Existence Theorem on Quasiconformal Mappings

Seddik Gmira Quasiconformal mappings are, nowadays, recognized as a useful, important, and fundamental tool, applied not only in the theory of Teichmüller spaces, but also in various …elds of complex analysis of one variable such as the theories of Riemann surfaces, of Kleinian groups, of univalent functions. In this paper we prove the existence theorem of the solution of the Beltrami di¤erential equation, and we give a fundamental variational formula for quasiconformal mappings, due to L.Ahlfors and L.Bers.

Quasiconformal Mapping

We consider an orientation-preserving homeomorphism f , which is at least partially di¤erentiable almost every where on a domain D in C, satisfying the Beltrami equation

f z = f z
As a natural generalization of the notion of conformal mappings we consider the following

Analytic De…nition

De…nition 1 Let f be an orientation-preserving homeomorphism of a domain D into C. f is quasiconformal (qc) on D if 1. f is absolutly continuous on lines (ACL) 2. There exists a constant k, 0 k < 1 such that jf z j k jf z j almost every where on D:

Setting K = (1 + k) = (1 k),
we say that f is K-quasiconformal mapping on D. We call the in…mum of K > 1 such that f is qc, the maximal dilatation of f , and denote it by K f :

Example 1 An a¢ ne mapping f (z) = az+bz+c; (a; b; c 2 C; jbj < jaj) is qc: k = jbj = jaj and hence K f = (jaj + jbj) =(jaj jbj)

Example 2 Set f (z) = z 1 jzj 2 , z 2 . This f is an orientationpreserving of the unit disk but not quasiconformal.

In general, existence of the partial derivatives f z and f z is not enough to guarantee good properties of f applicable to further investigations. However in the case of homeomorphisms Gehring and Lheto obtained the following remrkable result.

Proposition 1 If a homeomorphism f of a domain D onto C has the partial derevatives f x and f y almost.every where on D, then f is totally di¤erentiable almost.every where on D.

Proposition 2 Let f be a quasiconformal mapping of a domain D. Then the partial derevatives f z and f z are totally square integrable on D. Proof. Let A (E) be the area of f (E) of a measurable Borel subset E of D, and J f (z) the density of the set function A(with respect to the Lebesgue measure dxdy). The Lebesgue theorem implies

Z E J f (z) dxdy A (E)
Then, f is totally di¤erentiable at almost every z 2 D and at each such a point z we have

J f (z) = jf z j 2 jf z j 2 : Since f is quasiconformal, then jf z j 2 jf z j 2 1 1 k 2 J f (z) a.e. on D
Proposition 3 For every quasiconformal mapping f of a domain D, the partial derivatives f z and f z are coincident with those in the sens of distribution. Namely for every element ' 2 C 1 0 (D), the set of all smooth functions on D with compact supports it follows that

Z Z D f z :'dxdy = Z Z D f:' z dxdy Z Z D f z :'dxdy = Z Z D f:' z dxdy
Lemma 1 For a given p > 1, let f be a continuous function on a domain D whose distributional derivatives f z and f z are locally L p on D. Then for every compact subset F of D, there is a sequence

ff n g 1 1 in C 1 0 (D) such that f n converges to f uniformly on F , with lim n !1 Z Z F j(f n ) z f z j p ddxdy = 0 lim n !1 Z Z F j(f n ) z f z j p ddxdy = 0 2 Proof. Fix 2 C 1 0 (D) with = 1 in some neighbourhood of F .
Then f has a compact support. Further ( f ) z and ( f ) z exist and belong to L p (D). Set

' (z) = ( C: exp 1 1 jzj 2 ; z 2 0; z 2 C
Here, is the unit disk. Choose a constant C so that Z Z ' (z) dxdy = 1

Further, for every n > 0, set ' n (z) = n 2 ' (nz) ; z 2 C and

f n (w) = ' n ( f ) (w) = Z Z C ' n (w z) ( f ) (z) dxdy; w 2 C
Then for every n, we have

f z = ' n ( f ) z and f z = ' n ( f ) z . Morever, f n 2 C 1 0 (D)
for every su¢ ciently large n, and f n converges to f uniformly on F as n ! 1. Since ( f ) z = f z and ( f ) z = f z on F and since we can show equalities:

lim n !1 Z Z D j(f n ) z ( f ) z j p dxdy = 0; lim n !1 Z Z D j(f n ) z ( f ) z j p dxdy = 0
Lemma 2 (Weyl) Let f be a continous function on D whose distributional derivative f z is locally integrable on D. If f z = 0 in the sens of distributions on D, then f is holomorphic on D. Proof. For an arbitrarily relatively subdomain D 1 of D, we construct an L 1 -smoothing sequence ff n g 1 1 for f with respect to D 1 as in the proof of Lemma 1, we see that ( f ) z = 0 in some neighbourhood of D 1 , we see also that (f n ) z = 0 on D 1 for every su¢ ciently large n. Since f n converges to f uniformly on D 1 as n ! 1, f is holomorphic on this arbitrary D 1 .

Geometric De…nition

A quadrelateral (Q; q 1 ; q 2 ; q 3 ; q 4 ) is a pair of a Jordan closed domain Q and four points q 1 ; q 2 ; q 3 ; q 4 2 @Q, which are naturally distinct and located in this order with respect to the positive orientation of the boundary @Q.

Proposition 4 For every quadrelateral (Q; q 1 ; q 2 ; q 3 ; q 4 ), there is a homeomorphism h of Q onto some rectangle R = [0; a] [0; b] (a; b > 0) which is conformal in the interior IntQ and satis…es h (q 1 ) = 0; h (q 2 ) = a h (q 3 ) = a + ib; h (q 4 ) = ib Morever a=b is independant of h. The value a=b is called the module of the quadrelateral (Q; q 1 ; q 2 ; q 3 ; q 4 ) and denotet by M (Q). Proof. The Riemann mapping theorem implies the existence of a conformal mapping h 1 : IntQ ! H (upper half-plane). By Carathéodory's Theorem h 1 can be extended to a homeomorphism of Q onto H [ R. Using a suitable Möbius transformation, we may assume that

h 1 (q 1 ) = 1; h 1 (q 2 ) = 1 h 1 (q 3 ) = h 1 (q 4 ) > 1
Set k = 1=h 1 (q 3 ), and

h 2 (w) = Z w 0 dz p (1 z 2 ) (1 k 2 z 2 ) ; z 2 H
Then, h 2 is a conformal mapping of H onto the interior of some rectangle 

[ K; K] [0; K 0 ] (K; K 0 > 0). Hence we see that h (z) = h 2 h 1 (z) + K; z 2 Q is a desired mapping. Now, let e h : Q ! e R = [0; e a]

Since

e h (q 1 ) = h (q 1 ) = 0; h (q 1 ) > 0 and e h (q 2 ) > 0 we conclude that c > 0 and d = 0. Hearafter, for every quadrelateral (Q; q 1 ; q 2 ; q 3 ; q 4 ) and a homeomorphism f of Q onto C, we consider f (Q) as a quadrelateral with vertices f (q 1 ) ; f (q 2 ) ; f (q 3 ) ; f (q 4 ). Lemma 3 Every K-qc mapping f of a domain D satis…es 

1 K M (Q) M (f (Q)) KM (Q) Proof. Fix mappings h : Q ! R = [0; a] [0; b] and e h : f (Q) ! e R = [0; e a]
Z a 0 @F @x (x + iy) dx Z a 0 (jF z j + jF z j) dx Since R R R J F dxdy A e R = e
(e ab) 2 Z Z R (jF z j + jF z j) dxdy 2 Z Z R 0 jF z j + jF z j jF z j jF z j dxdy Z Z R 0 jF z j 2 jF z j 2 dxdy Z Z R 0 Kdxdy Z Z R 0 J F dxdy K (ab) e a e b where R 0 = fw 2 R : F z (w) 6 = 0g. Thus we have M (f (Q)) KM (Q).
Next replacing F by i e h f (ih) 1 (or considering (Q; q 2 ; q 3 ; q 4 ; q 1 )), the same argument gives

1 M (f (Q)) K M (Q) De…nition 2 A homeomorphism f of a domain D into C which preserves the orientation is quasiconformal on D, if there is a constant K 1 such that, M (f (Q)) KM (Q) holds for every quadrelateral Q in D Theorem 1 Let f be a K f -quasiconformal mapping of D onto e D, then 1. The inverse f 1 is also K f -quasiconformal 2.
K-quasiconformally is conformally invariant: Namely conformal mappings h and e h of domains D and e D respectively, the composed mapping e h f h is also K f -quasiconformal 3. For every K g -qc mapping g of f (D), the composed mapping g f is

K f K g -quasiconformal.
Proof. 1. Lemma 3 gives

1 K f M f 1 (Q) M (Q)) K f M f 1 (Q ) 2.
By the conformal invariance of the module 3. Clear from the de…nition Lemma 4 Every qc-mapping

f of a domain D satis…es Z Z E jf z j 2 jf z j 2 dxdy = A (E)
for every subset E of D, where

A (E) = R R E dxdy: Proof. Let E be a rectangle contained in D. If f is absolutly continuous on the boundary @E, then in view of Proposition 8, we …nd L 2 -smoothing sequence ff n g 1 1 for f with respect to E (Lemma 1). Set f n = u n + iv n . Green's lemma implies Z Z E n (u m ) x (v n ) y (u m ) y (v n ) x o dxdy = Z @E u m dv n Let m ! 1 and n ! 1, we obtain Z Z E n (u) x (v) y (u) y (v) x o dxdy = Z @E udv
Here we write f = u + iv. The right hand side is interpred as the line integral of udv along the Jordan curve @f (E). By assumption, @f (E) is recti…able. Hence we can show that

Z @f (E) udv = Z Z f (E) dudv = A (E)
Since f is ACL, every rectangle contained in D can be approximated by such rectangles.

Proposition 5 If f is quasiconformal on a domain D, then f z 6 = 0 almost.every where on D. Proof. The set E = fz 2 D : f z = 0g is measurable and f z = 0 a.e. on E. Hence.f (E) has area zero. Since f 1 is also quasiconformal, then E = f 1 (f (E)) has area zero Next, for every quasiconformal mapping f of a domain D, we can consider

f = f z f z
almost every where on D. This f is a bounded measurable function and satis…es ess:

sup z22D f (z) K f 1 K f + 1 < 1
We call f the complex dilatation of f on D. Proposition 6 For every quasiconformal mappings f and g of a domain D,

g f 1 f = f z f z g f 1 f g almost every where on D Proof. g f 1 is quasiconformal on f (D) by Theorem 1. g f 1 is di¤er- entiable on f (D) by Proposition 1. Hence g f 1 is di¤erentiable on f (D)
except for a subset E of measure zero. f 1 (E) is also of measure zero by lemma 4. Hence Theorem 1 implies that, f and g f are di¤erentiable at z and f (z), respectively a.e on D. At such a point z, the chain rule is valid. Writing w = f (z), we get

g z = g f 1 w f:f z + g f 1 w f:f z g z = g f 1 w f:f z + g f 1 w f:f z
By similar argument as before, we can show that f z 6 = 0, g 6 = 0, and g f 1 w f 6 = 0

for almost every z 2 D.

Existence Theorem on Quasiconformal Mappings

We have seen that a quasiconformal mapping f of a domain D induces a bounded measurable function f on D, which satis…es

ess: sup z22D f (z) < 1
Next, we shall prove the converse. Namely, for every measurable function with ess: sup z22D j (z)j < 1, we construct a quasiconformal mapping, whose complex dilatation is equal to . We consider the complex Banach space L 1 (D) of bounded measurable functions on a domain D, with the norm

k k 1 = ess: sup z22D j (z)j Consider the set B (D) 1 = f 2 L 1 (D) ; k k 1 < 1g of Beltrami coe¢ - cients on D.
Proposition 7 Let 2 B (D) 1 . If there exists a quasiconformal mapping f with the complex dilatation f = , then for every conformal mapping h of f (D), the mapping h f has the same complex dilatation . Conversely, for every quasiconformal mapping g with g = , the map g f 1 is a conformal mapping of f (D). Proof. As before, we have h f = f = , and g f 1 = 0 almost.every where on f (D). It follows that g f 1 is 1-quasiconformal and hence is conformal.

To solve the Beltrami di¤erential equation f z = f z ; 2 B (C) 1 , consider …rst, solving the @-problem. If we get a suitable representation f = G (f z ), then we have a relation

f z = G (f z ) z = G ( f z ) z Rewriting this relation in the form f z = F ( ), we obtain a solution f = G ( F ( ))
of the Beltrami equation. On the other hand to reconstruct f from f z we use the classical Cauchy transfotmation. For every p with 1 P < 1, we consider the complex Banach space L P (C) of all measurable functions f on C such that Z Z C jf j p dxdy < 1

The following Pompeiu's formula is essential to solve the @-problem. Proposition 8 Fix p, 2 < p < 1, and let f be a continuous function on C such that, f z and f z 2 L P (C). Then f satis…es

f ( ) = 1 2 i Z @D f (z) dz z 1 Z Z D f z (z) z dxdy, 2 D for every open disk D in C. Proof. Let q < 2 such that, 1 p + 1 q = 1. Since j1= (z &)j q 2 L 1 (D)
, the assertion follows by Hölder's inequality. Take an L p smoothing sequence ff n g 1 1 for f with respect to D and …x a point & 2 D . For every n , Green's formula gives

f n ( ) = 1 2 i Z @D f n (z) dz z 1 2 i Z Z D (f n ) z (z) z dz ^dz Since f n ! f uniformly on D, and (f n ) z ! f z in L p (D) respectively.
Next, we de…ne a linear operator P on L P (C) as follows

P h ( ) = 1 Z Z C h (z) 1 z 1 z dxdy
Lemma 5 For every p with 2 < p < 1 and for every h 2 L p (C), P h is a uniformly Hölder continuous function on C with exponent (1 2p) and satis…es P h (0) = 0. Morever (P h) & = h on C in the sens of distribution. Proof. Hölder equality implies

jP h (&)j 1 khk p (z &) q < 1
Further, if & 6 = 0, by changing the variable, we have

Z Z C 1 z (z &) q dxdy = j&j 2 2q Z Z C 1 z (z 1) q dxdy
Hence there is a costant K p depending only on p such that jP h (&)j K p khk p j&j 1 2=p , & 2 Cr f0g Since P h (0) = 0 by de…nition, this inequality is valid even when & = 0: Now set h 1 (z) = h (z + & 1 ). Then we have

P h 1 (& 2 & 1 ) = P h (& 2 ) P h (& 1 )
We conclude that,

jP h (& 2 ) P h (& 1 )j K p khk p j& 2 & 1 j 1 2p
Thus P h is a uniformly Hölder continuous with exponent 1 2p: For the second assertion we take a sequence fh n g 1

1 in C 1 0 (C) such that kh h n k p ! 0 as n ! 1. Then for every h n (P h n ) & (&) = 1 @ @& Z Z C h n (z + &) z dxdy = 1 Z Z C (h n ) z (z) z & dxdy
Hence Green's formula implies

(P h n ) & (&) = lim " !0 Z fjz &j="g h n (z) z & dz = h n (&)
In particular, for every ' 2 C 1 0 (C), we get

Z Z C h n 'dxdy = Z Z C P h n ' z dxdy, ' 2 C 1 0 (C)
Since kh h n k p ! 0 as n ! 1, P h n converges to P h locally on (uniformaly on any compact subset) C by jP h (&)j K p khk p j&j 1 2=p . Hence, when we let n ! 1 the above equality gives

Z Z C h:'dxdy = Z Z C P h:' z dxdy, ' 2 C 1 0 (C)
Next, we need a suitable integral representation for (P h) z . For this purpose, let h 2 C 1 0 (C). And Green's formula gives

(P h) & (&) = 1 2 i Z Z C h z (z) z & dz ^dz = lim " !0 ( 1 2 i Z fjz &j="g h (z) z & dz + 1 2 i Z Z fjz &j>"g h (z) (z &) 2 dz ^dz )
Since the …rst term in the right side converges to zero as " ! 0, the second term is essential. Let T be the linear operator de…ned by

T h (&) = lim " !0 ( 1 Z Z fjz &j>"g h (z) (z &) 2 dxdy ) , h 2 C 1 0 (C) Lemma 6 Every h 2 C 1 0 (C) satis…es (P h) z = T h, on C and kT hk 2 = khk 2
Proof. We have already seen (P h) z = T h on C for every h 2 C 1 0 (C) and that

kT hk 2 2 = 1 2i Z Z C (P h) z P h z dz ^dz = 1 2i Z Z C (P h) P h zz dz ^dz = 1 2i Z Z C (P h) h z dz ^dz = 1 2i Z Z C h (P h) z dz ^dz = khk 2 2
We see that, the operator T is extended to a bounded linear operator on L 2 (C) into itself with norm 1. Since P is an operator on L p (C) with p > 2,

T is also an operator on L 2 (C). Then, we see by the following classical Calderon-Zygmund's theorem that T gives a bounded linear operator on

L P (C) (p > 2) into itself.
Theorem 2 (Calderon-Zygmund) For every p with 2 p < 1

C p = sup h2C 1 0 (C), khk p =1
kT hk p is …nite. Hence the operator T is extended to a bounded operator of L p (C). Morever, C p is continuous with respect to p. In particular C p satis…es

lim p !2 C p = 1
In fact "Calderon-Zygmund's Theorem" gives the following Proposition 9 For every number p > 2 and every h 2 L p (C)

(P h) z = T h on C in the sens of distribution. Proof. Let fh n g 1 1 be a sequence in C 1 0 (C) approximating h in L P (C). Then Z Z C T h n :' dxdy = Z Z C P h n :' z dxdy, ' 2 C 1 0 (C)
Here P h n ! P h locally uniformally on C and T h n ! T h in L p (C) respectively, as n ! 1. Hence we have the assertion.

Existence of the Normal Solutions

Theorem 3 Fix k such that 0 k < 1 arbitrarily and take p > 2 with kC p < 1. Then for every 2 B (C) 1 with a compact support; k k 1 k, there exists a unique continuous function f such that

f (0) = 0; f z 1 2 L p (C)
and satisfying f z = f z on C in the sens of distribution. This f is called the normal solution of the Beltrami equation for :

Proof. First, we drive a condition which the partial derivative f z of the normal solution should satisfy. Since f z = f z has a compact support, and since f z 1 2 L p (C), f z 2 L p (C) also. Thus we can consider P (f z ).

Set

F (z) = f (z) P (f z ) (z) , z 2 C
Then F (z) is continuous and F (0) = 0. Moreover F z = 0 in the sens of distribution. Hence F (z) is holomorphic on C by Weyl's lemma. On the other hand, since f z 1 and T (f z ) (z) belong to L p (C), so does F 0 1. Thus we conclude that

F 0 (z) = 1, i.e., F (z) = z + a, a 2 C. Since f (0) = 0, then we have f (z) = P (f z ) (z) + z, z 2 C
Then we obtain

f z = T ( f z ) + 1
Suppose that, there is another normal solution g. Then

g z = T ( g z ) + 1
By Calderon-Zygmund's Theorem, we obtain

kf z g z k p = kT ( f z ) T ( g z )k p kC p kf z g z k p
Since kC p < 1 by assumption, we get f z = g z a.e on C. Then the Beltrami equation also gives f z = g z a.e on C. Hence again by Weyl's lemma f g and f g are holomorphic on C, which in turn implies that f g should be constant. Since f (0) = g (0) = 0 we conclude that f = g.

Finally, the existence of the normal solution follows from f z = T ( f z )+1. In fact repeat substituting the whole right hand side for f z on the tight hand side. Then we …nd

f z 1 = T ( f z ) = T ( (1 + T ( f z ))) = T + T ( T ( f z )) = T + T ( T ) + T ( T ( T )) + :::::: This series converges in L p (C), since the operator norm of h ! T ( h) 2 L p (C) is not greater than kC p < 1. Set h = T + T ( T ) + T ( T ( T )) + :::::; then h 2 L p (C)
We shall show that, the desired solution for the Beltrami equation is

f (z) = P ( (h + 1)) (z) + z
In fact (h + 1) 2 L p (C), for has compact support. Hence Lemma 5 implies that f is continuous, f (0) = 0 and f z = (h + 1). Morever, by Proposition 9 we have:

f z = T ( (h + 1)) + 1 = h + 1
Hence, f satis…es the Beltrami equation f z = f z , and f z 1 2 L p (C) :

Basic Properties of Normal Solutions

Corollary 1 Under the conditions of Theorem 3, the following inequalities hold:

kf z k p 1 1 kC p k k p , and jf (& 1 ) f (& 2 )j K p 1 kC p k k p j& 1 & 2 j 1 2p + j& 1 & 2 j for every & 1 ; & 2 2 C.
Proof. Since h = T ( h) + T , then we have:

khk p kC p khk p + k k P
The …rst inequakity holds for f z = (h + 1). For the second we have f (z) = P (f z ) (z) + 1 as before,

jf (& 1 ) f (& 2 )j jP (f z ) (& 1 ) P (f z ) (& 2 )j + j& 1 & 2 j
From this, the second inequality holds easly. Furthermore, the normal solutions depend on the Beltrami coe¢ cients as follows.

Corollary 2 For 0 k < 1 and p > 2. Let f n g 1 1 be a sequence in B (C) 1 with the following conditions:

1. k n k 1 < k for every n 2. every n has a support contained in fz 2 C : jzj < M g with a suitable constant independent of n 3. n converges to some 2 B (C) 1 a.e. on C as n ! 1

Let f n be the normal solution for , and f be the normal solution for . Then f n ! f uniformaly on C as n ! 1, and

lim n !1 k(f n ) z f z k p = 0: Proof. First, since f z = T ( f z ) + 1, then we have k(f n ) z f z k p kT ( n (f n ) z f z )k p + kT ( n ) f z k p kC p k(f n ) z f z k p + C P k( n ) f z k p Hence we have k(f n ) z f z k p C p 1 kC p k( n ) f z k p
Since the support of all n are uniformaly bounded, and since n converges to a.e.on C as n ! 1, then we have

lim n !1 k(f n ) z f z k p = 0 Next, we get jf (&) f n (&)j = jP (f z (f n ) z ) (&)j K p n k( n ) f z k p + k k(f n ) z f z k p o j&j 1 2 p for every & 2 C. Thus f n ! f uniformaly on C as n ! 1. Since f n ! f is
holomorphic in a …xed neighbourhood of 1 for every n, we conclude that f n converges to f uniformaly on C.

Existence Theorem

In fact the existence of a quasiconformal mapping is also valid for a general complex dilatation 2 B (C) 1

Theorem 4 For every Beltrami coe¢ cient 2 B (C) 1 , there exists a homeomorphim f of C onto itself which is a quasiconformal mapping of C with complex dilatation . Morever f is uniquely determined by the following normalization conditions f (0) = 0, f (1) = 1 and f (1) = 1

We call this f the canonical -quasiconformal mapping of C.and denote it by f :

Proof. The uniqueness of f is given by Proposition 7 and the normalization conditions. For the existence, we suppose that has compact support. Let F be the normal solution for . Then Theorem 3 implies that F (z) =F (1) is the desired one. Now suppose that = 0 almost every where in some neighbourhood of the origin. Pulling back by the Möbus transformation

(z) = 1 z If we set e (z) = 1 z z 2 z 2 ; z 2 C
then e 2 B (C) 1 , and has a compact support. Hence as before, there exists the canonical e -quasiconformal mapping f e of C. At every such point 1 z , the quasiconformal mapping

f (z) = 1 f e (1=z)
is also totally di¤erentiable, so using the chain rule we have

f (z) = z 2 z 2 e 1 z = (z) , a.e. on C
Clearly, f sats…es the normalization conditions. Hence f is the desired function. Finally, suppose that is a general Beltrami coe¢ cient. Now, suppose that is a general Beltrami coe¢ cient. We set

1 (z) = (z) ; z 2 C 0; z 2 
where is the unit disk. Then f 1 exists as before. Finally Set

2 = 1 1 1 (f 1 ) z (f 1 ) z ! (f 1 ) 1
Then, f 2 exists, because 2 has a compact support. Mreover g = f 2 f 1 is quasiconformal and we can see that g = a.e. Clearly g is the desired function.

Hereafter, we state several applications of the existenc theorem Proposition 10 Every quasiconformal mapping of the disk onto a Jordan domain D is extended to a homeomorphism on onto D Proof. Fix such a quasiconformal mapping f : ! D, and set = f . By setting = 0 on C , we can consider 2 B (C) 1 . Hence by Theorem 3, there exists the canonical -quasiconformal f of C. Set g = f f 1 . Then g is a 1-quasiconformal mapping of D. Hence g is a conformal mapping of D. Since f ( ) is a Jordan domain, Carathéodory's theorem gives the extension g to a homeomorphism of D onto f ( ). Since f = g 1 f , we obtain the assertion.

Proposition 11 There exists no quasiconformal mapping of the disk onto C Proof. Suppose that f : ! C is a quasiconformal conformal mapping Then f 1 is also quasiconformal. Set = f 1 ; then there exists the canonical -quasiconformal mapping of . On the other hand, since g 1 (C) = , Liouville's Theorem implies that g 1 should be a constant.

Proposition 12 Let be an element of B (H) 1 . Then there exists a quasiconformal mapping w : H ! H with complex dilatation : Moreover, such a mapping w(which can be extended to a homeomorphism of H = H [ R onto itself)is uniquely determined by the following normalization conditions: w (0) = 0, w (1) = 1, and w (1) = 1

We call this unique w, the canonical -quasiconformal mapping of H, and denote it by w . Proof. The uniqueness is given by the normalization conditions as before. For the existence, set In particular we see that f e R = R. Since f e preserves orientation, f e (H) = H. Hence the restriction of f e onto H is the desiret qc mapping.

Dependence on Beltrami coe¢ cients

Some of the most important useful facts on the canonical quasiconformal mapping of C concern dependence of the canonical quasiconformal mapping on the Beltrami coe¢ cient.

Theorem 5 Let f (t)g be a family of Beltrami coe¢ cients depending, on t 2 R or C. Suppose that k (t)k 1 ! 0 as t ! 0, and that (t) is di¤erentiable at t = 0 : (t) (z) = t (z) + t (t) (z) ; z 2 C with suitable 2 L 1 (C) and (t) 2 L 1 (C) such that k (t)k 1 ! 0 as t ! 0. Then Proof. Set f t = f (t) (f ) 1 . Then the complex dilatation (t) of f t is given by:

f [ ] (&) = lim
(t) = ft = (t) 1 : (t) (f ) z (f ) z ! (f ) 1
Hence, (t) is written as (t) = t + (jtj) in L 1 (C), where

= 1 j j 2 (f ) z (f ) z ! (f ) 1
Apply Theorem 5 to this family ff t g. Then we can conclude that

f t (&) & t converges to f (&) = 1 Z Z C (z) & (& 1) z (z 1) (z &) dxdy
locally uniformally on C. Hence, changing the variable z in this integrale to (f ) 1 (z) and noting that

f (t) f t = (f t f 0 ) t f
we get the assertion.

  the same conditions as the last proposition. Using the Schwarz re ‡exion principale the map e h h 1 can be extended to an element of Aut (C). Hence with suitable complex numbers c and d, we have e h (z) = ch (z) + d; (z 2 IntQ)

  Then F = e h f h 1 is a qc mapping of the IntR onto the Int e R which maps 0; a, ib and a + ib to 0; e a, i e b and e a + i e b, respectively. In particular, F (z) is ALC on R, and hence for almost every y 2 [0; b], we have e a jF (a + iy) F (iy)j =

  a e b; intgrating both sides of th above inequality over [0; b]

  By the uniqueness theorem, the canonical e -qc mapping f e of C satis…es f e (z) = f e (z)

  for every & 2 C, and the convergence is locally uniform on C.Moreover : f [ ] has the integral representation f [ z (z 1) (z &) dxdy Proof. [IT ] for example. Corollary 3 Let f (t)g be a family of Beltrami coe¢ cients depending on t 2 R or C. Suppose that (t) is di¤erentiable at t = 0 : (t) (z) = (z) + t (z) + t (t) (z) ; z 2 C with suitable 2 B (C) 1 , 2 L 1 (C) such that k (t)k 1 ! 0 as t ! 0: Then f (t) (&) = f (&) + t f [ ] (&) + (jtj) ; & 2 C locally uniformaly on C as t ! 0, where f [ f (&) (f (&) 1) ((f ) z (z)) 2 f (z) (f (z) 1) (f (z) f (&)) dxdy