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We address the mechanisms underlying low-frequency zonal flow generation in turbulent system

and the associated intermittent regime of ion-temperature-gradient (ITG) turbulence. This model is

in connection with the recent observation of quasi periodic zonal flow oscillation at a frequency

close to 2 kHz, at the low-high transition, observed in the ASDEX Upgrade [Conway et al., Phys.

Rev. Lett. 106, 065001 (2011)] and EAST tokamak [Xu et al., Phys. Rev. Lett 107, 125001

(2011)]. Turbulent bursts caused by the coupling of Kelvin-Helmholtz (KH) driven shear flows with

trapped ion modes (TIMs) were investigated by means of reduced gyrokinetic simulations. It was found

that ITG turbulence can be regulated by low-frequency meso-scale zonal flows driven by resonant

collisionless trapped ion modes (CTIMs), through parametric-type scattering, a process in competition

with the usual KH instability. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4928103]

I. INTRODUCTION

An important role of zonal flows (ZFs) in regulating tur-

bulence and transport in tokamaks is now broadly

accepted.1,2 Most gyrokinetic numerical experiments (see

the review paper in Ref. 3) highlight the crucial role of ZFs

concentrated on ion temperature gradient (ITG) or trapped

electron mode (TEM) turbulence. A classical paradigm for

turbulent transport in tokamaks is drift wave (DW) turbu-

lence, and the dynamics of a coupled system of DW and ZFs

has been intensively studied. For both types of turbulence,

three major governing processes are invoked: the generation

of turbulence (for instance DW), self-organization of ZFs,

and their damping or destabilization. The instabilities that

lead to these changes correspond to changes in equilibrium

solution4,5 and/or the occurring of intermittence in turbu-

lence in Refs. 6–8.

Zero-frequency ZFs are poloidal E� B plasma flows

due to toroidally and poloidally symmetric (m ¼ n ¼ 0)

potential perturbations. It is now well-known that ZFs can be

damped by collisions. Such an approach is based on the col-

lisional nature of the relaxation process. In particular, for

very low collisional regime, it leads to a situation, where the

characteristic time of relaxation is longer than the corre-

sponding transit time (x�1
t Þ or bounce time (x�1

b ) for trapped

particles: @t � xt; xb. If this ordering cannot be applied and

fast processes with @t ’ xb are allowed, then there is an

additional branch, discovered by Winsor et al. in Ref. 9

referred usually as the geodesic acoustic mode (GAM) with

a frequency xGAM ’ vth

R0
. GAMs have their own relaxation,

sensitive to Landau resonance condition.10,11 Thus, high-

frequency (HF) GAMs are damped by ion Landau resonance.

Zero-frequency ZFs are, in turn, damped only by collisions

on a longer time scale. Thus, GAMs introduce an alternate

state dominated by oscillatory ZFs near the critical

temperature gradient and may lead to a new type of intermit-

tent dynamics. Thus, plasma exhibits an intermittent dynam-

ics, a process already observed in DW turbulence in Refs. 8

and 12 and trapped ion mode (TIM) turbulence in Ref. 13.

Furthermore, a new intermittence was identified to originate

from the collisionless damping of GAMs in zonal flow-TEM

turbulence system in Refs. 14–16.

When toroidal effects, such as magnetic curvature and

rB drifts, are incorporated in the model and when a proper

kinetic treatment of trapped particles is required, the most

prominent type of long wavelength toroidal micro-instability

is collisionless TIMs in the presence of a significant ion tem-

perature gradient. One of the most important features of

these instabilities is their global nature. TIMs have a real fre-

quency below the diamagnetic drift frequency x�i and below

the ion bounce frequency xb. These instabilities are easier to

excite in the core region of tokamak fusion plasmas where

the plasma can be considered to be effectively collisionless

since x�i and xb are well above the ion-ion collision fre-

quency. Hence, for the time scales of interest, collisions are

not expected to have a significant effect on ZF damping.

TIMs are a simple prototype of kinetic modes induced by the

resonance of trapped ions with fluctuations through their pre-

cession motion. On the other hand, TIMs can also be consid-

ered as a prototype of interchange instability.

A major role in the complex interaction between ZFs,

TIMs, and nonlinear streamers is expected to be played by

the Kelvin-Helmholtz (KH) instability, as predicted by Refs.

17–20. Collisionless TIMs are known to be subject to

interchange-type instabilities, their hybrid fluid-kinetic

aspects reveal new features. In Paper I, we have found that

in toroidal geometry, although the drive of the low-

frequency (LF) ZFs via Reynolds stress remains, the ZF

structure results from the coupling with interchange-type

TIMs, i.e., we have h/iZF ¼ h/iZF;KH þ h/iZF;CTIM. In the

previous equation, the first term is driven by the Reynolds

tensor and linked to shear flow, while the second term is herea)alain.ghizzo@univ-lorraine.fr
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driven by CTIM (interchange or/and resonant mode). Thus,

the resulting ZF has a non-zero (low-frequency) real fre-

quency close to the toroidal precession motion xd0 �xdðjÞ
(here, �xd is a factor taking into account the different trapped

ion populations by their respective pitch-angle parameter j).

One can think of the resulting ZF driven by CTIMs as a low-

frequency version of the GAM mode.

Recently, in Ref. 21, the authors have observed in nu-

merical simulations that energy transfer can occur through-

out the relaxation phase of the streamer growth, leading to

ZF amplification when KH coupling takes place. We have

observed that the energy is transferred from flows along the

radial direction to flows oriented along the poloidal direc-

tion. Hence, it appears that the KH instability can play a

major role not only as a mechanism of saturation of stream-

ers but also as a mechanism of generation of convective

cells, such as ZFs. Our major objective is to create an unified

picture of the nonlinear interaction between TIMs, ZFs, KH

modes, and nonlinearly generated streamers driven by the

ITG instability. Our investigation has identified two signifi-

cant mechanisms: first, a modification in the coupling

between interchange-type CTIMs and secondly, the possible

regulation of ITG turbulence by resonant ZF induced by

three-wave parametric type instability. The remainder of this

paper is organized as follows. The relation of these physical

pictures to tokamak operating regimes is presented in Sec. II.

In Sec. III, we study the coupling between the KH and the

interchange instabilities using the Taylor-Goldstein formula-

tion and we determine the different regimes of the coupling.

The case of the parametric decay of an interchange mode

will be also considered in this section when the CTIM

becomes resonant with precessional trapped ions. In Section

IV, we discuss the numerical results and give our conclu-

sions in Section V.

II. CONNECTIONS WITH EXPERIMENTAL SITUATIONS

Experimental papers reported various appearances of

both high-frequency GAM and low-frequency ZF oscilla-

tions. Such oscillations are found recently only in limited

regions of the plasma in tokamak experiments, such as the

DIIID tokamak,22 the ASDEX Upgrade experiment in Ref.

23, or the EAST tokamak in Ref. 24. ZFs have been broadly

classified into two branches, one being a zero-frequency ZF

(as stated in the hydrodynamical theory) and the second

being an oscillating flow at high frequency and termed the

geodesic acoustic mode due to the complex magnetic topol-

ogy met in tokamaks. The former results in the fluid frame-

work from the Reynolds stress, the latter is thought to be

driven by nonlinear interactions with turbulence through

three-wave coupling. High-frequency GAM is strongly

(Landau) damped in the core, where the zonal flow is

thought to be more prevalent, and may only exist towards

the tokamak’s edge, where it is weakly damped at high val-

ues of the magnetic safety factor. GAMs are not typically

observed in the H-mode plasma. From a physical point of

view, GAM can be considered as ion acoustic wave (IAW)

in the geodesic version due to the magnetic geometry of the

tokamak. Indeed, GAMs degenerate to the standard IAWs in

the cylindrical geometry.

On the experimental side, some of the defining GAM

characteristics have been observed, including the occurring

of a low-frequency ZF counterpart. In the DIIID tokamak

(see Ref. 22) in addition of GAM, a low-frequency broad-

band feature was also observed indicating the presence of a

low-frequency fluctuations with peak located at 4 kHz in the

core of tokamak. The amplitude of such low-frequency ZF

was seen to increase with decreasing r
a, while the GAM in-

tensity appears to decrease. More recently, oscillations, of

electrostatic nature, were observed in the plasma edge at

much lower frequency than the GAM in the EAST tokamak

experiment (see Ref. 24 for more details). The fluctuating

potential power spectra exhibit a peak close to 2 kHz with

two harmonics and with background peaking at 80 kHz,

while GAM does not appear to be active in the Low-High

(LH) transition process under these experimental conditions.

It was also reported that the frequency spectrum may exhibit

more intermittent features. The existence of three-wave cou-

pling between the turbulence in 80 kHz and the low-

frequency 2 kHz oscillation was also reported in this experi-

ment. Similar behaviour was also reported in the ASDEX-

Upgrade tokamak in Ref. 23.

However, the nature of GAMs can also be modified by

fast ions, leading to a new branch, the so-called EGAM for

energetic particle induced GAM. The corresponding upward

frequency chirping is attributed to the formation of hole-

clump pair in phase space (see Ref. 25). The downward fre-

quency chirping is also possible in principle. Since the pio-

neering work of Bernstein, Greene, and Kruskal (BGK) in

1957 in Ref. 26, it is well-known that such phase space holes

are self-sustained and connected to electrostatic fields that

are self-consistent with some manner of trapped particle ve-

locity distribution function. Recently, laser-plasma interac-

tion experiments revealed that such electron trapping

structures might conceivably be physically relevant thus

leading to renewed interest in the subject. Indeed, there is a

similarity between the recent observations of low-frequency

ZFs and some recent experimental results obtained in the

laser-plasma interaction in the so-called kinetic regime of

the interaction. A clear indication of the kinetic behaviour

induced by electrostatic trapping was the recent observations

in Ref. 27, at the trident laser facility of stimulated Raman

scattering (SRS), associated with what was termed

Stimulated Electron Acoustic Scattering (SEAS), a novel

scattering apparently involving a so-called Electron Acoustic

Wave (EAW), whose phase space velocity vu ’ 1:3kvth is

between an electron plasma wave (EPW) and an IAW (vth

being the electron thermal velocity). The experimental

results show a small narrow signal with an uncharacteristic

frequency downward shift of about 0:37xp (xp being the

plasma frequency) which could not be the usual plasma

(high frequency) SRS (also seen but at much higher levels

�3000 times stronger) with its frequency shift at about xp.

Such EAWs are justified in the limit of small amplitude

waves, which depends essentially from the population of

trapped electrons. The concept of these waves is indeed a

novel version of the BGK nonlinear waves with electrons
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trapped in the wave troughs. Note that it is the fact that such

EAWs may back react with the plasma (in particular, in a

diffusion process with existing electromagnetic waves)

which make possible their detection in experimental situa-

tions. Motivated by the Montgomery’s experiment in laser-

plasma experiment, Johnston et al. in Ref. 28 carried out nu-

merical experiments using Vlasov-Poisson model and

observed states, referred as kinetic electrostatic electron non-

linear (KEEN) waves. Ponderomotively driven, KEEN

waves are seen to self-consistently form and persist at nearly

constant amplitude long after the driver is turned off. We

note that in a separate research thread in Ref. 29, KEEN

waves are also generated in Vlasov-Maxwell simulations rel-

evant to SRS scenario.

The situation observed in the EAST experiment resem-

bles the case of an ion geodesic version of low-frequency

EAW, while the role of high-frequency EPW is here played

by GAM (see Table I in which we have summarized the dif-

ferent processes). Our investigation reveals that it is the mag-

netic particle trapping (and the resulting population of

trapped ions through the CTIM and/or CTEM for collision-

less trapped electron modes) which determines the resonance

conditions of the residual low-frequency GAM-type zonal

flow. Thus, here a key physical point is that low-frequency

ZF excitation is due to strong magnetic trapping (even if the

population of trapped particles as in the Montgomery’s laser-

plasma experiment is weak) and the resulting resonances

with precessing trapped ions. As a consequence, the mode is

expected to be observed when the others standard modes as

GAMs and zero-frequency ZFs remain at a very weak level,

a situation met in the EAST or ASDEX-Upgrade experi-

ments in the H mode regime in the plasma edge. Note that in

principle, the mode can also be observed in the plasma core

as in the DIII-D experiment in Ref. 22 but both ZFs coexist

(oscillating plus zero-frequency fluid modes).

The last point concerns the possible coupling of such a

low-frequency (kinetic) ZF mode with the plasma environ-

ment. Recent experiments, conducted at the TEXTOR toka-

mak, in biasing H-mode regime in Ref. 30, have shown

intimate interaction among sheared flows, Reynolds stress,

and ZFs across a transition to improved confinement. Here,

the coupling with the interchange-type turbulence is allowed

by the introduction of the mean shear flow term through the

Kelvin-Helmholtz instability. Note that a similar approach is

proposed in Ref. 31 for describing recent experimental

observations of the LH transition with shear flow driven-

turbulence in DIII-D.

III. CTIM-KH COUPLING

We first consider processes involving the origin and

evolution of ZFs with a particular emphasis on the influence

of the KH instability on ZF stability. The coupling of TIMs

and KH modes has been considered in the context of the

Taylor-Goldstein formulation, which reads as

u00 � k2 � x000
C� x0

� �
u�

Ce x0 �
dh/ia

dw

� �
Cid

2
b C� x0ð Þ

u

� 3

2

xd0P00 wð Þu
Cid

2
b C� x0ð Þ2

¼ 0; (1)

where u ¼ uðwÞ denotes the electric potential fluctuation of

mode n, k2 ¼ Ce

Cid
2
b

þ n2q2
s

d2
b

, and C ¼ x
n . While the second term

in Eq. (1) corresponds to the usual KH eigenmode, the fact

to take into account TIMs leads to the second and third terms

related to the interchange turbulence. Note that in Eq. (1),

the prime corresponds to the derivation with respect to w and

x0ðwÞ ¼ /00 describes the generalized shear flow. Details

were given in Appendix A.

Equation (1) is known as the Taylor-Goldstein equation,

which is used to study stratified shear flow instabilities

occurring in a variety of physical contexts, such as astrophy-

sics, the Earth’s atmosphere or oceanography. In particular,

in stratified shear flows, the class of unstable modes can be

further divided into two subclasses of unstable modes, those

whose phase velocity is zero with respect to mean flow (i.e.,

KH modes) and those whose phase velocity is nonzero, the

Holmboe modes in Refs. 20, 32, and 33. In particular, for

such systems, it was shown in Ref. 34, in shear flow with

high Reynolds numbers, that the wave-flow resonance plays

a key role in the interaction, where the phase velocity is dif-

ferent from zero. In plasmas, the wave-flow resonance is pro-

duced by the resonant character of CTIMs in the

collisionless regime, which can propagate in the ion diamag-

netic direction. This is in contrast to the standard picture of

(dissipative) TIMs, introduced by Kadomtsev and Pogutse in

Ref. 35, which propagate in the electron diamagnetic

TABLE I. Summary of different types of nonlinear waves and coupling processes in both magnetic and inertial confinement fusion devices.

Tokamak’s experiment Laser-plasma experiment

HF mode GAMs observed in the edge

plasma (geodesic version of IAWs)

EPWs (observed in backward

Raman scattering)

LF mode Oscillating zonal flow

induced by magnetic trapping

EAWs induced by electrostatic trapping

Intermittent behaviour Turbulence bursts Bursty events in reflectivity

Coupling mechanisms Three-wave process with

HF interchange modes and/or

KH instability Reynolds tensor

SEAS for stimulated EAW scattering

coupling with laser waves

Granulation effects Streamers, zero-frequency (fluid) ZFs EAWs (BGK waves)

Nonlinear coherent

structures

LF (kinetic) ZFs, generalized KH vortices
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direction and are thus unable to resonate with precession

(trapped) ions.

To prepare numerical simulations taking into account

the coupling between ITG and KH instabilities, we discuss

now on the choice of the initial distribution to be imple-

mented in the Vlasov solvers. Before going to the analysis of

the TIM/KH coupling, we briefly review the results in the

two limits of pure interchange (i.e., collisionless TIM) and

pure KH regimes.

A. Collisionless trapped-ion mode regime

TIMs are unstable when x�ixd0 � $P:$B > 0 and so

are analogous to interchange-type instability. Here, ITG is

thus supported by trapped ions. However, we choose to start

with an initial shear potential of /0 wð Þ ¼ 3
2
xd0h�xd j; sð Þijw

’ 3
2
xd0w assuming that j ’ 0 (deeply trapped ion regime)

and therefore �xd ¼ 1. A convenient choice of this class of

TIM equilibrium is provided by

Feq ¼ e
� E

T0 1þ E

T0

� 3

2

� �
xd0wDs

� �
: (2)

Such choice corresponds to the data of charge density

q0ðwÞ ¼ ni;eqðwÞ � n0 ¼ 0 and to an equilibrium pressure

of P0ðwÞ ¼ n0T0ð1þ xd0wDsÞ. Thus, in Eq. (1) we can take

P00ðwÞ ¼ xd0�w and a “shear flow frequency” x0 wð Þ ¼ d/0

dw

¼ 3
2
xd0, i.e., x000 ¼ 0 (no KH mode) and now Eq. (1) reads

x
n
� x0 wð Þ

� �2

u00 � k2u
� �

¼ 3

2

x2
d0�s

Cid
2
b

u; (3)

where k2 is given by the quantity Ce

Cid
2
b

þ n2q2
s

d2
b

and �s is the ion

constant temperature gradient. Here, u ¼ d/nðwÞ corre-

sponds to the potential fluctuation of mode n. We recall that

the eigenfunctions are determined by us ¼ sin ðlpwÞ. By

introducing x ¼ 3
2

nxd0 þ ic and u00s ¼ �l2p2us in Eq. (3),

we obtain an estimation of the growth rate as follows:

c
n
¼

ffiffiffi
3

2

r
xd0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s��sthreshold

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cid

2
bl2p2 þ Ce þ Cin2q2

s

q : (4)

Thus, the linear analysis of ITG leads to the occurring of a

threshold in the ion temperature gradient (close to Ce when

neglecting the effects of the gyro-average operator). It must

be pointed out that usually the interchange-type mode for

TIM has a frequency close to x ¼ 5
2

nxd0 (while the resonant

counterpart of CTIMs is slightly weaker close to 3
2

nxd0).

B. Dominant Kelvin-Helmholtz regime

In the limit where P00ðwÞ ! 0, we recover the Rayleigh-

type eigenvalue equation

C� x0 wð Þð Þ u00 � k2u
� �

� Ce

Cid
2
b

x0 �
dh/ia

dw

� �
u

þ x000 wð Þu ¼ 0: (5)

The well-known Rayleigh’s inflection point theorem requires

the existence of an inflection point for the instability (see

Ref. 36). However, it must be pointed out that the Rayleigh

equation is here modified by the presence of the mean

flow h/ia which must be taken into account since we

have kept the factor xd0 �xd j; sð ÞE @f
@a in the Vlasov equation

in the trapped ion model (Eq. (3) of Paper I). Thus, a neces-

sary condition for Eq. (5) to have an unstable growing solu-

tion (i.e., a solution with C complex) is that the flow

x0ðwÞ ¼ /00ðwÞ must have an inflection point (x000ðwsÞ ¼ 0)

at a point ws, somewhere in the domain where the flow is

defined. A more general view of the effects of shear flow can

be obtained by taking a simple case limit (KH being domi-

nant) which allows an analytic solution. Preliminary results

for zero boundary conditions (i.e., u ¼ 0 at the boundaries)

have been reported in Paper I. In the present work, we com-

plement those results. We choose here a dimensionless quan-

tity
/0 wð Þ
xd0
¼ �w sin 2pwð Þ

2p þ h�xd jð ÞEij;Ew, which corresponds

to x0ðwÞ ¼ xd0 cos ð2pwÞ þ xd0h�xdðjÞEij;E in presence of

a TIM shear flow defined by h/ia ¼ hxd0 �xk ðj; sÞEij;Ew
(noted that its second derivative with respect to w is chosen to

be zero).

The equilibrium condition, previously given by Eq. (2)

must be modified to describe now the KH regime. We

choose here

Feq wð Þ ¼ e
� E

T0 1þ 5

2
� E

T0

� �
Cid

2
b2p sin 2pwð Þ

� �
; (6)

which allows us to define, in a self-consistent way, the initial

data for density and pressure at the equilibrium. Thus, we

obtain q0ðwÞ ¼ 2pCid
2
b sinð2pwÞ and P0ðwÞ ¼ n0T0. Let us

introduce the variable change x ¼ 2pw. Equation (5)

becomes then, where x0ðxÞ ¼ xd0 cos xþ xd0h�xdðjÞEij;E,

C� x0 xð Þð Þ u00 xð Þ � k2u
� �

� Ce

Cid
2
b4p2

x0 �
dh/ia

dx

� �
uþ x000 xð Þu ¼ 0; (7)

where we have introduced the quantity k2 ¼ Ce

Cid
2
b4p2
þ n2q2

s

4p2d2
b

.

and where the prime notation refers now to the derivative

with respect to x.

The inflection points with x000ðxÞ ¼ 0 are located at

xs ¼ p
2
; 3p

2
. To find the neutrally stable solution (which we

denotes by us), we substitute C ¼ x
n jn¼ns

¼ h�xd jð ÞEij;E ¼
const and Eq. (7) becomes

u00s xð Þ þ 1þ Ce

Cid
2
b4p2

� k2

 !
us xð Þ ¼ 0: (8)

Equation (8) has been complemented by the proper boundary

condition us ¼ 0. The solution again writes us xð Þ ¼ sin lx
2

� �
with

n2q2
s

4p2d2
b

¼ 1� l2

4
, where l is an integer, we choose to be

equal to one. One can determine the growth rate of the KH

instability in presence of TIM flow in the neighborhood of

the stable solution using a Taylor expansion, thus
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C ¼ x
n
¼ x

n

����
n¼ns

þ n� nsð Þ
@C

@n

� �
n¼ns

: (9)

Using the original treatment of Drazin and Howard in Ref.

37 or Shoucri in Ref. 38, we use the following formula to

determine dC
dn jn¼ns

(and where PP refers to the principal part):

dC

dn

����
n¼ns

¼
�
ð2p

0

u2
s dx

PP

ð2p

0

x000 xð Þu2
s dx

x0 xð Þ � h�xd jð ÞEij;E
� �2

þ ipsgnx00 xsð Þ
u2

s x
000
0 xsð Þ

x020 xsð Þ

 !
: (10)

Thus, the system is expected to be unstable for every toroidal

number n < ns with a growth rate given by

c
n
’ ns � nð Þ

nsq2
s

4p2d2
b

: (11)

At least, for the set of physical parameters used in the simu-

lation, the numerical value was found in good agreement

with the predicted theoretical value.

C. Interchange-KH coupling regime

We consider now the following shear flow defined by:

/0 wð Þ ¼ 3

2
xd0wþ

xd0�w
2p

/max sin 2pw (12)

or equivalently

x0 wð Þ ¼ 3

2
xd0 þ xd0 cos 2pwð Þ: (13)

Again, we have modified the equilibrium condition to take

into account the KH-TIM coupling regime. The initial data

(without perturbation) are now chosen to

Feq wð Þ ¼ e
� E

T0 1þ 5

2
� E

T0

� �
h wð Þ

� �

þ e
� E

T0
E

T0

� 3

2

� �
g wð Þ�sxd0; (14)

where we have introduced the functions hðwÞ ¼ 2pCi

d2
b/max sin 2pw and g wð Þ ¼ sin 4pw

8p þ w
2
. Using Eq. (12) and

the equilibrium (14) leads to the following values of the den-

sity and pressure at equilibrium:

q0ðwÞ ¼ 2pCid
2
b/max�sxd0 and

P0ðwÞ ¼ n0T0ð1þ gðwÞ�sxd0Þ: (15)

From the expression of pressure given in Eq. (15), the calcu-

lation of its derivative is straightforward, giving P00 xð Þ ¼ �s
2p

cos x and Eq. (1) reduces to

cos xðu00s ðxÞ þ ð1� k2
s � N2

s ÞusðxÞÞ ¼ 0; (16)

where N2
s ¼ 3

2
�s

Cid
2
b4p2

. In subsequent operations, we will

ignore the factor cosx in (16). Finally, we have again for

eigenfunction the same solution us ¼ sin lp
2
. Thus, the nature

of the eigenfunction is not modified. The unstable mode is

recovered for n < ns ’ db

qs
3p2 � 3

2
�sxd0

Cid
2
b

� 	1
2
.

D. Parametric-type scattering involving ZF and
resonant CTIM

Zero-frequency ZF is quite non resonant being relatively

easy to drive up by the Reynolds tensor in a nonlinear way.

While ZFs back-react upon turbulence by shearing, weaken-

ing the source of their generation, shear KH type instability

can be considered as a damping mechanism for ZFs, which

breaks up ZFs. However, this latter mechanism is weakened

by the oscillatory nature of ZFs in the resonant regime of

CTIMs, which becomes sensible to resonant amplification

via parametric scattering. Thus, the problem of ZF amplifica-

tion by parametric resonance may have a wide and deep

impact on turbulence.

A three-wave coupling mechanism was also observed in

simulation: the decay of the interchange-type TIM mode

(referred as the pump) ðn;xTÞ into a resonant CTIM mode

ðn;xRÞ and a low-frequency oscillating ZF ð0;XÞ. The reso-

nant conditions

n ¼ nþ 0 and xT ¼ xR þ Xþ dx (17)

are well satisfied. The frequency of the interchange mode is

usually considered as close to zero. However, in terms up to
1
x3 are kept in the dispersion relation in the asymptotic expan-

sion, we find a linear frequency close to xT ’ 5
2

nxd0 (see for

instance Refs. 39–41 for more details). It was proposed that

CTIMs can propagate now in the ion direction, allowing

strong resonance with precessing ions. In that case, the linear

frequency xR is somewhat reduced and is found close to

xR ¼
5

2
nxd0 þ

ffiffiffiffiffi
2e
p

x�e
2 1þ sð Þ ’

3

2
nxd0; (18)

and now it is possible to amplify a low-frequency ZF mode

at a frequency close to xT � xR ’ �
ffiffiffi
2e
p

x�e
2 1þsð Þ ’ X, where

x�e < 0 is the electron diamagnetic frequency.

In (17), we have assumed perfect toroidal number

matching (since the simulation box is periodic in a) and

match mode numbers exactly, where dx contains the mis-

match (if any). In the three-oscillator model described in

Appendix B, any mismatch in frequency imposed by the fi-

nite spatial grid or by nonlinear effects results in some

growth reduction (called de-tuning) as the system adjusts

itself to achieve exact frequency mismatch and phase lock-

ing. The resonance of CTIM is expected to place for a given

value of the energy Eres � xR

n�xd jresð Þ �
3
2

T0 and for a given

population with a pitch-angle (or trapping parameter) jres,

usually different of the set of parameters j and E met in the

case of the (fluid) interchange mode. Thus for a given toroi-

dal number n, both modes (resonant CTIM and TIM inter-

change) may coexist. It must be pointed out that only 16

trapped particle populations seem to be sufficient to take into

account such the resonant character.
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To end this discussion, it must be pointed out that

although such ZF mode has no linear counterpart, it was

recently proposed in Ref. 42 that the zonal flow can be also

excited by resonant interaction with granulation-type modu-

lation through polarization charge flux. The underlying

physics is then based on the phasestrophy concept and its

conservative form equivalent to the Charney-Drazin momen-

tum theorem. Taking into account the shear flow, which may

alter the resonant condition on Eres in the dispersion relation,

the authors found an estimation of the modulation frequency

of x ’
ffiffiffi
2e
p
jx�ej

1þs�1�
ffiffiffi
2e
p which indeed is very close to xT � xR

using s ¼ Te

Ti
� 1 and

ffiffiffiffiffi
2e
p
� 1.

IV. NUMERICAL SIMULATIONS

In this section, numerical simulations have been per-

formed in order to elucidate some of the key features of the

CTIM/KH coupling. We focus on the nonlinear generation

of zonal flows by treating KH modes and CTIMs on an equal

footing. For this reason, an initial shear flow is defined by

Eq. (12), while the initial distribution function given by Eq.

(14) is used, with a perturbation given by df ¼ e�Ed/max

2pCid
2
b sin ðpwÞ

P
n¼1;5 cos ðnaÞ with d/max ¼ 10�4 to start

up the instability.

In summary, our kinetic trapped ion model is given by

the set of N ¼ Nj � NE ¼ 16� 128 reduced Vlasov equa-

tions coupled together through the quasi-neutrality equation.

Each particle bunch defined by the data of the energy E and

the trapping parameter (the pitch-angle) j (here with j < 1

for trapped ions) is self-consistently coupled to the electric

potential J0/, where J0 is the gyro-average operator,

approximated by the Pade approximation (see Refs. 43, 44

for more details). In simulations, the time is normalized to

the inverse precession drift frequency x�1
d0 , the poloidal flux

is given in �w units (where �w ¼ r0R0B0

q0
), the energy E is

given in unit T0 (thermal ion velocity), and the electric

potential is expressed in �wxd0 units. Here, we have

xd0 ¼ q0T0

er0R0B0
. Simulations were carried out with an initial

temperature gradient of �s ¼ 0:15, a value taken above the

threshold of the ITG instability. Except the amplitude of

the initial shear flow /max; all the simulations performed here

use the following physical parameters: Ce ¼ 0:10; Ci¼ 1, a

banana width of db ¼ 0:10, a (thermal) Larmor radius of

qs ¼ 0:02 in normalised units. The time step is �txd0

¼ 0:001. Here, we refer to nonlinearly generated streamers

and not the (trivial) linear streamer structures (here referred as

collisionless TIMs) driven by the ITG instability when only

trapped ions are implicated. Two other coherent structures

have been observed in simulations: KH modes and zonal

flows. In particular, semi-Lagrangian Vlasov simulations have

identified two different kinds of ZFs of somewhat different

natures, the former coming from KH instability and the latter

coming from the resonant coupling with CTIMs.

A. The dominant Kelvin-Helmholtz regime

It is illuminating to consider the behaviour of the system

in detail as /max varies. We choose to start first with a high

value of the maximum shear flow potential /max ¼ 2:5. In

the limit of a dominant KH regime (shown in Figs. 1–4),

zonal flow damping is then efficient (as can be seen on top

panel in Fig. 1). We have also plotted the time evolution of

the zonal flow h/ia in Fig. 1 measured at the middle of the

box in w. The curve has been plotted in a logarithmic scale

on bottom panel in Fig. 1. The evolution of the turbulent

energy was superimposed in thick line on top panel in Fig. 1

plus their mutual sum. As shown in the figure, the zonal flow

is a dynamical quantity determined by the generation and the

interaction of other KH modes. Details of the dynamics of

ZF in the plane ðw; tÞ are shown in Fig. 2.

Except a bursty event observed at time txd0 ’ 1, the ZF

energy is transferred to larger-scale KH vortices in a

FIG. 1. Time evolution of the zonal flow energy, the turbulent energy, and

their mutual sum in the dominant adiabatic KH regime. On bottom panel,

the evolution of the zonal flow in a logarithmic scale. The initial shear flow

amplitude is /max ¼ 2:5.

FIG. 2. ZF dynamics in the plane ðw; tÞ in the KH regime of the instability.

The initial shear flow amplitude is /max ¼ 2:50.
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nonlinear and in an adiabatic way. The burst of turbulence is

indeed linked to the growth of TIMs followed by streamers,

which correspond to the nonlinear oscillating behaviour of

the zonal flow observed at that time on the bottom panel in

Fig. 1. On the one hand, suppression of turbulence driven by

streamers began by considering an initially strong enough

imposed ZF which is part of the background. On the other

hand, the ZF is also impacted by the formation of large-scale

coherent structures referred by Kim and Diamond in Ref. 19

as generalized KH structures (GKH), a designation we have

kept here to characterize such strong nonlinear coherent

structures. Among the four different actors involved in the

interaction, only generalized KH and ZFs persist in that re-

gime. We examine in Fig. 3 the evolution of the electric

potential at three different times. The first plot, at time

txd0 ¼ 0:6 displays at left the excitation of streamers to-

gether with the initial perturbation in the central region in

phase space. This illustrates a feature of shear flow, which

tends to generate large scale structures, clearly observed at

time txd0 ¼ 30. GKH can extract energy from the imposed

ZF. One of the key issues in the nonlinear generation of

GKH modes is the modification of the flow’s theorem. To

study these issues in detail, we have also displayed the E�B
B2

drift velocity in Fig. 4 at three different times. The top panel

shows clearly the topology corresponding to the initial shear

velocity. At time txd0 ¼ 4:40, such topology has changed in

a global way with strong flow now in the w direction.

Suppression of turbulence and transport by flow shear

occurs in the first step of evolution, i.e., for a time txd0 � 4.

Assuming new type of turbulence whose driving source is

now unaffected by the background flow shear (such a source

is here an instability associated with the shear flow i.e., the

KH instability), the slow growth of the turbulence energy

implies a decrease in the ZF energy. This leads to the asymp-

totic decay of the ZF energy until a new balance is estab-

lished with EZF þ Eturb ¼ const. Thus, a 2D vortex structure

is nonlinearly formed, stabilized by a modification of the

background shear flow (see bottom panel in Fig. 3). More

generally, the curvature of the ZF tends to stabilise flow-

shear driven instabilities. The problem is somewhat similar

to that met in the Earth’s stratosphere. Large scale shear

flows in the stratosphere, such as the equatorial jet (see Ref.

45), are stable most of the time. Occasionally, the flow

becomes unstable due to an episodic disturbance called a

FIG. 3. Plots of the electric potential in the ðw; aÞ plane at three different

times in the KH regime for /max ¼ 2:5.

FIG. 4. Modification of the topology of the E�B drift velocity in the

“phase” space plane. The standard KH mode on top panel, while the bottom

panel illustrates a “generalized” KH mode.
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wave-breaking event,46 which redistributes the flow curva-

ture and stability is re-established.

B. Transition driven by TIM/KH coupling

We have so far assumed that GKH modes and ZKs play

a major role in the TIM/KH coupling. This is of course an

oversimplified picture and there are other coherent structures

that can be potentially important. As noted before, the coun-

terpart non zero frequency ZFs, CTIMs, and streamers must

be taken into account.

The nonlinear generation of ZF by the Reynolds stress is

particularly noticeable in situations relevant to ITG instabil-

ities. The above example of Section III A demonstrates that

strong KH flow shear stabilizes collective TIM instabilities.

However, there is no universal criterion for stabilization, and

weaker flow shears can be destabilizing. The feedback mech-

anisms observed in Vlasov simulations are nonlinear, also

indicating that the effect of flow shear on turbulent fluctua-

tions likely involves some combinations of many actors as

streamers, GKH modes, CTIMs, and time-varying ZFs.

We choose now to decrease the flow shear amplitude

/max to 0.25, keeping others physical parameters identical.

This subsection describes aspects of the phenomenology of

transitions in order to illustrate the rich nonlinear dynamics

that underlies the TIM/KH coupling. Moreover, the turbulent

energy shows three different steps during its evolution: a first

step for txd0 � 10 followed by a second (weak) peak at

txd0 ’ 10. Then we observe a significant reduction of turbu-

lence in the temporal range ½10; 15�x�1
d0 . Here, the Reynolds

tensor is however not sufficient to drive a steady flow, whose

shear suppresses completely turbulence. Meanwhile, a re-

markable intermittent behaviour in turbulent energy appears,

accompanied by the occurring of strongly nonlinear stream-

ers which now dominate the turbulence dynamics.

In the ITG instability, the free energy for TIMs is pro-

vided by the ion temperature gradient. At the instability

threshold, where the temperature gradient scale length just

exceeds a critical value (�sthreshold � Ce), the gradient free

energy is accessed through a resonance of the mode with

the banana orbits under the drifts produced by the gradient

and the curvature of the magnetic field. Now the imposed

flow shear is destabilizing at weak levels. A simple illustra-

tion of this process can be easily observed from the time

evolution of both ZF and turbulent energies shown on top

panel in Fig. 5.

The corresponding bottom panel in Fig. 5 exhibits the

time behaviour of the ZF on a logarithmic scale. In addition

to these diagnostics, we have also displayed the behaviour of

the ZF in the poloidal flux (w)-time (t) plane in Fig. 6. In

Figs. 5 and 6, a first bifurcation of the plasma state is evident

at time txd0 ’ 10, manifested as an abrupt change of the ZF

dynamics. Note that at that time, the ZF energy increases

and that the ZF is typically generated by the Reynolds stress

and is characterized by a zero-frequency behaviour on bot-

tom panel in Fig. 5 (which seems indicate that the Reynolds

stress is the dominant source).

An overview of the ðw; aÞ space behaviour of the elec-

tric potential, we will examine in detail, is given in Figs. 7–9

for the three different steps mentioned above. Fig. 7 exhibits

the occurring and the growth of nonlinear GKH modes as the

result of the shear flow instability. In Fig. 7, the top panel

shows the initial perturbation mode on the five first modes,

followed on the middle panel by the excitation of the GKH

modes at the peak of turbulence at txd0 ’ 1:8, followed on

the bottom panel by the saturated state, here dominated by

the GKH mode at time txd0 ’ 9:8.

FIG. 5. On top panel, the time evolution of the zonal flow energy in solid

line and the turbulent energy (in thick line) for the interchange CTIM re-

gime. We observe clearly a turbulent burst for txd0 ’ 15. On bottom panel,

the time evolution of ZF h/iaðw � 0:5; tÞ in a logarithmic scale showing the

mixing of both h/iZF;KH and h/iZF;CTIM contributions. The amplitude is here

/max ¼ 0:25.

FIG. 6. Poloidal flux-time representation of the zonal flow h/iZF ¼ h/iZF;KH

þh/iZF;CTIM for the interchange-type regime of the instability. Note the

change in the time interval ½10; 15�x�1
d0 just before the turbulent burst located

at txd0 ¼ 15. The amplitude parameter is taken to /max ¼ 0:25.
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A second peak emerges at time txd0 ’ 10 as the result

of the growth of TIMs (top panel in Fig. 8), followed by a

burst at time txd0 � 15 due now to nonlinear streamers. In

Paper I, we have shown that the zonal flow is typically

generated self-consistently by the combined action of the

Reynolds tensor and polarization effects (through coupling

with pressure). Although the effect of shear flow on TIM

will be studied in detail in Section IV C, we can observe that

the shear flow is too high and the TIM turbulence is appa-

rently quenched. In Fig. 8, we see clearly that the main actor

is here the zero-frequency ZF. This mode which appears as a

quasi-coherent feature in the fluctuating electric potential in

Fig. 8 was observed to increase in amplitude in top panel in

Fig. 5. However, it may be understood that the stabilizing

effect of ZF is too weak compared with the strong nonlinear

dynamics of streamers, so that it is submerged by strong

growth of nonlinear streamers. As the ZF energy is reduced,

the corresponding level of turbulent streamer (ITG) fluctua-

tions is high, as can be seen on top panel in Fig. 9 at

txd0 ’ 15:4, and the self-generated zonal flow decreases

much. It is characterized by the strong intermittent (fast)

growth of the turbulent energy. It is clear that the ITG-

driven streamer dynamics still dominates in the strong tur-

bulent regime. Finally, the asymptotic state exhibits the

emergence of both small-scale fluctuations and large-scale

potential structures.

C. Onset of oscillating ZF and associated dynamics

We focus now on transition towards the occurring of

resonant CTIM, which is induced by the precessional reso-

nance of trapped ions. Thus, wave-particle resonance can

lead to the amplification of the mode h/iZF;CTIM. In the

Taylor-Goldstein model, the eigenmode equation is like the

KH eigenmode equation with the addition of the curvature

drive introduced by P00ðwÞ. Thus, the advective pressure

response in the denominator of the curvature drive compli-

cates the eigenmode structure; hence, a simple characteriza-

tion of the effect of flow shear is more difficult. However,

we expect that there is a regime where the flow shear is too

weak to stabilize the interchange instability. We choose here

to decrease the initial flow shear amplitude to /max ¼ 0:025

to enter inside such a regime where the resonance takes

FIG. 7. Electric potential representation at three different times during the

first phase of the instability, showing the growth of KH modes driven

by the initial shear flow. The numerical simulation was performed with

/max ¼ 0:25.

FIG. 8. Continuing the time evolution of the electric potential of Fig. 7, but

now when ZF h/iZF;KH is growing and dominates showing strong plasma

turbulence reduction.
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place. Fig. 10 shows such a temporal behaviour both the

time evolution of the ZF and turbulent energy contributions

(on top panel) and the mode n¼ 0 (the zonal flow) in a loga-

rithmic scale on bottom panel.

An intermittent dynamics has been observed in the

behaviour of the turbulent energy characterized by a burst at

time txd0 ’ 17. Note that the corresponding time behaviour

of ZF exhibits the low-frequency fluctuations, which was not

observed previously when the Reynolds stress was the domi-

nant driver. It is interesting to consider the behaviour of the

mean potential h/iaðw; tÞ of the zonal flow in the plane ðw; tÞ.
Fig. 11 illustrates the details of h/iaðw; tÞ, showing the low-

frequency oscillating behaviour of the mode. As the energy of

the zonal flow increases slowly, such oscillations are domi-

nant. The abrupt growth in the turbulent energy in Fig. 10 (top

panel), observed at time txd0 ’ 1:8, results in the modifica-

tion of the topology of the drift velocity vE ¼ E�B
B2 , where the

plasma bifurcates from the initial state dominated by the shear

flow (i.e., the KH instability) to another state where the vortex

structures is strongly modified.

In Fig. 10, on top panel, the third observed sharp peak,

observed at time txd0 � 27, on the ZF is associated with

enhanced turbulence, which seems to indicate that the nature

of the process is now different. Such a process results from

the parametric decay of an (interchange) CTIM mode into a

ZF and a (scattered) resonant CTIM mode. In Fig. 12, we

have represented the spectrum in frequency on top of the

electric potential, calculated in the time interval ½0; 20�x�1
d0

(i.e., before the scattering takes place), while the bottom

panel curve corresponds to the global spectrum for the time

interval ½0; 30�x�1
d0 . Note that the accuracy in spectrum

FIG. 9. Continuing the evolution of the electric potential of Figs. 7 and 8 in

the regime of the turbulent burst emergence. We see now clearly the forma-

tion of strong nonlinear streamers on top panel. A large-scale structure is

formed when the turbulent energy decreases.

FIG. 10. Similar diagnostics as in Fig. 5 but now in the resonant regime of

CTIM, obtained by decreasing the amplitude of the shear flow to

/max ¼ 0:025. We observe the turbulent burst at time txd0 ’ 18 followed

by a sharp peak of both zonal plus turbulent energies at txd0 ’ 27 on

top panel as the result of a three-wave parametric instability involving

CTIMs.

FIG. 11. Details of the dynamics of ZF in the space w; t, showing the oscilla-

tory behaviour of the zonal flow. The simulation was carried out by decreas-

ing /max to 0.025.
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calculation is close to 2p
Tmax
� 0:2xd0. The top panel exhibits

the different interchange and GKH modes frequencies. In the

considered interval, the resonant peak, corresponding to the to-

roidal number n¼ 2, remains at weak level. If we focus on the

spectrum for frequencies weaker than 10xd0, we see clearly that

when the parametric scattering takes place, two new frequencies

are now growing in the frequency range and are located on the

frequencies xR ’ 7:60xd0 (for the resonant CTIM mode) and

the zonal flow component xZF;CTIM ’ 0:90xd0, while the inter-

change mode xT ’ 8:70xd0 (the pump) decreases in intensity

in this time interval associated with the occurring of the para-

metric instability.

From the linear analysis of the dispersion relation, we can

obtain an estimation of the interval in frequency of the

interchange mode. The observed frequencies corresponds to a

value of the toroidal number of n¼ 2. The frequencies,

observed numerically have been found in good agreement with

the theoretical frequencies given by xT ’ 5
2

nxd0h�xd j; sð Þij,

whose mean value is given by xT ’ 10; 5xd0, after integrating

over the pitch angle parameter. Note that the frequency range

of the interchange mode is xT 2 ½5:0; 14:0�xd0 for the

mode n¼ 2 for the different values of the pitch-angle j < 1

(in simulation we have cut j to a limit value of jmax ¼ 0:95

and �xd 2 ½1; 2:8�xd0 for a value of the magnetic shear of

s¼ 2). Using Eq. (18), an estimation of the mean resonant

frequency of CTIM is close to xR ’ 8:15xd0. Thus, we

estimate that the mean value of the ZF frequency given by

Xth ¼ xT � xR ’ 1:10xd0 found in good estimation with the

numerical estimation of X ’ 0:90xd0. The last point concerns

the observation in the spectrum on bottom in Fig. 12 of

the two first harmonics of the resonant mode obtained for

2xR ’ 15:2 and 3xR ’ 22:8xd0.

This mechanism is analyzed in more detail through the

diagnostics of Figs. 13 and 14. Fig. 13 shows the evolution

of the shear flow during the first step of turbulent growth.

Here, we have found that the resonance introduces an

FIG. 12. Spectra in frequency of the electric potential calculated, respec-

tively, in the time interval ½0; 20�x�1
d0 on top (before the resonance arises)

and in the time interval ½0; 30�x�1
d0 on bottom. We see clearly that the growth

of ZF is connected to the growth of the resonant mode xR ’ 7:60xd0. Note

also the emergence of the second 2xR and third 3xR harmonics. During the

growth note, the decrease in the interchange mode xT (considered as the

pump) and the growth of the ZF at X ’ 0:90xd0. Here, we have

/max ¼ 0:025:

FIG. 13. Behaviour of the drift E�B velocity at three different times. The

first peak in turbulence corresponds to the formation of an interchange

CTIM mode at time txd0 ’ 1:80. The transition is observed from the initial

shear flow driven KH (top panel) towards the interchange mode on bottom

panel. The simulation was performed with /max ¼ 0:025.
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alternative state dominated by oscillating ZF near the critical

temperature gradient. The first peak of growth reaches a

maximum at time txd0 ’ 1:8, which corresponds to the

formation of an interchange mode, clearly observed in Fig.

13 on bottom panel. We see clearly that the initial vortices

induced by the initial shear flow (through the KH instability)

are now disappeared and leaded to plasma flow in a perpen-

dicular direction. In Fig. 14, we have plotted three different

snapshots of the electric potential. The top panel corresponds

to the formation of the interchange - CTIM structures

obtained on the toroidal mode n¼ 5. The intermittence is

characterized by occurring of a burst at time txd0 ’ 17 as

the result of the emergence of the resonant CTIM on the to-

roidal number n¼ 2. Note that the streamers are also occur-

ring but on higher mode n � 23. Accumulating energy

through the second burst, induced by the three-wave process,

the zonal flow energy reaches the value enough to quench

turbulence at time txd0 ’ 26:7. The corresponding snapshot

for the potential in Fig. 14 shows clearly that ZF is now the

dominant mode (on bottom panel).

Such a feature is considered to originate from the reso-

nance mechanism driven by the beating of both CTIMs

(interchange plus kinetic resonant part) made on the same to-

roidal number n¼ 2. Here, we observe that the abrupt growth

of both EZF and Eturb is occurring simultaneously at time

txd0 ’ 26:7. In contrast to the two previous first phases of

the instability, the three-wave process exhibits a very sharp

peak characteristic of the resonance.

D. Summary of numerical results

These various results are summarized in Table II. The

level of interaction is controlled by the data of the initial am-

plitude mean shear flow /max. With decreasing the initial

mean shear flow, the KH instability is reduced. Evidence is

presented that the low-frequency GAM-type ZF might play a

major role in the LH transition. There is also a qualitative

change in the interchange-type turbulence behaviour which

drops and becomes more intermittent with short semi-

random pulses. The KH actor allows us to couple zero-

frequency ZF of hydrodynamical nature with this new

branch of (nonlinear) low-frequency GAM-type mode

induced by magnetic trapping. These results are consistent

with the recent experimental observation of low-frequency

ZFs in EAST tokamak.

FIG. 14. Corresponding plots of the electric potential at three different times

during plasma evolution: on top, the occurring of the interchange mode on

n¼ 5 at time txd0 ¼ 1:8 corresponding to the first sharp peak in Fig. 10, fol-

lowed by the emergence of streamers (on middle) during the burst of turbu-

lence located at txd0 ’ 18:6 towards the occurring of the CTIM-driven ZF

emergence at time txd0 ’ 26:7 (on bottom) when the resonance takes place.

Note that turbulence is completely quenched by (time varying) ZF at that time.

TABLE II. Table of results obtained by direct numerical simulation using the trapped ion model, for successive regimes determined by the initial shear ampli-

tude parameter.

Dominant interaction regime Key issues for energy transfer Coherent structures Examples

KH regime ZF energy decreases Generalized KH modes Fig. 3 bottom

Level of initial shear flow: 2.5 Turbulent energy increases Low-frequency ZFs Fig. 2

L mode

Intermediate CTIM/KH regime No three-wave interaction Generalized KH modes

Level of initial shear flow: 0.25 ZF energy decreases þnonlinear streamers Fig. 9 top

Turbulent energy increases both fluid plus kinetic ZFs Fig. 6

Bursts in turbulent energy L mode

Magnetic trapping induced Resonance takes place Turbulence is quenched Fig. 14 bottom

Low-frequency ZFs Three-wave interaction H mode

Level of initial shear flow: 0.025 ZF energy increases

Turbulent energy decreases Low-frequency ZFs Fig. 11
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V. CONCLUSION

In conclusion, a new trapped-particle-induced geodesic

acoustic mode is shown to occur using a gyrokinetic reduced

model based on a double gyro-average on both cyclotron and

bounce motions. The mode is driven by magnetic trapping

effects and linked to the resonant character of CTIMs. These

results constitute a necessary theoretical basis to understand

the low-frequency GAM-type ZF excitation in a global gyro-

kinetic code (including circulating ions). Therefore, these

papers must be understood as a first step in the route towards

the possible interaction between low-frequency ZFs, GAMs,

and turbulence.

Applications of the model to CTEM are in principle pos-

sible. The effects of coupling between shear flow-driven KH

and CTIMs are modeled in terms of eigenfunctions leading

to the Taylor-Goldstein equation, a technique already used to

describe the Holmboe instability in stratified shear flow in

the Earth’s atmosphere.

Within the framework of a simplified picture of turbu-

lence involving ITG instabilities, many actors are implicated

as collisionless TIMs, streamers, nonlinear GKH modes, and

of course zonal flows, the latter possessing different natures

having zero-frequency or/and low-frequency modes close to

xd0. Because TIM possesses an ion diamagnetic branch, the

coupling mechanisms take the form of both non resonant

(interchange-type) or resonant interactions. We have empha-

sized on a triad which plays a leading role in the developing

turbulent stage which can enhance the growth of the (reso-

nant) zonal flow, and thus compete with the KH damping

mechanism.

Finally, systematic studies on coupled dynamics among

granulations, trapped electron modes (which in principle can

excite zonal flow at higher frequencies), and shear flows

should be investigated in detail using such reduced analytical

model.
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APPENDIX A: THE TAYLOR-GOLDSTEIN EQUATION

We begin with the fluid version of the trapped ion model

using the different moments of the distribution function. By

introducing the quantities q ¼ ni � n0; where ni is the ion

density, the ion pressure and the second moment M2, we

have

@q
@t
þ /; q½ � þ 3

2
xd0

@P

@a
¼ 0; (A1)

3

2

@P

@t
þ 3

2
/;P½ � þ xd0

@M2

@a
¼ 0; (A2)

Ce /� h/ia
� �

� Ciq
2
s

@2/
@a2
� Cid

2
b

@2/

@w2
¼ 0; (A3)

where we have assumed, for simplification that J0 ! 1 and

�xdðjÞ ’ 1. Here ½; � denotes the Poisson bracket defined by

/; n½ � ¼ @/
@w

@n
@a�

@/
@a

@n
@w and M2 ¼ 2ffiffi

p
p
Ð1

0
dE

ffiffiffi
E
p

E2f . The proce-

dure consists in linearizing Eqs. (A1)–(A3) around the

steady-state solution q0ðwÞ, /0ðwÞ, and P0ðwÞ assuming a

time variation in e�ixt and phase perturbation of the form

eina, i.e.,

q ¼ q0ðwÞ þ
P

n dqnðwÞeiðna�xtÞ

/ ¼ /0ðwÞ þ
P

n d/nðwÞeiðna�xtÞ

P ¼ P0ðwÞ þ
P

n dPnðwÞeiðna�xtÞ:

8><
>: (A4)

Thus for the density q, we obtain from Eq. (A1)

x� nx0 wð Þð Þdqn ¼ �nq00 wð Þd/n þ
3

2
nxd0dPn; (A5)

and Eq. (A2) is then replaced by

x� nx0 wð Þð ÞdPn ¼ �nP00 wð Þd/n þ
2

3
nxd0dM2: (A6)

Finally, we write the quasi-neutrality condition (A3) in the

following form:

Ceð/0ðwÞ � h/iaÞ � Cid
2
b/
00
0ðwÞ ¼ q0ðwÞ; (A7)

and for the fluctuation potential mode d/n

ðCe þ Cin
2q2

s Þd/n � Cid
2
bd/00n ¼ dqn: (A8)

In Eqs. (A5)–(A8), the prime denotes a derivation with

respect the variable w and we have also introduced the (nor-

malized to xd0) flow shear in the form x0ðwÞ ¼ /00ðwÞ.
Assuming that the fluctuation term dM2 can be neglected,

and that h/iaðw; t ¼ 0Þ ¼ /0, a little algebra leads to a

second-order equation for the potential fluctuation d/n in the

following form:

u00 � k2 � Ce

Cid
2
b

x0 �
dh/ia

dw
C�x0

� x000
C�x0

þ 3

2

xd0P00
Cid

2
b C�x0ð Þ2

0
B@

1
CA

�u ¼ 0; (A9)

where we have introduced the following notation C ¼ x
n ,

u ¼ d/nðwÞ, and k2 ¼ Ce

Cid
2
b

þ n2q2
s

d2
b

.

APPENDIX B: THREE-OSCILLATOR MODEL

The three-oscillator model involves the decay of a pump

wave characterized by an interchange type CTIM mode of

frequency and toroidal number ðxT ; nTÞ into a resonant

CTIM mode ðxR; nRÞ and a low-frequency oscillatory zonal

flow ðx0; n0 ¼ 0Þ. Here, since the zonal flow is characterized
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by the index 0 with a zero value of the toroidal number and has

no dependence in a, we impose the condition nT ¼ nR ¼ n.

The resonant conditions are then given by

xT ¼ xR þ x0 þ dx and nT ¼ nR þ n0; (B1)

or equivalently by Eq. (17) where we have also introduced a

frequency mismatch of dx ¼ xT � xR � x0. It must be

pointed out that in the standard picture of the turbulence,

several triads are possible, however, it is here the resonant

character of the CTIMs which imposes such a resonant

wave-wave interaction. We analyse here the possibility of

such a coupling starting from the set of Vlasov equation par-

ameterized by the adiabatic invariants j and E. Denoting the

distribution �f j;Eðw; a; tÞ by f and assuming that the dissipa-

tion is zero (DðwÞ ¼ 0) and J0/ ’ /, the Vlasov equation

reads as

@f

@t
þ xd jð ÞE @f

@a
þ /; f½ � ¼ 0: (B2)

Thus, the parameters j and E have been dropped in notation

for simplifying the presentation and we have used the usual

notation xdðjÞ ¼ xd0 �xdðjÞ, where �xd is the standard

dimensionless frequency given by the elliptic functions. We

introduce different time and spatial scales in the form

f w; a; tð Þ ¼ 1

2
F0 w; tð Þe�ix0t þ 1

2
dfRei na�xRtð Þ

þ 1

2
dfTei na�xT tð Þ þ c:c:; (B3)

/ w; a; tð Þ ¼ 1

2
/0 w; tð Þe�ix0t þ 1

2
d/Rei na�xRtð Þ

þ 1

2
d/Tei na�xT tð Þ þ c:c:; (B4)

where dfi ¼ dfiðw; a; tÞ and d/i ¼ d/iðw; a; tÞ for i ¼ R; T
are the slow-varying complex envelopes. We substitute Eqs.

(B3) and (B4) into the Vlasov equation (B2) and separate the

different scales, following the standard method of research

of secular terms. A little algebra leads to a set of nonlinear

coupled equations. To obtain the contribution of the zonal

flow in terms of slow-varying envelope, we have also intro-

duced an integration over the variable a. The equation

describing the evolution of the complex zonal flow envelope

in the resonant parametric instability is then given by the fol-

lowing equation:

@F0

@t
¼ � 1

2
h d/T ; df �R

 �

iae�idxt � 1

2
h d/�R; dfT


 �
iae�idxt:

(B5)

Here ½:; :� denotes the standard Poisson Bracket. The energy

source is here provided by the ion gradient temperature via

the interchange mode which acts as a pump wave. Its enve-

lope equation is given by

@dfT
@t
þ xd jð ÞE @dfT

@a
¼ 1

2

@F0

@w
@d/R

@a
� @/0

@w
@dfR
@a

� �
eidxt:

(B6)

The resonant contribution in term on slow varying (complex)

envelope reads as

@dfR
@t
þ xd jð ÞE @dfR

@a
¼ 1

2

@F�0
@w

@d/T

@a
� @/

�
0

@w
@dfT

@a

� �
e�idxt:

(B7)

Thus, in Eqs. (B5)–(B7), the labels T, R, and 0 refer, respec-

tively, to the interchange mode, the resonant CTIM mode, and

the low-frequency oscillating ZF. The three-wave model,

defined by the set of Eqs. (B5)–(B7), has allowed us to obtain

the linear conditions for the trapped-ion modes in the

(expected) form, i.e., xT ¼ nxdðjÞE and xR ¼ nxdðjÞEres,

while there is no linear counterpart of a dispersion relation for

the zonal flow. Indeed, Eq. (B5) has been obtained assuming

the following condition:

x0F0 w; tð Þ ¼ 1

2
@whd/Tdf �R � d/�RdfTia; (B8)

which indicates that when there is no resonance, the resonant

mode is not amplified and dfR ! dfT and d/R ! d/T . Thus,

x0 ! 0 according to (B8), since in that case, the polarization

effects are not taken into account, and we recover the adia-

batic condition

df ¼ � nd/F00 wð Þ
x� nxd jð ÞE� n/00 wð Þ : (B9)

In Eqs. (B3) and (B4), we have introduced two different

scales in the fluctuations: a fast time scale xR and xT and a

slow-time scale x0. However, we see in Eq. (B8) that the en-

velope variation is also captured by the @w derivation acting

on a slow scale in poloidal flux coordinate.
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