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Abstract. High order spectral analyses have recently attracted a great deal of attention in the context of
experimental studies for magnetic fusion. Among these techniques, bicoherence analysis plays an important
role as it allows distinguishing between spontaneously excited waves and waves that arise from a coupling
between different modes linked to specific physical mechanisms. Here, we describe and apply bicoherence
analysis to kinetic simulations performed with reduced “bounce-averaged gyrokinetic” code, in order to
investigate the nonlinear dynamics of trapped ion modes. This analysis shows a nonlinear wave coupling
process linked to the formation of convective cells, thus furthers our understanding of the nonlinear energy
transfer between turbulence structures in tokamaks.

1 Introduction

Cross-field transport of energy and particles in mag-
netically confined plasmas represents a major issue for
achieving magnetic fusion. This transport is commonly at-
tributed to small-scale turbulence generated by microin-
stabilities which are driven by temperature and density
gradients along the radial direction in a tokamak. In par-
ticular, ion temperature-gradient driven modes, trapped
electron modes and electron temperature-gradient driven
modes are considered as the most important micro-
instabilities responsible for turbulent transport in mag-
netised plasmas with low β = 2μ0P/B

2 values (where
P is the plasma pressure and B is the magnetic field).
The use of simulation code that accounts for kinetic ef-
fects is essential for studying turbulent transport. In fact,
although a fluid treatment can give a first description,
the nonlinear dynamics linked to these phenomena can be
strongly affected by specifically kinetic mechanisms such
as Landau Damping, finite orbit (FOW) effects and finite
Larmor radius (FLR) effects. In general such kinetic code
has to account for six-dimensions (6D), with 3 coordinates
for positions, and 3 others for velocities. The disparate
spatio-temporal length scales that are involved in toka-
mak turbulence lead to costly simulations. Hence several
kinetic codes with reduced dimensionality have been de-
veloped, usually by eliminating high-frequency phenom-
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ena. Gyrokinetic codes are based on averaging the fast
cyclotron time scale of particles and are now commonly
used [1]. This operation, licit when the frequency of fluc-
tuations is smaller than cyclotron frequencies, is well jus-
tified in most fusion devices. A further reduction step can
be taken when instabilities are driven by particles that are
trapped in the minima of the magnetic field. If the fre-
quencies of modes are low enough, the dynamics can be
averaged over the particle bounce motion along the field
lines. These numerical tools are called “bounce-averaged
gyrokinetic” codes. Reduced kinetic codes have strongly
contributed to the understanding of physics of turbulent
transport in slab and toroidal geometries. Regarding the
dynamics of turbulent transport driven by temperature
gradient instabilities, gyrokinetic simulations and exper-
iments have shown the formation of structures which
play an important role in turbulence self-organisation. The
most well-known structures are zonal flows that are gen-
erated by fluctuations of turbulence and back-react via
vortex shearing, thus reducing transport. Zonal flows can
be identified by means of a perturbed electric field with
wave vector k ≈ (kr, 0, 0) pointing in the radial direc-
tion. Structures called “streamers” are a counterpart of
zonal flows. Streamers are convective cells which are elon-
gated in the radial direction and offer an efficient chan-
nel for energy transport. As such they play an important
role in turbulence self-organisation [2]. It is important to
note that streamers are commonly observed in simula-
tions but no clear evidence of their existence has been
found in fluctuation measurements. Although there is a
general consensus on their existence, the precise nature of
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streamers is still being discussed. As indicated by Holland
and Diamond [2] two distinct groups can be identified:
“isolated intermittent streamers”, which are caused by
the nonlinear dynamics, and “streamer arrays”, which are
generated from linear and nonlinear processes. Streamers
can thus be identified as perturbations rapidly changing
in the poloidal direction but almost constant in the radial
direction k ≈ (0, kθ, 0). Streamers have been studied in-
tensively because of their scientific impact, and because
of their implications in Ion Temperature Gradient (ITG)
turbulence and also as a channel of transport for Elec-
tron Temperature Gradient turbulence. Although these
convective structures have been addressed in an exten-
sive overview [3], some important aspects of their forma-
tion and interaction still need to be clarified. Consequently
new methods of analysis become necessary to investigate
them. High order spectral analyses have recently attracted
a great deal of attention in the context of experimen-
tal studies for magnetic fusion [4–7]. The most popular
spectral analysis tool is probably the bicoherence method,
which was proposed by Kim and Powers [8]. Bicoherence
allows one to investigate the degree of phase correlation
among three waves and is related to the quadratic nonlin-
earities. It sheds light on the exchange of energy between
modes that is due to specific physical mechanisms. This
paper presents results from a bicoherence analysis tool
that has been developed on the basis of the computational
procedure developed by Kim and Powers. The objective
is to elucidate the energy transfer mechanisms in the dy-
namics of turbulence, and to identify the structures that
play a key role in kinetic simulations. Here we applied this
analysis to simulations performed with a bounce-averaged
gyrokinetic code that is specifically designed for studying
low frequency instabilities driven by trapped ion (TIM).
In toroidal geometry, the specific dynamics of TIM be-
comes important when the frequency of ITG modes falls
below the ion bounce frequency, allowing one to aver-
age on both the cyclotron and bounce motion fast time
scales. This reduction of the number of degrees of freedom
leads to a strong reduction of the requested computer re-
sources (memory and computation time). Therefore, long
simulation runs compared to the ones that could be ob-
tained with 5D gyrokinetic codes can be performed, while
keeping the essential physical ingredients. In our model we
have focused the analysis on the large scale dynamics of
interchange-like instabilities to assess the nonlinear evolu-
tion of convective cells. We show and discuss results ob-
tained by using a bicoherence analysis. The present article
is organised as follows. In Section 2 we briefly recall the
set of equations integrated in the bounce-averaged gyroki-
netic code. In Section 3 we summarise the characteristics
of the bicoherence analysis tool. In Section 4 we present
and discuss results on three-wave coupling modes observed
in the simulations. Finally, conclusions follow in Section 5.

2 Numerical model

The present model describes the dynamics of TIM modes,
which are mainly driven by the gradient of temperature.

The derivation of the equations and their implementation
in TIM code have been discussed in previous works [9–11].
Hence only the main expressions are summarised and
discussed. We consider an axi-symmetric toroidal geom-
etry, with a magnetic axis located at a major radius R0.
The modulus of the magnetic field is B(R0 + r, θ) ≈
B0[1 + ε sin2(θ/2)] in which ε = r/R0 is the inverse of
the aspect ratio and B0 is the minimum magnetic field at
the angle θ = 0. The motion of the particle can be sepa-
rated into a fast cyclotron motion, with a time scale ω−1

c ,
and a slower “gyrocenter motion”. The analysis of the
gyrocenter trajectories allows one to identify two different
classes of particles called “passing particles” and “trapped
particles”, respectively. Circulating particles have a large
enough parallel velocity to move on a magnetic field line on
its entire length. Trapped particles follow a bouncing mo-
tion on the low field side, thus describing a “banana” orbit
shape with a width δb in the radial direction. The trapped
particle motion is characterised by a bounce frequency ωb
and a slower magnetic drift around the torus with a fre-
quency ωd [12]. Deeply trapped particles spend most of
their time in the “bad” curvature zone of the tokamak,
that is the zone where interchange-like modes are locally
unstable. This aspect emphasises their possible role in tur-
bulent transport. In collisionless plasmas, these instabili-
ties are energised via Landau resonances between particles
and waves in a range of frequencies that is well below the
parallel transit frequency. This feature allows us to decou-
ple the dynamics of trapped ions from passing ions. The
density response of passing ions is then simply adiabatic.
The existence of three motion invariants in the unper-
turbed case ensures that the system is integrable. These
invariants are the magnetic momentum μ (also known as
the adiabatic invariant), proportional to the magnetic flux
across a cyclotron orbit, the particle energy E, and the
toroidal canonical momentum Mk, which for a trapped
particle coincides with the flux of the poloidal magnetic
field ψ. Moreover the quasi-periodicity allows the con-
struction of a set of action angle variables which are canon-
ically conjugated (Jk, αk) (with k = 1, 2, 3). This set of
coordinates is well adapted to describe the motion of par-
ticles and implement the gyro- and bounce-averaging pro-
cedures. The system at equilibrium can be described by an
unperturbed Hamiltonian H = H0(Jk) that is a function
of the actions only, with J1, J2, J3 related to the three in-
variants (μ,E, ψ). By means of the motion equations, the
angle variables α1, α2, α3 are related respectively to the
cyclotron ωc, bounce ωb and precession ωd frequencies.
The low frequency response for TIM is obtained by making
a phase-angle average over the cyclotron and bounce mo-
tions (i.e. over the angles α1 and α2). Only the precession
motion is explicitly taken into account in the model. Fi-
nally the two important variables are the precession phase
α3 (hereafter indicated by α) that is a function of toroidal
and poloidal coordinates, and the poloidal flux ψ related
to J3 which plays the role of a radial coordinate.

These directions define a plane (α, ψ) that is orthog-
onal to the magnetic field. The code evolves a bounce-
averaged distribution function f̄(α, ψ) by solving a Vlasov
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equation
∂f̄

∂t
+ [φ̄, f̄ ] + Eωd

∂

∂α
f̄ = 0 (1)

where [., .] is the usual Poisson Bracket [g, f ] = ∂ψg∂αf −
∂αg∂ψf and φ̄ is the bounce-averaged electric potential.
In this expression the last term represents the interchange
term that drives the main instability. Trapped ion tur-
bulence develops on length scales of the order of the ba-
nana orbit width δb which is much larger than the Debye
length. In this case, self-consistency is ensured by the
quasi-neutrality condition, instead of the Poisson equa-
tion. Thus assuming an adiabatic response for electrons,
the electro-neutrality condition is written as:

Ce (φ− 〈φ〉α) = Ci∇2
φ+ n̄i − n0 (2)

where the left hand side indicates that the electron density
vanishes when the electric potential equals its flux average
〈φ〉α. The latter represents the potential averaged on a
magnetic surface (constant ψ surface) by means of the
operator 〈.〉α. In equation (2), n0 is the total ion density
and n̄i represents the ion guiding centre density obtained
by integrating the distribution function on the velocity
space expressed in action-angle variables. The polarisation
∇2
φ term is an approximation of the difference of particle

and guiding centre densities. Ce = (1 + τ)/fp and Ci =
Cefp/τ are constants accounting for the ratio τ of ion
to electron temperatures, and for the fraction of trapped
particles fp = 2

√
2ε/π which is mainly determined by the

inverse aspect ratio ε. Finally, we note that the electron
polarisation can be neglected because of their small mass.
In summary, our kinetic trapped-ion model is given by a
reduced Vlasov equation, self-consistently coupled to the
electric potential φ. In the code, the time t is normalised to
the inverse drift frequency ω−1

d,0 of reference, the poloidal
flux ψ is counted in Δψ = πr20B0/q units, the energy E
is normalised to a temperature T0, and the potential φ is
given in ωd,0Δψ units.

3 Bicoherence analysis

As mentioned in the introduction, bicoherence represents
a useful tool to investigate the nonlinear dynamics, as it
allows one to distinguish between spontaneously excited
waves and coupled waves in a fluctuation spectrum. This
information is not contained in the energy spectra of a sig-
nal based on the linear analysis of the Fourier decomposi-
tion such as the power spectrum P (k) = |Xk|2 (with Xk

k-fourier coefficient). In a signal, nonlinear wave-wave in-
teraction can be observed when the conditions k3 = k1+k2

(f3 = f1+f2) and ϕ3 = ϕ1+ϕ2 are satisfied between three
waves with wavenumbers k1, k2, k3 (or frequencies f1, f2,
f3) and phases ϕ1, ϕ2, ϕ3. In the case where ϕ3 behaves in
a random way, the associated wave evolution is not linked
to other two waves. In summary, the bicoherence mea-
sures the degree of coherence of the three wave phases. It

is quantified by the following expression:

b(k, l) =
| 1
M

∑M
j=1X

(j)
k X

(j)
l X

∗(j)
k+l |

[ 1
M

∑M
j=1 |X(j)

k X
(j)
l |2]1/2[ 1

M

∑M
j=1 |X(i)

k+l|2]1/2
,

(3)
where M represents the number of independent data
records of a signal. It is not straightforward to calculate
the bicoherence because of the variability of the denomi-
nator that can produces spurious spikes in the associated
spectrum [8,13]. However, neglecting the variability of the
denominator, Kim and Powers [8] have shown that the
variance, which measures the degree of accuracy of the
squared bicoherence, can be approximated by the expres-
sion var(b2) ≈ (1 − b2)1/M . We note that var(b2) � 1/M
and consequently the variance approaches 0 as M be-
comes infinite. The numerator of equation (3) is known
as the bispectrum. Bicoherence is thus a normalised bis-
pectrum that varies between 1 (for a three wave coher-
ence relation) and 0 (corresponding to no-coherence phase
relation). Bicoherence can be represented graphically in
the (k, l)-plane by the inner triangular region defined by
0 ≤ l ≤ a/2 and l ≤ k ≤ (a − l) where a = kN/Δk with
kN Nyquist limit number and Δk = 1/T bandwidth of
the signal. Indeed, for a single regular signal it is suffi-
cient to compute the bicoherence over this region because
the information is redundant in all the other regions of the
plane. In the case where bicoherence is calculated between
multiple quantities, the non-redundant information region
has the shape of a peculiar polygonal domain. Taking as
reference the work of Kim and Powers [8], we have devel-
oped a bicoherence tool on the basis of equation (3). For
the sake of discussion, we show an application of this tool
on the following signal:

g(x) = R(x) + cos(k1x+ ϕ1) + cos(k2x+ ϕ2)
+ cos(k1x+ ϕ1) cos(k2x+ ϕ2) (4)

with k1 = 0.22kN , k2 = 0.37kN and where R(x) is a
random signal. The last term in equation (4) generates
two signals of type 0.5 cos(k±x + ϕ±) with k±=k1 ± k2

corresponding to the sum and the difference of original
wavenumbers k1, k2 and ϕ±=ϕ2 ± ϕ1. Squared bicoher-
ence in Figure 1 shows two peaks at the points [k2, k1]
and [k1, k−] and the background noise is evident in the tri-
angular spectrum domain. The relationship of the phase
between the components of the signal in equation (4) are
summarised in Table 1. We note that the bicoherence anal-
ysis can only confirm the existence of mode coupling be-
tween three waves, but cannot determine the causal rela-
tionship between the waves or which wave is generated by
the other two waves.

4 Results and discussion

In this section, we applied a bicoherence analysis to a
simulation performed with a bounce-averaged gyrokinetic
code in order to investigate the nonlinear dynamics of TIM
instabilities. We recall that the most important feature of
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Fig. 1. Squared bicoherence spectrum corresponding to signal
of equation (4).

Table 1. Frequency relation for the signal in equation (4).
Considering phase relations, two peaks are expected in the bi-
coherence spectrum.

k relations Phase relations Peak locations

1 k1 + k2 = k+ ϕ1 + ϕ2 = ϕ+ [k2, k1]
2 k1 + k− = k2 ϕ1 + ϕ− = ϕ2 [k1, k−]

the TIM model is that high-frequency phenomena such as
the cyclotron motion and the bounce motion of trapped
ions have been eliminated, while essential kinetic effects
for low frequency instabilities are kept. Modes such as
TIM are a prototype of kinetic instability since they are
driven through the resonant interaction between waves
and trapped ions via the toroidal precession of banana
orbits. The starting point for the investigation of TIM
instability is the gyrokinetic Vlasov model coupled to the
quasi-neutrality condition initiated in an equilibrium state
with a perturbed term. The initial distribution function
and electrostatic potential perturbations are as follows:

f̄ (α, ψ) = F̄0 (ψ) +
∑

kα

δf̄kα (ψ) ei(kαα) (5)

φ = φ0 (ψ) +
∑

kα

δφkα (ψ) ei(kαα) (6)

where δφkα(ψ) = sin(nπψ) with n = 1. The F̄0(ψ) and
φ0(ψ) equilibrium functions are equal to:

F0 (ψ) = e−E
[

1 +Δτsωd

(

E − 3
2

)

ψ

]

(7)

φ0 (ψ) = 0 (8)

where Δτs is normalised temperature gradient. TIM in-
stabilities are driven by the temperature gradient with the
possibility of a resonance arising between trapped waves
and ions through their precession motion. Density N (ψ)
and temperature profile T (ψ) can be obtained as fluid
momenta of the distribution function F̄0. In this way, we
obtain an almost flat profile of density N = 1 and the
following profile of temperature:

T (ψ) = 1.5 (1 +Δτsψ ωd) (9)

Fig. 2. Isocontours of potential at t = 15.5 showing formation
of about 22 streamer structures.

Fig. 3. kα spectrum plot at t = 15.5 (black line), 19.5 (green
line), 35 (red line).

with ωd = 0.9. We have considered nψ × nα = 128 × 256
phase space sampling. We have chosen an ion-electron
temperature ratio τ = 1 and we have used the follow-
ing parameter values: Ce = 0.61, Ci = 0.5; the time
step is Δt = 0.005 and the initial perturbed potential
amplitude is δφ ∼ 10−5. The ion banana orbit width
δb = 0.09 is three times the Larmor radius. With the se-
lected Ce and δb values, the stability threshold tempera-
ture is Δτ0(Ce, δb) = 0.6 (for detail see Ghizzo et al. [11]).
The value Δτs = 0.8 has been chosen in equation (9) in
order to get a sufficient drive. It is interesting to consider
the behaviour of the system in the first phase of the dy-
namics, when TIM modes are dominant. In Figure 2 we
show the isocontour of the potential perturbations in the
(α, ψ)-box and we observe nonlinear streamers formation
in the first phase at t = 15.5. These structures appear
in the simulation as an effect of the TIM instability that
provides evidence for the dominance of interchange modes
along the ψ direction. The formation of streamers is well
identified also in the spectrum performed along the α di-
rection. In Figure 3 we show the principal modes that
grow in the simulation at three different times t = 15.5
(black line), 19.5 (green line), and 35.0 (red line). The
energy is initially injected in the system in the range
10 � kα � 15. At time t = 15.5 we observe that the
modes around kα,S ≈ 22 become dominant. In order to
investigate the onset of modes we perform a bicoherence
analysis in the plane (ψ, α). For this purpose we consider
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Fig. 4. Zoom of squared bicoherence spectrum on the first 30
modes at t = 15.5.

Fig. 5. “Summed bicoherence” spectrum 0 ≤ kα ≤ 50 at
t = 15.5.

profiles of the potential between ψ1 = 0.2 and ψ2 = 0.8
along the α direction. These profiles correspond to data
records of the signal. Considering M = 80 profiles we find
var(b2) � 0.01. In Figure 4 the squared bicoherence anal-
ysis performed at t = 15.5 shows a significant bicoherence
value (b2 ≈ 0.31) for modes (k, l) ≈ (12, 10). In order to
interpret this signal, it is useful to calculate a “summed
bicoherence” defined as Sb2(kα) = 1/s

∑
b2(k, l) where

the sum is taken over all k and l such as k + l = kα
and where s is the number of terms in the sum for a
given value of kα. Figure 5 shows this summed bicoher-
ence. A peak is observed around kα,S ≈ 22. Then, a
strong coupling appears, of the type k+ l = kα for modes
(12 + 10) ≈ (11 + 11) ≈ 22. We emphasise that a bico-
herence analysis can only confirm the existence of mode
coupling between three waves, but cannot determine the
causal relationship between the modes or which mode is
generated by the other two modes. For this purpose, sev-
eral methods have been proposed to determine the direc-
tion of energy transfer [6,14]. Here we use the profile of
the spectrum at different times to estimate this transfer
direction. When doing so, the bicoherence shows which
modes are involved in the nonlinear coupling and the tem-
poral evolution of the spectrum provides an information
on the chronology and the direction of the energy transfer
between these modes. Streamers can be identified as the
first harmonic of modes around kα,F ≈ 11 that develop in
the system. In Figure 6 we show the squared bicoherence
spectrum calculated at t = 19. We observe again the cou-

Fig. 6. Zoom of squared bicoherence spectrum on the first
30 modes at t = 19.

Fig. 7. Zoom of squared bicoherence spectrum on the first
30 modes at t = 21.

pling of harmonics kα,S ≈ 2kα,F and at the same time we
observe the development of a strong interaction between
different (k, l) modes whose sum is equal to kα,S ≈ 22 such
as (k + l) ≈ (12 + 10) ≈ (15 + 7) ≈ (17 + 5). Comparing
the spectral profile at t = 15, 5 and t = 19 in Figure 3, we
deduce that the energy initially transferred on the specific
mode kα,S ≈ 22 is distributed on different lower modes
by means of nonlinear coupling interaction. These new
modes interact between themselves, and in particular the
mode kα,I = 16 is generated by nonlinear interaction, as
shown by the spectral profile and the squared bicoher-
ence at t = 19 in which we observe an important peak
(b2 ≈ 0.34) around (k, l) ≈ (11, 5). After a growing phase,
the kα,I = 16 mode saturates and releases its energy on
lower kα modes. A second nonlinear energy transfer, sim-
ilar to that of kα,S = 22, is found for kα,I = 16 in the
bispectrum at t = 21 shown in Figure 7, in which we ob-
serve the coupling of different modes whose sum is equal
to kα,I = 16 such as (k+l) ≈ (12+4) ≈ (13+3) ≈ (14+2).
At the same time, we observe an interaction of modes lo-
calised between 5 � k � 10 for l ≈ 5. The spectrum shown
in Figure 3 indicates that lower modes are amplified at
t = 35, in particular the modes kα ≈ 5, 8. The nonlinear
mechanism that determines this sequential inverse energy
cascade can be qualitatively found in Figure 8, in which
isocontours of potential are shown at t = 39. In this figure
we observe the interaction of streamers characterised by
nonlinear merging, which are able to generate more and
more low wavenumber modes along the poloidal direction.
At the same time, we can identify kψ modes that develop
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Fig. 8. Isocontours of potential at t = 39 in the region 2.4 ≤
α ≤ 3.5.

along the radial direction. This observation has important
implications for zonal flows formation and their interac-
tion with streamers. The detailed mechanism of streamer
interactions and zonal flow formation will be the subject
of a future work (in preparation). Here we would like to
emphasise the dynamics of streamers. We have observed
that energy is injected in the system via selected modes
that determine the size of streamers. These structures sat-
urate after a growing phase. By means of a bicoherence
analysis we demonstrated that a large fraction of their en-
ergy is released on scales larger than the initial one. So
new localised modes, at large scale, increase in time and
subsequently saturate by transferring in turn their energy
on larger scales. This process defines an interesting inter-
mittent inverse energy cascade.

5 Conclusions

In this paper we have described and applied a bicoherence
analysis to simulations performed with a bounce-averaged
gyrokinetic code that can be considered as a toy model
that is able to describe the basic structures of turbulent
transport in tokamaks such as streamers and zonal flows.
The advantage of this code is the possibility to investi-
gate the dynamics of these structures on longer times,
compared to those that could be reached with full 5D
gyrokinetic codes. We emphasise that understanding the
dynamics of streamers and zonal flows is a quite impor-
tant problem, since the confinement in a tokamak depends
on the respective level and life time of these structures.

With our code, we have observed the development of TIM
instabilities through the formation of streamer structures.
This instability is akin to a Rayleigh-Benard instability
and is able to transport large quantities of energy towards
the exterior zone of tokamak, by means of a convective
transport mode regulated by streamers. Here, we have
shown that streamers can saturate by transferring energy
to large scale structures. In particular, by using a bico-
herence analysis tool and analysing the time evolution of
the spectral profile, we have shown that the transfer of en-
ergy is due in large part to a nonlinear coupling of modes
along the α direction. Thus, most of the energy initially
injected on modes that determine the size of streamers is
transferred on lower modes via an intermittent mechanism
of inverse energy cascade. Consequently, the transport of
energy along the ψ direction is affected. Moreover, we have
observed that at the same time kψ modes develop along
the radial ψ direction. This has potential implications on
the interaction between zonal flows and streamers that are
involved in the generation of zonal flows. This aspect could
be very relevant for the control of turbulence suppression
and consequently for the development of magnetic fusion.

This work has been supported by French National Research
Agency under contract ANR GYPSI, ANR-10 Blanc-941,
SIMI9 2010.
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