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Collisionless trapped ion modes (CTIMs) turbulence exhibits a rich variety of zonal flow physics.

The coupling of CTIMs with shear flow driven by the Kelvin-Helmholtz (KH) instability has been

investigated. The work explores the parametric excitation of zonal flow modified by wave-particle

interactions leading to a new type of resonant low-frequency zonal flow. The KH-CTIM interaction

on zonal flow growth and its feedback on turbulence is investigated using semi-Lagrangian gyroki-

netic Vlasov simulations based on a Hamiltonian reduction technique, where both fast scales

(cyclotron plus bounce motions) are gyro-averaged. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4928102]

I. INTRODUCTION

Turbulence due to drift waves is a ubiquitous feature of

magnetically confined plasmas, such as those in tokamaks.

Drift waves can be driven to be unstable, for example, by ra-

dial gradients both in density and temperature. In the studies

of magnetized plasmas, theories and simulations have pre-

dicted that drift-wave turbulence can generate the mesoscale

structures, such as zonal flows (ZFs), sheared flows, trapped

ion modes (TIMs), but also streamers. These mesoscale

structures, ZFs and streamers, have different behaviours and

their impacts on turbulence-driven transport show strong

contrasts. Motivated by the experimental discovery of a low-

to-high (LH) transition1 in the plasma confinement character-

istics, experiment and theory in the last decade have focused

on whether the turbulence associated with the H-states might

be regulated by interactions with ZFs. Central to all these

enhanced confinement regimes, be they in the edge region or

the core region of the tokamak plasma, is the generation of

sheared flows or zonal flows, which are believed to be re-

sponsible for suppressing fluctuations and stabilizing the

turbulence.

A clear indication of the key role played by ZFs was the

recent observations in Ref. 2 at the Experimental Advanced

Superconducting Tokamak (EAST) tokamak or in ASDEX

Upgrade tokamak in Ref. 3, associated with a low frequency

signal at a few kilohertz corresponding to coherent ZF oscil-

lations preceding and following the LH transition. The signal

was observed at a much lower frequency than the geodesic

acoustic mode (GAM) with strong correlation of such an os-

cillation with the turbulent Reynolds stress. No coherent os-

cillation in the GAM frequency range was detected by the

probes in these experiments in the H-mode regime. This

brings us to an important question of the physical origin of

these low-frequency oscillations while the ZF frequency is

usually attributed to be zero in the hydrodynamical

approach. These experimental measurements indicate also

that particles towards the lower divertor are modulated at the

same low frequency value, e.g., �4 kHz indicating strong

correlations with trapped ions since standard GAMs are not

excited (we can then postulate that circulating ions do not

play a major role).

In contrast, streamers contribute to enhance the transport

owing to their radial elongated structures. Streamers,

observed in numerical simulation studies, appear to be

closely associated with avalanche type transport events.

Thus, theoretical understanding of such ZFs and streamers

has first come from studies on the drift wave model but also

in the gyrokinetic turbulence, e.g., the ion temperature gradi-

ent (ITG) mode, the electron temperature gradient (ETG)

mode, and trapped electron mode (TEM).

ZFs are E�B flows with toroidally (n¼ 0) and poloi-

dally (m¼ 0) symmetry but radially varying electric poten-

tial fluctuations with quasi zero frequency. In the toroidal

geometry, Rosenbluth and Hinton4 have shown that the n¼ 0

poloidal flows driven by the ITG turbulence, although modi-

fied by plasma polarization, are not linearly (Landau)

damped by collisionless processes. Residual ZFs have been

experimentally observed in the core of plasmas DIII-D toka-

mak in Ref. 5, while streamers were observed in Refs. 6 and

7. In Ref. 6, the experiment was carried out in JIPP-T-IIU

tokamak plasma with a nearly circular cross section and

streamers were found in the bad curvature region, presenting

ballooning-type characteristics.

ZFs have the ability to limit the radial size of turbulent

vortices through the shear de-correlation mechanism8 and

hence to regulate turbulent transport. The generation of ZFs

in drift wave turbulence was first predicted by Hasegawa and

Mima (HM) in Ref. 9 and by Charney10 in the case of the

geostrophic vortex equation. Related models based on the

HM model are the modified Hasegawa-Mima model (MHM)

in Ref. 11, Hasegawa-Wakatani (HW) model for the study of

plasma edge turbulence in Ref. 12, and modified Hasegawa-

Wakatani (MHW) model in Refs. 13–15.a)alain.ghizzo@univ-lorraine.fr
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While considerable progress has been achieved in the

understanding of the zonal flow physics (see for instance

Refs. 16 and 17), many aspects of ZF dynamics remain

nevertheless poorly understood. The generation of ZFs and

their feedback to turbulence and transport are essentially

nonlinear processes. ZFs are generated through the Reynolds

stress in the drift wave turbulence but give no perpendicular

heat nor particle transport. Nevertheless, since sheared flows

can suppress the micro-turbulence, they play quite an impor-

tant role in regulating turbulent transport. Thus, the self-

generated zonal flow in plasma turbulence is now recognized

as a key constituent of a drift-wave -ZF system.

Moreover, ZFs are also met in nature, and the most fa-

mous example is the strong longitudinal winds in the Jovian

atmosphere. The physics of ZF formation was also studied

within the geophysical fluid dynamics community, and

Charney and Drazin18 have elucidated the nonlinear origin

and dynamics of ZF using a momentum conservation theo-

rem. Such a theorem was extended to plasma physics by

Diamond et al.19

For the saturation of ZF growth in plasma turbulence,

several mechanisms have been proposed. The Kelvin-

Helmholtz (KH) instability is one of the candidates for a sat-

uration mechanism of ZF in ITG turbulence (see Refs. 20

and 21). The complexity of the problem is linked, on the one

hand by the linear and nonlinear aspects of KH modes and

on the other hand by the nonlinear interactions among drift-

wave, ZFs, and KH modes. While substantial effort has been

devoted to the study of zonal flow generation by drift wave

or ITG modes, very little work has been published on zonal

flows driven by pure TIMs or by their counterpart of TEMs

when electron dynamics is taken into account.

TIMs are a prototype of kinetic mode since they are

driven through the resonant interaction between a wave and

trapped ions through their precession motion. Although

TIMs have been studied by Kadomtsev and Pogutse22 40

years ago (usually referred as dissipative modes due to colli-

sions), collisionless TIMs (CTIMs) are known to be subject

to interchange-type turbulence. While dissipative modes

propagate in the electron direction, collisionless modes pos-

sess two distinct branches. The first one is thus analogous to

interchange-like mode (and therefore to ITG modes). But

TIMs can also be driven by resonance since they propagate

in the ion diamagnetic direction. Thus, the resonance with

precessing trapped ions becomes important. Their hybrid-

kinetic character reveals new features, in particular, the prop-

erty to generate (nonlinear) streamers (see Refs. 23 and 24)

by resonant interactions and to couple with ZF and KH

modes. In revising the theory, we will address how ZF is

modified in the nonlinear (kinetic) resonant regime by its

coupling with TIMs leading to a low-frequency oscillatory

behaviour in time, allowing enhanced resonant wave-particle

interactions of kinetic nature, a process that is different from

the standard Reynolds stress met in hydrodynamics. It is in

light of these considerations that we undertake here an inves-

tigation of the nonlinear dynamics of the trapped ion mode

in the presence of KH instability.

The remainder of this paper is organized as follows. In

Sec. II, we present the nonlinear equations of the trapped-ion

model and give in Sec. III the main properties of the model

in terms of energy conservation and we build the equations

of first moments of the reduced Vlasov equation. In particu-

lar, we derive and analyze the equations of the mean quanti-

ties h/ia and hPia describing the zonal flow in the presence

of interchange turbulence. In Sec. IV, we solve the Vlasov

equations numerically using a semi-Lagrangian scheme and

present the results for the interchange turbulence, while the

KH regime is studied in Sec. V. Section VI contains the

summary.

II. NONLINEAR MODEL EQUATIONS

TIMs were obtained by averaging over the fast scales,

cyclotron plus bounce motions. This task is made easier in

the framework of the Hamiltonian formalism using action-

angle variables. The population of trapped ions is then

described by a distribution function �f ¼ �f E;jðw; a; tÞ, where

E and j are considered as adiabatic invariants. The low-

frequency response for TIM is obtained by making a phase-

angle average over the cyclotron phase and the bounce

motion (the “banana” orbit) leading to invariance of the total

energy E ¼ 1
2

mv2
Gk þ lB xGð Þ and of the so-called adiabatic

invariant l ¼ mv2
G

2B xGð Þ. Here, the label G is a conventional nota-

tion that refers to the guiding centre and xG refers to (r, h)

polar coordinates. By introducing the pitch angle parameter

j defined by j2 ¼ sin2 h0

2

� �
¼ 1�k

2ek , where k ¼ lB0

E and e ¼ r
R0

is the inverse aspect ratio, trapped particles are characterized

by j < 1, while j > 1 corresponds to passing ions.

Following the work of Kadomtsev and Pogutse,22 the bounce

and precession frequencies are given, respectively, by the

following relations:

xb ¼
ffiffiffiffiffiffi
2E

m

r
1

q0R0

�xb jð Þ with �xb jð Þ ’ p
ffiffi
e
p

2
ffiffiffi
2
p

K jð Þ
; (1)

xdE ¼ q0E

er0R0B0

�xd j; sð Þ with

�xd j; sð Þ ¼
2E jð Þ
K jð Þ � 1þ 4s

E jð Þ
K jð Þ þ j2 � 1

� �
; (2)

where s ¼ r0

q0

dq
dr

� �
r0

is the magnetic shear and KðjÞ and EðjÞ
are the complete elliptic integral of the first and second kind,

respectively. Finally, the two important variables are the pre-

cession angle a ¼ u� q0h and the poloidal flux w related to

the third “action quantity” J3 ¼ M ¼ ewþ mRðxGÞvG0

� ewðr0Þ, assumed to be not an adiabatic invariant. The

resulting gyrokinetic Vlasov equation is then given by

@�f

@t
þ xd jð ÞE @

�f

@a
þ �/; �f
� �

¼ @w D wð Þ@w
�f

	 

; (3)

where ½:; :� is the usual Poisson bracket defined by ½g; f � ¼ @w

g@af � @ag@wf and �/ ¼ J0/ is the bounce average electric

potential. Assuming an adiabatic response for electrons, the

electron-neutrality condition dne ¼ dni reads as
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Ceð/� h/iaÞ � Ci
�r2

/ ¼ ��ni � n0; (4)

where

�r2 ¼ q2
s@

2
a þ d2

b@
2
w (5)

with the asymmetry between the w and a directions, which

close the system of Eqs. (3) and (4) in a self-consistent way.

Here, n0 denotes the passing ion density. The gyro-average

operator J0 was approximated by the Pade’s relation giving

to

J0 ¼ 1� E

4
d2

b@
2
w

� ��1

1� E

4
q2

s@
2
a

� ��1

: (6)

The gyro-averaged pseudo-density of trapped ions used in

Eq. (3) is given by Eq. (A2) of the Appendix. Here, Ce and

Ci are constants accounting for the fraction of trapped par-

ticles fp and for the ratio s of ion to electron temperatures

Ce ¼ ð1þ sÞ=fp and Ci ¼ Cefp=s; s ¼ Ti=Te. Trapped ion

turbulence develops on length scale of the order of the ba-

nana width db and time scale determined by x�1
d0 , where

xd0 ¼ q0T0

er0R0B0
. Here, db is constant (we have neglected the de-

pendence in j) and is found close to
qsq0ffiffi

e
p , where qs is the

Larmor radius. B0 is the minimal value of the magnetic field

amplitude B at h¼ 0 (R ¼ R0 being then the major radius).

For more details concerning the TIM model, see also Refs.

23, 25, and 26.

III. PROPERTIES OF THE TRAPPED ION MODEL

A. Energy conservation law

In the following, we consider the general properties of the

energy conservation of the trapped ion model in order to eluci-

date the processes of energy transfer to zonal flow. First, since

(3) is a Vlasov kinetic equation, f is conserved (provided of

course that dissipation is zero). We assume that the gyro-

average operator J0 is equal to unity. In that case, the smoothed

distribution function �f ¼ �f j;Eðw; a; tÞ ¼ J0f becomes the dis-

tribution f and we consider conservation of particles and

energy. By integrating the Vlasov equation (3) over the param-

eters j and E, we obtain the following relation:

@n

@t
þ /; n½ � þ 3

2
xd0

@P 1ð Þ

@a
¼ @

@w
D wð Þ @n

@w

� �
; (7)

where n and Pð1Þ are the ion density and the ion pressure,

respectively, determined by taking into account the contribu-

tion of the normalized drift frequency �xdðj; sÞ for the

trapped ion population noted by j. We have thus,

n w; a; tð Þ ¼
ð1

0

djjK jð Þ 2ffiffiffi
p
p
ðþ1

0

dE
ffiffiffi
E
p

fj;E w; a; tð Þ; (8)

3

2
P nð Þ w; a; tð Þ ¼

ð1

0

djjK jð Þ�xn
d j; sð Þ

� 2ffiffiffi
p
p
ðþ1

0

dE
ffiffiffi
E
p

Efj;E w; a; tð Þ: (9)

By denoting dn
dt ¼ @n

@t þ /; n½ �, Eq. (7) reads as

dn

dt
þ 3

2
xd0

@P 1ð Þ

@a
¼ @

@w
D wð Þ @n

@w

� �
: (10)

Thus, the density of trapped ions is conserved since

ð ð
da
2p

dw
@n

@t
¼ 0: (11)

To show the energy conservation, we multiply Eq. (3) (when

DðwÞ ! 0) by the quantity xdðjÞEw (with xd ¼ xd0 �xd)

and integrate over j and E. Note that in the Hamiltonian for-

mulation of the Vlasov equation given in (3), the correspond-

ing Hamiltonian is H ¼ xdðjÞEwþ J0/. For the second

order moment of (3), we have

dH
dt
þ @a x2

d0M 2ð Þ
2 þ

3

2
xd0/P 1ð Þ

� �
� /@a

3

2
xd0P 1ð Þ

� �

¼ 3

2
xd0w@w D

@P 1ð Þ

@w

 !
: (12)

In Eq. (12), we have introduced the kinetic energy density

H and the second order M
ðnÞ
2 moment defined, respectively,

by

H ¼ wxd0

ð1

0

djjK jð Þ�xd k; sð Þ 2ffiffiffi
p
p
ðþ1

0

dE
ffiffiffi
E
p

Efj;E; (13)

M
nð Þ

2 ¼ wxd0

ð1

0

djjK jð Þ�xn
d k; sð Þ 2ffiffiffi

p
p
ðþ1

0

dE
ffiffiffi
E
p

E2fj;E:

(14)

Substituting (10) and (4) in Eq. (12) and considering the

potential into the form / ¼ h/ia þ d/ (with hd/ia ¼ 0), we

obtain, after integrating over the variables a and w

dEc

dt
þ dEZF

dt
þ dEturb

dt
¼ losses;

¼
ð ð

da
2p

dw
3

2
xd0w

@

@w
D wð Þ @P 1ð Þ

@w

 ! 

þ/
@

@w
D wð Þ @n

@w

� ��
: (15)

Thus, the total energy can be decomposed into three distinct

parts: the kinetic energy Ec, the zonal flow contribution

denoted by EZF, and the turbulence contribution Eturb. Both

quantities are defined, respectively, by

Ec ¼
ð ð

da
2p

dwH; (16)

EZF ¼
1

2
Cid

2
b

ð ð
da
2p

dw
@h/ia
@w

� �2

; (17)

Eturb ¼
ð ð

da
2p

dw
1

2
Ced/2 þ 1

2
Cij �rd/j2

� �
: (18)
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B. Gyro-average operator driven effects on energy
conservation

The difficulty can now to be seen by noting that M
ðnÞ
2

in Eq. (14) or the pressure PðnÞ in Eq. (10) depend on the

quantity �xn
dðjÞ. Thus, to consider energy conservation, we

need to compute both of these terms and to take into

account the corrections introduced by the gyro-average op-

erator J0 approximated here by J0 ’ 1þ E
4

��. The different

successive moments of the reduced Vlasov equation (3)

become

@�n

@t
þ /; �n½ � þ 3

2
xd0@a �P

1ð Þ
	 


þ 3

8
��/; �P

0ð Þ
h i

¼ @w D wð Þ@w�n
	 


; (19)

3

2

@ �P
0ð Þ

@t
þ /; �P

0ð Þ
h i !

þ xd0@a �M
1ð Þ

2

� �

þ ��/;
1

4
�M

0ð Þ
2

� �
¼ 3

2
@w D wð Þ@w �P

0ð Þ
� �

; (20)

@ �H
@t
þ /; �H
� �

þ ��/;
xd0

4
�M

1ð Þ
2 w

� �

þ @a
3

2
xd0

�P
1ð Þ/þ �M

2ð Þ
2 x2

d0wþ
1

4
xd0

��/ �M
1ð Þ

2

� �

þ/
d�n

dt
þ / �/;

3

8
�P

0ð Þ
� �

� ��/@a
1

4
xd0

�M
1ð Þ

2

� �
¼ losses;

(21)

losses ¼ 3

2
wxd0@w D wð Þ@w �P

1ð Þ
� �

þ /@w D wð Þ@w�n
	 


: (22)

In Eqs. (19)–(22), the quantities �H and �M
ð1Þ
2 are, respec-

tively, defined by relations (13) and (14) by substituting fj;E
by �f j;E ¼ J0fj;E. The smoothed ion density �n and ion pres-

sure �P
ðnÞ

are defined by Eqs. (8) and (9) using the same sub-

stitution. A similar procedure can be used to determine the

evolution equation of the kinetic density energy (21). By not-

ing from (4) that �n ¼ n0 þ d/� Ci
��/� 3

8
�� �P and by sub-

stituting the obtained relation in (21), we obtain the

following relation:

@ �H
@t
þ @a

3

2
xd0

�P
1ð Þ/þ x2

d0
�M

2ð Þ
2 wþ 1

4
xd0

��/ �M
1ð Þ

2

� �

þ ��/;
1

4
xd0

�M
1ð Þ

2 w

� �
þ 3

8
/ ��/; �P
� �

þ /
d

dt
Ced/� Ci

��/
	 


� 1

4
��/

� 3

2

d �P
0ð Þ

dt
þ @a xd0

�M
1ð Þ

2

� � !
¼ losses: (23)

The integration over a and w leads to the energy conserva-

tion law (15), with however a modification of the dissipation

term, which contains now an additional term due to the gyro-

average operator J0. Using the same previous definitions

(16)–(18), we have now the relation

dEc

dt
þ dEZF

dt
þ dEturb

dt
¼ losses

¼
ð ð

da
2p

dw

�
3

2
xd0w@w D@w �P

	 

þ /@w D@w�n

	 

þ 3

8
��/@w D@w �P

	 
�
:

(24)

Equation (24) is obtained by using the condition (20) for the

pressure �P
ð0Þ

and we remark that, using (5),
��/; �M

0ð Þ
2

h i�
a

¼ �q2
s@w


d �M

0ð Þ
2

@3d/
@a3

�
a

� d2
b


d �M

1ð Þ
2

@3d/

@a@w2

�
a

; (25)

where we have used the condition

�M
ð0Þ
2 ¼ h �M

ð0Þ
2 ia þ d �M

ð0Þ
2 : (26)

C. Kinetic aspect of ZF induced by the interchange
turbulence

It is possible to introduce a “mean” pressure in the form
�P ¼ h �Pia þ d �P, which plays a major role, in a similar way

to the zonal flow component h/ia. Indeed, Eq. (20), dropping

out the exponent notation ð0Þ, or �P
ð0Þ ! �P to simplify the

notation writes, after an integration over the angle a and con-

sidering that J0 ! 1,

@hPia
@t
¼ �h d/; dP½ �ia �

2

3
@wh ��d/; @adM2

� �
ia

þ @w D wð Þ@whPia
	 


(27)

indicating that it is the non-adiabaticity between dP and d/,

which drives nonlinearly a modification of the mean pressure

hPia. Thus, for J0 ! 1 and considering db � 1, Eq. (27)

reduces to

@hPia
@t
’ �h d/; dP½ �ia þ @w D wð Þ@whPia

	 

: (28)

An important question that then arises is how Eq. (27) affects

the properties of zonal flows. In tokamaks, most of micro-

turbulence is driven by ITG or ETG modes or by TIMs or

TEMs. As the underlying micro-turbulence can also be

driven by gradients in pressure, these constitute the energy

source for the poloidal flow. The most prominent type of

long wavelength toroidal micro-instability is TIM in the

presence of a significant ion temperature gradient. It is well-

known that the generation of ZF and its feedback to drift-

wave turbulence are essentially nonlinear processes. ZF is

generated by the Reynolds stress and back reacts upon turbu-

lence via vortex shearing. However, it is possible to connect

the time variation of h/ia of ZF to dP fluctuations, driven by

the interchange-type turbulence, or as we will see later in

Paper II,38 by resonant wave-particle interactions. Thus, the

nature of ZF can be modified and its evolution is now

described by
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@h/ia
@t
¼

@d/
@w

@d/
@a

�
a

� 3

8Ci


@dP

@w
@d/
@a
þ @dP

@a
@d/
@w

�
a

þ 1

4Ci
@whdQia (29)

assuming that there is no dissipation (i.e., D! 0) and where

hdQia ¼
ð2p

0

da
2p

3

2
dP � @d/

@a

� �
: (30)

In Eq. (29), the first term in the second member denotes the

Reynolds tensor (indeed the double value), while the two fol-

lowing terms are a straightforward consequence of the turbu-

lence induced by the interchange instability. The third term

on the rhs of Eq. (29) is linked to the heat flux hdQia defined

by Eq. (30). Details of the calculation are given in the

Appendix.

D. Low-frequency ZFs in the core/edge transient
regime

Analyses in the collisionless regime are required in

order to clarify the characteristics of GAM-like ZF mode

observed in Refs. 2 and 3 in the lower frequency range.

There is a certain possibility that a new GAM-like branch

(corresponding to the oscillating ZF observed at very low

frequency of 4 kHz) in the collisionless (banana) regime

where trapped particles play a major role in the interaction.

Such expected waves can be observed near the critical (tem-

perature) gradient regime and particularly for the L to

H-mode transition. The magnetic trapping effects contribute

to give a kinetic aspect to such low-frequency GAM-type

ZFs making the (modified) ZF subject to weak Landau

damping. GAMs are electrostatic modes generated by the

effect of the geodesic curvature, which acts linearly on the

equilibrium, coupling the zero poloidal number to the

(expected) sidebands m ¼ 61 (note that here the coupling is

possible with the sidebands n ¼ 61 in toroidal number for

the ZF component). GAMs appear as a high-frequency mod-

ulation on the top of the low-frequency zonal flow, and

physically GAM can be thought of as the ion acoustic wave

coupled to the geometry of the tokamak’s magnetic field.

The GAM dynamics strongly depends on the magnetic safety

factor so that GAMs are preferentially excited in the high-q

edge region, whereas the zero-frequency ZF (the expected

hydrodynamical component) dominates in low q (core)

region. However, in recent tokamak experiments as indicated

in Refs. 2 and 3, GAMs do not appear to be active in the con-

sidered (H mode) regime, indicating Landau damping of

high-frequency GAMs is strong.

However, it has been recently found that GAMs can be

excited in a kinetic way by populations of fast ions in Ref.

27, the so-called high-frequency EGAM mode, showing a

new kinetic aspect of GAMs. Similarly, it becomes possible

to consider the case of downward frequency shift, e.g., the

influence of trapped ions through the resonance with the pre-

cession frequency of thermal (trapped) ions. Moreover, the

resulting low-frequency ZF is not strongly subject to Landau

damping due to the strong magnetic trapping. However,

hitherto, a complete picture of the dynamic interaction

among GAMs, zero-frequency ZFs, and low-frequency

CTIM-induced ZFs in the LH transition has not yet been

achieved. Direct experimental observations of low-frequency

oscillating ZFs are expected to be arduous in the core plasma

because of the simultaneous presence of fluid-type ZFs

(induced purely by the Reynolds stress). Thus, we forecast

the situation is easier in the edge region where (zero fre-

quency) ZF is decreasing and particularly in the H-mode re-

gime where GAMs are strongly Landau damped.

IV. NUMERICAL SIMULATION OF COLLISIONLESS
TIMS IN THE INTERCHANGE REGIME

To determine the nature’s changes of ZFs induced by

TIM-KH coupling, we first study the simplest limit where

only TIMs are excited.

A. Linear analysis

It is interesting to recall some general properties of the

linear analysis of TIMs. In order to provide a simple physical

picture of the TIM turbulence in the nonlinear regime, the

dispersion relation was obtained in Ref. 24 by linearizing

Eqs. (3) and (4) for an equilibrium distribution F0ðwÞ of type

(the energy E being normalized to T0)

F0 wð Þ ¼ e�E 1þ xd0 �xd j; sð Þ E� 3

2

� �
�sw

� �
with

/0 wð Þ ¼ 3

2
xd0w: (31)

In Eq. (31), the quantity /0 denotes the initial flow correspond-

ing to the interchange case. Here, �s is the normalized ion

temperature gradient �w
T0

dT0

dw . The idea is that we want to arrive

at a homogeneous set of linear equations, which will lead us to

a dispersion relation for the eigenmodes of the plasma. Thus,

by considering the potential perturbation mode in the form

d/nðwÞeiðna�xtÞ, one obtains the following condition (assum-

ing the polarization term negligible in first approximation):

Ced/n ¼
2ffiffiffi
p
p
ðþ1

0

dE
ffiffiffi
E
p ð1

0

djjK jð Þ
n�se�E E� 3

2

� �

E� x
n�xd jð Þ

J0d/n

(32)

with the usual Landau prescription on the imaginary part of

x. In the linear regime, the imaginary part of Eq. (32) must

cancel exactly for the marginal solution, which implies

that the dispersion relation for TIMs is approximated by

xCTIM ¼ 3
2

nxd jð Þ or equivalently for a mean value of

�xCTIM ’
3

2
nxd0

ð1

0

djjK jð Þ�xd j; sð Þ: (33)

As in the Landau method for electrostatic electron waves,

the eigenmodes of a (collisionless) trapped ion plasma are

determined by the poles of the integrand of Eq. (32). It is

then possible to recover the marginal solution by solving Eq.

(32). For zero boundary conditions, we obtain d/nðwÞ ¼
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sin lpw with l ¼ 1; 2; 3; :::. Here, a remark must be pointed

out. As first indicated in Ref. 28, a better convergence of the

expansion for the pole’s calculation can be obtained by intro-

ducing a development around x� 5
2

nxd leading to an esti-

mation of collisionless TIM frequency in the following form:

xCTIM ¼
5

2
nxd jð Þ þ

ffiffiffiffiffi
2e
p

x�
2 1þ sð Þq2

s k2
w

; (34)

where x� < 0 is the electron diamagnetic frequency. Here,

the last term in the right-hand side of the equation (34) is

close to nxdðjÞ.

B. Numerical results in the interchange regime

The starting point for an investigation of interchange

turbulence is the reduced gyrokinetic Vlasov equation (3)

coupled with the quasi-neutrality equation condition (4) initi-

ated in an equilibrium state with a perturbation term of type

�f j;E w; a; t ¼ 0ð Þ ¼ F0 wð Þ þ /perte
�E�s

� 1� p2d2
bE

4

� �
sin pwð Þcos 5a: (35)

The reason for introducing the sin ðpwÞ factor in Eq. (35) on

the right-hand side, instead of the standard potential pertur-

bation in a, is that this function is indeed the marginal solu-

tion obtained in the linear analysis of the CTIMs. The

knowledge of the marginal solution allows us to start the

ITG instability at a very low level, allowing an accurate use

of our numerical scheme chosen here to integrate the system

of Eqs. (3) and (4). We have adopted here a semi-Lagrangian

scheme (see Refs. 29–31 for more details) to integrate the

Vlasov-type equation (3), for each class of solution deter-

mined by the choice of adiabatic invariants j and E, which

traces back the trajectories at every time step.

In numerical simulations, normalized quantities were

used: the time is normalized to the inverse drift frequency

x�1
d0 and the poloidal flux w is given in �w units (with

xd0 ¼ q0T0

eB0r0R0
). The electric potential is expressed in xd0�w

units and the constants Ce and Ci introduced in the quasi-

neutrality equation (4) are given by the relations Ce ¼
Ti

Tefp

exd0�w
T0

and Ci ¼ exd0�w
T0

. The bounce and drift frequencies

xb and xd depend explicitly of the pitch angle parameter j
(and of course of the energy E) and are given by Eqs. (1)

and (2).

A first simulation was carried out with an ion tempera-

ture gradient of �s ¼ 0:15 chosen above the threshold of the

ITG instability given by �ss ¼ Ce

1�3
4
d2

bþ15
64

d4
b

’ 0:100753 for

Ce¼ 0.10 and a banana width of db

�w ¼ 0:10. We choose a

Larmor radius of
qs

�w ¼ 0:02 and a magnetic shear of

s ¼ r0

q0

dq
dr

� �
0
¼ 2, well inside the strong region of the ITG

instability. The phase space sampling is Nw ¼ 256 by Na ¼
1024 and we have used NjNE ¼ 16� 128 values in pitch-

angle and energy. The time step is �txd0 ¼ 0:001 and we

have chosen Ci¼ 1 for the polarization term in order to

excite a strong coupling with the shear flow in agreement

with the analytic solution of the Taylor-Goldstein equation

solved in Paper II.38 Without dissipation, three energetic sub-

systems interact to produce the complexity observed in the

interchange-type turbulence: the kinetic energy of plasma

Ec, the energy of the zonal flow noted here EZF, and the

potential fluctuation of turbulence Eturb contained in the ini-

tial pressure gradient. These quantities are defined by Eqs.

(16), (17), and (18) and verified by the conservation law

(24).

The time evolution of the energy of zonal flow (EZF) is

shown on the top panel in Fig. 1 in solid line, while the cor-

responding turbulent contribution Eturb in energy is added on

the same plot in thick line.

We have also represented, in the bottom panel, both

quantities on a logarithmic scale, together with their mutual

sum (the potential energy). The different components of the

energy, for the same simulation, have been plotted in Fig. 2

on a logarithmic scale: the kinetic energy Ec, the dissipative

part Ediss together with the two components of the potential

energy, EZF (for ZF) and Eturb, for the turbulent contribution.

The total energy is also plotted in solid line. We clearly

observe that the dynamics of trapped ions, through their ki-

netic energy contribution, exhibit low-frequency oscillations.

The dynamics of the system is first governed by the

growth of TIMs, as a result of the ITG instability (in the

interchange regime). Here, it is the gradient in temperature

that constitutes the energy source for the growth of

FIG. 1. On the top panel: Time evolution of the energy of the zonal flow

(EZFÞ in solid line and of the corresponding turbulent energy Eturb in thick

line in the regime of the interchange instability. We observe a turbulent burst

for txd0 > 18 accompanied with the decrease of the zonal flow energy. In

the bottom panel: corresponding evolution, in a logarithmic scale, of the

zonal flow EZF and the turbulent energy Eturb together with their mutual

sum.
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(collisionless) TIMs. Since we have perturbed initially the

mode n¼ 5, we expect the occurring of five vortices in phase

space, as can be seen in Fig. 4 on the top panel at time

txd0 ¼ 0:20. However, the mode n¼ 1 becomes dominant

and seems to play a major role before the saturation of the

instability takes place. In addition to the growth of CTIMs,

the nonlinear interaction leads to the growth of a time-varying

zonal flow (corresponding in the trapped-ion model to the

mode n¼ 0), followed by a strong increase of the turbulent ac-

tivity associated with the formation of streamers. The time

evolution of both dominant modes n¼ 0 (zonal flow) and

n¼ 1 (resonant CTIM) is shown in Fig. 3 in a logarithmic

scale. The maximum value of the growth rate for the dominant

mode n¼ 1 is found close to c
xd0
’ 0:670, a numerical value

somewhat higher than the linear expected (interchange) value

given by
cth

xd0
¼

ffiffi
3
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s��sthreshold

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cid

2
bl2p2þCeþCin2q2

s

p ’ 0:610.

The time-varying ZF generation mechanism is a nonlin-

ear process in which shorter-scale fluctuations transfer their

energy to larger-scale potential structures. Due to the inter-

change instability, the resulting effect on the pressure may

lead to a trapped-ion version of a basic mode of oscillation

involving the contribution of a resonant trapped-ion mode in

the collisionless regime via the pressure term. Note that such

pressure effects are usually invoked in the generation of

high-frequency GAM in Refs. 32–35. The collisional damp-

ing of GAMs is studied in Ref. 36. It must be pointed out

that, in our case, it is not the coupling with the acoustic

branch (which is usually observed in GAMs), which takes

place but the interaction with the resonant version of TIM,

which differs for the usual fluid-type interchange mode (see

Ref. 28). In fact in Paper II,38 we will show that both inter-

change and resonant counterpart CTIM coexist and can beat

in a three-wave interaction leading to the (non zero) low-

frequency ZF growth. The analysis of the top panel in Fig. 3

shows, however, that the zonal flow exhibits a real frequency

close to x ’ 2:7xd0, i.e., a value well below the initially

excited CTIM frequency of xTIM ¼ 5
2

nh�xd j; sð Þij ’
26:39xd0 for the mode n¼ 5. Note that the observed fre-

quency is close to the frequency of the resonant mode for

n¼ 1 found close to xresTIM ’ 3
2

nh�xd j; sð Þij ’ 3:16xd0,

using a magnetic shear of s¼ 2 and h�xdij ’ 2:11.

To maintain the connection with the EAST tokamak

experiment presented in Ref. 2, we have estimated, for the

toroidal number n¼ 1, the value of the oscillation frequency

of the ZF close to

f ’ 2:7xd0

2p
¼ 2:7

q3

2pxcie
vthi

qR0

� �
	 2:7� 0:68 kHz

¼ 1:84 kHz:

The physical parameters are r0 ¼ 0:45 m; R0 ¼ 1:88 m,

B0 	 1T (corresponding to a value of the ion cyclotron fre-

quency of xci 	 108 Hz) for q¼ 4 and an aspect ratio of

e ¼ r0

R0
¼ 0:239. The ion transit frequency is chosen close to

vthi

qR0
	 2� 104 Hz at the plasma edge. Thus, this value is

found in well agreement with the peak of 2 kHz observed in

the potential fluctuation power spectra.

It must be pointed out that the burst of turbulent activity

observed in Fig. 1 for txd0 
 18 is accompanied by a slight

decrease of the ZF energy. Such a behaviour points out the

possibility that there may be a coupling between ZF and

streamers. The whole picture of the generation of streamer

and ZF actors is completed by analyzing the behaviour of the

electric potential /ðw; a; tÞ and the vE ¼ E�B
B2 drift velocity,

respectively, shown in Figs. 4 and 5 at three different times.

As previously mentioned, since we have initially excited the

toroidal mode number n¼ 5, the top panel in Fig. 4 exhibits

five coherent periodic structures, as expected, corresponding

to the mode n¼ 5. The top panel in Fig. 5 displays the

FIG. 3. Time evolution of the flow (mode n¼ 0) in a logarithmic scale: the

zonal flow exhibits an oscillatory behaviour linked to the pressure contribu-

tion of resonant trapped-ion mode. In the bottom panel, the resonant mode.

The simulation was performed in the TIM regime.

FIG. 2. Time evolution of the different energy components: the zonal flow

EZF, the turbulent part Eturb, the kinetic energy Ec, the dissipative part Ediss,

together with the total energy plotted in solid line. The different contribu-

tions are plotted in a logarithmic scale.
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corresponding velocity shear flow indicating that the main

part of the current results from the vE drift velocity, which

takes place along the w direction. As sketched in middle pan-

els in Figs. 4 and 5, the nature and topology of the potential

change fundamentally show now a strong modulation of the

electric potential on the toroidal mode n¼ 1 in Fig. 4. The

middle panel in Fig. 5 shows a strong modification in

the direction of the flow located in the region of the vortex

structure of positive values of the electric potential. Finally,

at txd0 ’ 20, the bottom panels in Figs. 4 and 5 show the

formation of nonlinear streamers (elongated in w) as the

result of the re-emergence of turbulent activity observed at

that time in Fig. 1. During this phase, a second topology

modification takes place in the shear velocity flow when non-

linear streamers are strongly generated.

In the framework of the trapped-ion model, we have

obtained in Section III C the equation of the mean potential

fluctuations h/ia dynamics with respect to zonal flow

h/iZF;KH potential and the trapped-ion interchange-type

counterpart h/iZF;TIM as follows:

h/ia ¼ h/iZF;KH þ h/iZF;TIM; (36)

@h/iZF;KH

@t
¼ 1

2


@d/
@w

@d/
@a

�
a

; (37)

@h/iZF;TIM

@t
¼ 1

2


@d/
@w

@d/
@a

�
a

� 3

8Ci


@dP

@w
@d/
@a
þ@dP

@a
@d/
@w

�
a

þ 1

4Ci

@

@w
hdQia: (38)

There are two basic effects in the h/ia dynamics evolution:

the interchange dynamics itself in Eq. (38) and the standard

turbulence-induced Reynolds stress already mentioned by

Diamond and Kim.37 The nonlinear drive of zonal flows is

governed by the Reynolds tensor in Eq. (37). It is balanced

by the (non-adiabatic) interchange-type transfer given by

(38). It is the polarization drift nonlinearly occurring in the

right-hand side of Eq. (38), which gives the main contribu-

tion. It is worth pointing out at this stage that Eq. (38),

described above, contains two nonlinear interaction terms.

The first one behaves in exactly the opposed fashion than the

Reynolds tensor when adiabatic conditions set in (since in

that case dP ¼ 8
3

Cid/). The last term in (38) linked to the

FIG. 5. Dynamics behaviour of the E� B shear flow velocity at different

times. The topology of the electric potential is here strongly modified in the

TIM regime.FIG. 4. Phase space w; a representation of the electric potential at three dif-

ferent times during the plasma evolution. We see clearly the formation of

TIM on the top panel for the mode n¼ 5, followed by the growth of the

mode n¼ 1. The bottom panel shows the excitation of nonlinear streamers

during the turbulent burst. The simulation was performed in the TIM

regime.
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heat flux fluctuations hdQia allows a coupling with hPia.

Averaging the gyrokinetic Vlasov equation (3) leads to the

heat equation (without losses)

3

2

@ �P

@t
þ @

�Q

@w
¼ 0: (39)

In the limit of adiabatic conditions where dP is proportional

to d/, the profile of hPia is not nonlinearly modified since

the right-hand side of Eq. (28) disappears. However, the sec-

ond member of (38) reduces to zero.

Now, we get the entire physical picture as follows. In the

initial stage, the dominant mode is the fluid-type interchange

mode leading to a weak and (adiabatic) slow increase of the

zonal flow. As the resonant CTIM is excited, corresponding to

the mode n¼ 1 with a frequency xdðjÞE ¼ xd0 �xdðjÞE (the

resonance takes place for E 	 3
2

T0), we observe a fast growth

of the zonal flow structure linked to non adiabaticity effects

induced by polarization (Ci 6¼ 0Þ plus the average operator J0

effect. At that time, the Reynolds tensor grows also rapidly

due to resonance. At time txd0 ¼ 18, the burst in turbulence

is associated with the formation of nonlinear small-scale

streamers, which corresponds to the observed decrease in the

ZF energy.

Fig. 6 shows the profile in pressure on the top panel and

of the density in the bottom panel, respectively, at time

txd0 ¼ 16, showing the beginning of the profile modification

driven by both polarization and resonance effects. Fig. 7 por-

trays the state of the plasma at that time. All the plots show

the formation of a long-scale structure (corresponding to the

toroidal number n¼ 1). This state is seen to begin to be non

adiabatic (density and electric potential start to differ). It is

also interesting to note that the low frequency of ZF is modi-

fied, which seems to indicate that the resonance of TIM with

precession drifts leads to coupling with KH modes. This is

illustrated by the plot shown in the bottom panel in Fig. 7.

Our present study is confined to an interchange plus resonant

case to highlight the role of the trapped-ion resonance on ZF

generation in the pattern of interchange turbulence.

V. NUMERICAL RESULTS IN THE KH REGIME

In this section, we study a simple example with the KH

instability to elucidate some of the key features of the nature

of the associated ZF in the simplest context of coupling with

the interchange turbulence. ZF formation is commonly

attributed to nonlinear mechanisms such as Reynolds stress.

Other actors that play a major role are streamers. Such struc-

tures trigger an intermittent heat flux that necessarily com-

petes against ZFs. One of the possible mechanisms of

saturation of ZF growth is the KH instability of the zonal

flows, driven by their shear. We examine the case of the KH

FIG. 6. Ion pressure (on the top) and ion density (in the bottom) profiles

observed in simulation at time txd0 ¼ 16 at the beginning of the growth of

the turbulent energy.

FIG. 7. Behaviour in phase space of the ion density (on the top panel) of the

corresponding electric potential (on middle panel) and of the E� B drift ve-

locity (in the bottom panel) at the same time txd0 ¼ 16 at the resonance. We

see clearly that both polarization effects and change in the shear velocity

direction play a major role.
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instability driven by an initial velocity shear of /0 wð Þ ¼
/max

sin 2pwð Þ
2p in the case of an equilibrium distribution of type

F0 wð Þ ¼ e�E 1þ 5

2
� E

� �
2p/0 wð ÞCid

2
b

� �
:

A perturbation is introduced initially on the first five toroidal

numbers in the form e�E/pert sin ðpwÞ
P

n¼1;5 cos ðnaÞ. Here,

we use the following physical parameters in normalized units:

/max ¼ 2:50; /pert ¼ 10�4, Ce¼ 0.10, Ci¼ 1, db ¼ 0:10,

and qs ¼ 0:02. The phase space sampling is Nw ¼ 256 and

Na ¼ 512 and the numerical simulation has been performed

again using NE¼ 128 times Nj ¼ 16 adiabatic invariants in

energy and pitch-angle. We have used a temperature gradient

of �s ¼ 0 to focus on the pure KH instability (at least in the

initial stage). The corresponding time evolution of the ZF

energy (in solid line) and the turbulent counterpart is plotted

in Fig. 8 on the top panel in thick line, where we have also

superimposed their mutual sum. We have also represented the

time evolution of the mode n¼ 5 of the potential energy in the

bottom panel in a logarithmic scale. We see clearly that the

linear regime ends when saturation is reached at time

txd0 ’ 1:2. The growth-rate observed in the time evolution of

the energy of the initial mode n¼ 5 is found numerically close

to c
xd0
’ 7:70 in well agreement with the expected value of

cth

xd0
¼ ns � nð Þ nsq2

s

4p2d2
b

obtained using the Taylor-Goldstein

formulation (for more details, see Paper II), which is given by
cth

xd0
’ 7:65.

The evolution of the KH instability is first characterized

by a linear regime, where both energies EZF and Eturb remain

quasi constant (on the top panel). First, it is clear that the

observed fluctuations are triggered by nonlinear effects

induced by the KH instability. Thus, the increase of the tur-

bulent energy is linked to an energy transfer from the initial

shear flow towards the turbulence. Thus, a second turbulence

characteristic necessary to ZF decrease is some conservation

from the total ZF plus turbulence energy. Fig. 9 shows the

typical time evolution of the mean potential h/iaðw; tÞ on the

top panel and the Reynolds tensor 1
2
h@d/
@a

@d/
@w ia in the bottom

panel. In the beginning of the saturation regime, the

Reynolds tensor is the dominant term, but it is, however, not

possible to neglect the interchange contribution at later time.

The top panel in Fig. 9 illustrates the details of the ZF dy-

namics. The underlying mechanism for zonal flow decrease

in turbulence is given by Eq. (29), i.e., by the coupling

between the Reynolds tensor and the interchange-type terms.

The presence of both effects results in a significant reduction

of the ZF energy. The effect is apparent from the early stage

of the growth of turbulent energy, when nonlinear coupling

begins to occur. We must stress that the resulting coupling is

a highly nonlinear effect.

Figs. 10 and 11 display the electric potential and the cor-

responding vE drift at three different times during the evolu-

tion. The shape of the large-scale structures changes from

one characterized by KH vortices in the early stage of the

FIG. 8. On the top panel, the time evolution of the zonal flow energy (in

solid line), the turbulent part (in thick line), and their mutual sum in the KH

regime. In the bottom panel, the time evolution of the mode n¼ 5, initially

excited, of the potential energy, in a logarithmic scale indicated the begin-

ning of the nonlinear phase of the instability (i.e., for txd0 > 1:2).

FIG. 9. Dynamical behaviour of the zonal flow in the plane ðw; tÞ on the top

panel. We have plotted in the bottom panel the corresponding time-w evolu-

tion of the Reynolds tensor.
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evolution to more turbulent structures in the final state

(referred as generalized KH vortices). Such nonlinear struc-

tures result from the formation of nonlinear KH vortices.

Before closing the analysis, such structures correspond to

strong density fluctuations that can lead to a destabilization

of TIMs by modifying nonlinearly the gradient in density

and temperature. While standard KH structures are formed

on the top panel in Fig. 10, their topology is, however, modi-

fied in Fig. 11, leading to a solution in the bottom panel,

which looks like the so-called generalized KH structures

introduced by Kim and Diamonds.21 Physically, even when

the temperature gradient is initially zero, the turbulence sets

in and seems to be driven by nonlinear effects and fluctua-

tions in density, which may also lead to the start-up of the

ITG instability.

It is worth stressing that the reduction in ZF energy is

enhanced when we increase the amplitude of the KH shear

flow. An example is shown in Fig. 12, where we have chosen

to increase /max to the value of 5. Other physical parameters

are kept identical to those of Figs. 8 to 11. Note the strong

growth of the turbulent energy and the associated reduction

of the ZF energy on the top panel in Fig. 12. Such nonlinear

effect, not explained by linear analysis (where h/ia ¼ 0), is

systematically recovered in both types of simulations. The

evolution of the kinetic energy is related with the flow struc-

tures that are illustrated by the plot of the kinetic energy in

the bottom panel in Fig. 12. As can be seen clearly, there are

three distinct stages. The early stage (for txd0 � 0:5) corre-

sponds to the linear regime followed by the strong decrease

of the kinetic energy, which corresponds to the energy trans-

fer to the total energy shown in the top panel, which in turn

promotes the fast growth of streamers. The last regime is

linked to the slow growth of the turbulent energy.

VI. CONCLUSION

In this work, we have studied the effects of sheared

poloidal flows on ion-temperature gradient modes, in the re-

gime of trapped-ion modes. We have identified a nonlinear

coupling mechanism of zonal flow mediated by trapped-ion

modes in the collisionless regime. The driving force of the

zonal flow was derived, in which contributions of

FIG. 10. Phase space plots of the electric potential at three different times:

in the linear phase (on the top), at saturation (on middle), and later (in the

bottom panel). The last curve exhibits a generalized KH structure, i.e., an

initially nonlinear KH structure modified by the combined action of polar-

ization effects and interchange instability. We have used /max ¼ 2:5.

FIG. 11. The corresponding E� B drift-velocity showing the change in the

topology of the shear flow and thus in the nature of the KH mode. We have

used /max ¼ 2:5.
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interchange mode are included with particular emphasis

when a resonant trapped ion mode is excited. The obtained

formula extends the action of the famous Reynolds tensor to

wider cases. This leads to a low-frequency zonal flow mode

of resonant nature. Several remarks must be pointed out.

Clearly, a kinetic treatment of this zonal flow regime that

incorporates damping or amplification by resonant wave-

“banana” resonance is ultimately necessary. Of course, the

trapped-ion model, with or without flux term source, is a

good candidate to explore such a physics. This reduced ki-

netic Vlasov model and the associated Semi-Lagrangian sim-

ulations give prototypical examples to understand the mutual

interaction between zonal flow, (interchange) TIMs and their

resonant contribution, nonlinear KH modes, and nonlinear

streamers.
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APPENDIX: TIME EVOLUTION OF THE MEAN
POTENTIAL

In this Appendix, the time evolution of the mean zonal

flow potential h/ia is derived. To simplify the presentation,

we do not take into account the dissipative term in the rhs of

the Vlasov equation (3). It is first convenient to apply the

gyro-average operator J0 ’ 1þ E
4

�� to the reduced Vlasov

equation (3) and then to integrate over the parameters j and

E leading to

@t�nþ
3

2
xd0@a �P

1ð Þ
¼
ð1

0

djjK jð Þ 2ffiffiffi
p
p
ðþ1

0

dE
ffiffiffi
E
p
�J0 J0/; �f

� �	 

(A1)

using the standard notation

��n ¼
ð1

0

djjK jð Þ 2ffiffiffi
p
p
ðþ1

0

dE
ffiffiffi
E
p

J0
�f ; (A2)

3

2
�P

1ð Þ
¼
ð1

0

djjK jð Þ 2ffiffiffi
p
p
ðþ1

0

dE
ffiffiffi
E
p

EJ0
�f : (A3)

Using Eq. (4), we replace �n by the expression n0 þ Ced/�
Ci

��/ and we integrate (A1) over the angle variable a. We

then obtain

�Ci@t
��h/ia ¼

ð1

0

djjK jð Þ 2ffiffiffi
p
p
ðþ1

0

dE
ffiffiffi
E
p
�hJ0½J0/; �f �ia
	 


;

(A4)

and we have noted �f ¼ J0f . By writing the bracket J0½J0/; �f �
in the form J0 J0/; �f

� �
¼ �/; �f
� �

þ ��
4

�/; �f
� �

, a little algebra

gives

J0 J0/; �f
� �

¼ /; J2
0 f

� �
� E

4
/; ��f
� �

þ E

4
��/; f
� �

þ E

4
/; f½ �:

(A5)

By introducing the following quantities / ¼ h/ia þ d/ and

P ¼ hPia þ dP, where hd/ia ¼ hdPia ¼ 0, and by substitut-

ing (A5) into (A4) we obtain

�Ci@t
��h/ia ¼ Cih½d/; ��d/�i þ 3

8

�
h½d/; ��dP�ia

� h ��d/; dP�ia
�
� 3

8
h �� d/; dP½ �i:

�
(A6)

In Eq. (A6), we must determine the three different Poisson

brackets in the rhs of (A6).

(i) The first term /; ��/
� �

¼ @/
@w

@ ��/
@a �

@/
@a

@ ��/
@w writes as

/; ��/
� �

¼ d2
b @a@w

@/
@w

� �2

� @2
w
@/
@a

@/
@w

� � !

þq2
s @2

a
@/
@a

@/
@w

� �
� @a@w

@/
@a

� �2
 !

: (A7)

Using the relation / ¼ h/ia þ d/, the integration over a of

(A7) leads to

FIG. 12. On the top panel, the time evolution of the zonal flow energy, the

potential energy, and their mutual sum for /max ¼ 5. Note that the sum of

EZF þ Eturb is almost conserved excepted at the beginning of the nonlinear

phase where streamers are also excited. The growth of streamers is accom-

panied of a strong decrease in kinetic energy as observed in the bottom

panel.
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Cih½d/; ��d/�ia ¼ �Cid
2
b@

2
w


@d/
@a

@d/
@w

�
a

: (A8)

(ii) The last term in (A6) is connected to the Poisson

bracket /;P½ � ¼ @a P @/
@w

� �
� @w P @/

@a

� �
. Taking into account

the expression of / and P in the form of the sum of a mean

value plus a fluctuation, we then have
3

2
�� d/; dP½ �

�
a

¼ d2
b

4
@2

w
@dQ

@w

� �
; (A9)

where dQ is the heat flux.

(iii) Finally, we introduce the quantity J ¼ ½/; ��P�
� ½ ��/;P�. Substituting �� ¼ q2

s@
2
a in the previous equation

leads to

J

q2
s

¼ @2
a
@P

@a
@/
@w
þ @P

@w
@/
@a

� �
� 2@a@w
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Substituting now �� ¼ d2
b@

2
w in J reads as

J

d2
b

¼ @2
w
@P

@a
@/
@w
þ @P

@w
@/
@a

� �
� 2@a@w

@/
@w

@P

@w

� �
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Finally, by separating mean values and fluctuations (A10)

and (A11) give rise to the following expression:

h½d/; ��dP� � ½ ��d/;dP�ia ¼ d2
b@

2
w


@dP

@a
@d/
@w
þ @dP

@w
@d/
@a

�
a

:

(A12)

Replacing Eqs. (A8), (A9), and (A12) in (A5) leads to the

expected formula. After a double integration over the w vari-

able, we obtain

@h/ia
@t
¼

@d/
@a

@d/
@w

�
a

� 3

8Ci


@dP

@a
@d/
@w
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