 deg) as the robots was indeed blocked into the Type 2 singularity.

5 Conclusion

Increasing the size of the operational workspace of parallel robots is a keypoint in order to favor their industrial
development. A promising solution consists in crossing Type 2 singularities in order to access other workspace
aspects. This can be done by the definition of optimal trajectories that ensure the non-degeneracy of the dynamic
model in the Type 2 (or parallel) singularity. However, this assumes that the control law can perfectly track the
desired trajectory, which is impossible due to modeling errors.

In their previous works, two of the authors of the present paper defined a robust multi-model approach allowing
parallel robots to cross Type 2 singularities. The main idea was to shift near singularities the general dynamic
model to a simplified dynamic model that can never degenerate. However, because in Type 2 singularity, the robot
is locally overconstrained, we showed in the present paper that the simplified dynamic model admits infinity of
exact solutions, among which it is necessary to select one. We proposed to use the solution leading to a null
overconstraint in order to avoid undesirable effects near singularities, such as buckling or unstability.

Accordingly, the mentioned multi-model control approach was modified and it was then applied on a prototype
of five-bar mechanism. We made two types of experiments: (i) tracking a trajectory by using the new controller
where the overconstraint is cancelled, and (ii) tracking a trajectory when the overconstraint is too high. In the
first case, the robot was able to cross the singularity without any problem while in the second case, the robot stay
blocked in it, which showed the efficiency of the proposed approach.

2The video of the DexTAR moving along this trajectory can be downloaded in: https://youtu.be/UR9b5ouFy0o.

10



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−6

−4

−2

0

2

4

6

Time [sec]

M
ot
or
 i
n
p
ut
 t
or
qu

es
 [
N
m
]

Motor 1

Motor 2

(a) Input torques (joint space)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time [sec]

T
ra

ck
in

g 
er

ro
rs

 [
d

eg
]

Motor 1

Motor 2

(b) Tracking errors (joint space)

Fig. 6: Results in terms of input torques and tracking errors when using the controller of Fig. 3.
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Fig. 7: Results in terms of input torques and tracking errors when the overconstraint is too high.
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A Appendix

Let us consider that the robot is in Type 2 singularity. As a result, the matrix A of (3) is rank deficient and we can
define non-zero unit vector ts belonging to the null-space of A 3.

The dynamics equation (2), which is recalled here for reasons of clarity,

ATλ= wp (31)

are expressed in the Cartesian frame (because the term wp is the derivative of the Lagrangian with respect to x and
ẋ) but they can also be projected in another basis B.

3We consider once again a loss of rank equal to 1, but a loss of rank of higher order could be considered.
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So, let us project this equation in another basis B which contains as a principal vector the unit vector ts. As A
is of dimension (n×n), it is possible to define n−1 vectors t⊥ j

s such that

• ‖t⊥ j
s ‖= 1

• tT
s t⊥ j

s = 0

• (t⊥k
s )T t⊥ j

s = 0 for any k 6= j ( j,k = 1, ...,n−1).

Let us group all vector t⊥ j
s in a matrix T⊥s such that:

T⊥s =
[
t⊥1
s . . . t⊥n−1

s
]

(32)

Passing from the Cartesian frame to the basis B can be done by using the transformation RB defined such that

RB =
[
T⊥s ts

]
(33)

RB is an orthogonal matrix: as a result R−1
B = RT

B and det(RB) =±1.
Thus, if we project the equation (31) in B, we have

RT
BATλ= RT

Bwp⇒
[
(T⊥s )T AT

tT
s AT

]
λ=

[
(T⊥s )T wp

tT
s wp

]
(34)

If the criterion (9) is respected, and as ts is in the null-space of A, the equation (34) can be rewritten as[
(T⊥s )T AT

01×n

]
λ=

[
(T⊥s )T wp

0

]
⇔ (T⊥s )

T ATλ= (T⊥s )
T wp (35)

λ being a vector with n independent variables, and (35) containing n−1 independent equations, there is an infinity
of exact solutions to the equation (35), and as a result, to the equation (31).

If the criterion (9) is not respected, i.e. tT
s wp 6= 0, the equation (34) can be rewritten as[
(T⊥s )T AT

01×n

]
λ=

[
(T⊥s )T wp

tT
s wp(6= 0)

]
(36)

Here, the dynamic equations are no more consistent, and there is no exact solutions to the equation (36). However,
we can find an approximate solution λa which minimizes the norm of the error e = ATλ−wp.
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