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Abstract. This paper is devoted to the location of public facilities in a
metric space. Selfish agents are located in this metric space, and their aim
is to minimize their own cost, which is the distance from their location
to the nearest facility. A central authority has to locate the facilities in
the space, but she is ignorant of the true locations of the agents. The
agents will therefore report their locations, but they may lie if they have
an incentive to do it. We consider two social costs in this paper: the sum
of the distances of the agents to their nearest facility, or the maximal
distance of an agent to her nearest facility. We are interested in designing
strategy-proof mechanisms that have a small approximation ratio for the
considered social cost. A mechanism is strategy-proof if no agent has an
incentive to report false information. In this paper, we design strategy-
proof mechanisms to locate n − 1 facilities for n agents. We study this
problem in the general metric and in the tree metric spaces. We provide
lower and upper bounds on the approximation ratio of deterministic and
randomized strategy-proof mechanisms.

Key words: Facility location games; Strategy-proof mechanisms; Ap-
proximation guarantee

1 Introduction

We study Facility Location Games that model the following problem in eco-
nomics. Consider installation of public service facilities such as hospitals or li-
braries within the region of a city, represented by a metric space. The authority
announces that some locations will be chosen within the region and runs a sur-
vey over the population; each inhabitant may declare the spot in the region that
she prefers some facility to be opened at. Every inhabitant wishes to minimize
her individual distance to the closest facility, possibly by misreporting her pref-
erence to the authorities. The goals of the authority are twofold: avoiding such
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misreports and minimizing some social objectives. The authority needs to de-
sign a mechanism, that maps the reported preferences of inhabitants to a set
of locations where the facilities will be opened at, to fulfill the purposes. The
mechanism must be strategy-proof, i.e., it ensures that no inhabitant can ben-
efit by misreporting her preference. At the same time, the mechanism should
guarantee a reasonable approximation to the optimal social cost. The model has
many applications in telecommunication networks where locations may be easily
manipulated by reporting false IP addresses, false routers, etc.

1.1 Facility Location Games

We consider a metric space (Ω, d), where d : Ω ×Ω → R is the metric function.
Some usual metrics are the line, circle and tree metrics where the underlying
spaces are an infinite line, a circle and an infinite tree, respectively. The distance
between two positions in such metrics is the length of the shortest path connect-
ing those positions. Let n be the number of agents, each agent i has a location
xi ∈ Ω. A location profile (or strategy profile) is a vector x = (x1, . . . , xn) ∈ Ωn.
Let k be the number of facilities that will be opened. A deterministic mechanism
is a mapping f from the set of location profiles Ωn to k locations in Ω. Given a
reported location profile x the mechanism’s output is f(x) ∈ Ωk and the indi-
vidual cost of agent i under mechanism f and profile x is the distance from its
location to the closest facility, denoted by ci(f,x):

ci(f,x) := d(f(x), xi) := min{d(F, xi) : F ∈ f(x)}

A randomized mechanism is a function f from the set of location profiles to
∆(Ωk) where ∆(Ωk) is the set of probability distributions over Ωk. The cost of
agent i is now the expected distance from its location to the closest facility over
such distribution:

ci(f,x) := E [d(f(x), xi)] := E [min{d(F, xi) : F ∈ f(x)}]

We are interested in two standard social objectives: (i) the utilitarian objective
defined as the total individual costs (total individual expected cost for a random-
ized mechanism), i.e., C(f,x) =

∑n
i=1 ci(f,x); and (ii) the egalitarian objective

defined as the maximal individual cost (expected maximal individual cost for
a randomized mechanism), i.e., C(f,x) = E [max1≤i≤n d(f(x), xi)]. This is thus
simply max1≤i≤n ci(f,x) for deterministic mechanisms.

We say that a mechanism f is r-approximate with respect to profile x if

C(f,x) ≤ r ·OPT (x)

where OPT (x) is the social cost of an optimal facility placement (for the egali-
tarian or utilitarian social cost). Note that since for a randomized mechanism the
social cost is the expectation of the social cost on each chosen set of locations,
there always exists an optimal deterministic placement.

We will be concerned with strategy-proof (SP) mechanisms, which render
truthful revelation of locations a dominant strategy for the agents.
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Definition 1. (Strategyproofness) Let x = (x1, . . . , xn) denote the location
profile of n agents over the metric space (Ω, d). A mechanism f is strategy-proof
(SP) if for every agent 1 ≤ i ≤ n and for every location x′i ∈ Ω, ci(f, (x

′
i, x−i)) ≥

ci(f,x) where x−i denotes the locations of the agents other than i in x.

1.2 Previous Work

The facility locations game where only one facility will be opened is widely-
studied in economics. On this topic, Moulin [6] characterized all strategy-proof
mechanisms in the line metric space. Subsequently, Schummer and Vohra [10]
gave a characterization of strategy-proof mechanisms for the circle metric space.
More recently, Procaccia and Tennenholtz [9] initiated the study of approxi-
mating an optimum social cost under the constraint of strategy-proofness. They
studied deterministic and randomized mechanisms on the line metric space with
respect to the utilitarian and egalitarian objectives. Several (tight) approxima-
tion bounds for strategy-proof mechanisms were derived in their paper. For gen-
eral metric space, Alon et al. [1] and Nguyen Kim [7] proved randomized tight
bounds for egalitarian and utilitarian objectives, respectively.

Concerning the case where two facilities are opened, Procaccia and Tennen-
holtz [9] derived some strategy-proof mechanisms with guaranteed bounds in
the line metric space for both objectives. Subsequently, Lu et al. [5] proved tight
lower bounds of strategy-proof mechanisms in the line metric space with respect
to the utilitarian objective. Moreover, they also gave a randomized strategy-proof
mechanism, called Proportional Mechanism, that is 4-approximate for general
metric spaces. It is still unknown whether there exists a deterministic strategy-
proof mechanism with bounded approximation ratio in a general metric space.

Due to the absence of any positive result on the approximability of multi-
ple facility location games for more than two facilities, Fotakis and Tzamos [3]
considered a variant of the game where an authority can impose on some agents
the facilities where they will be served. With this restriction, they proved that
the Proportional Mechanism is strategy-proof and has an approximation ratio
linear on the number of facilities.

1.3 Contribution

Prior to our work, only extreme cases of the game where the authority opens one
or two facilities have been considered. No result, positive or negative, has been
known for the game with three or more facilities. Toward the general number of
facilities, we need to understand and solve the extreme cases of the problem. We
consider here the extreme case where many facilities will be opened.

This type of situation occurs when every agent would like to have its own
personal facility. The problem becomes interesting when it lacks at least one
facility to satisfy everyone, i.e. k = n−1. For instance, consider a blood collection
agency that wishes to install 19 removable collection centers in the city of Paris,
which consists of 20 districts. The agency asks every district council for the most
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Objective Tree metric space General metric space

Utilitarian UB: n/2 (rand) UB: n/2 (rand)
LB: 3/2 (det), 1.055 (rand) LB: 3 (det), 1.055 (rand)

Egalitarian UB: 3/2 (rand) UB: n (rand)
LB: 3/2 (rand) [9] LB: 2 (det)

Table 1. Summary of our results. In a cell, UB and LB mean the upper and lower
bounds on the approximation ratio of strategy-proof mechanisms. Abbreviation det
(resp. rand) refers to deterministic (resp. randomized) strategy-proof mechanisms.

frequented spot in the district, and will place the facilities so as to serve them at
best (minimize the sum of the distances from these spots to the nearest centers).

Another example, more related to computer science, is the service of k servers
for online requests in the metric of n points. This issue, which is the k-servers
problem [4], has been extensively studied and plays an important role in Online
Algorithms. The special case of k servers for the metric of (k+1) points is widely
studied [2]. Similar problematics have also been adressed in Algorithmic Game
Theory for the replication of data in a network, from the viewpoint of Price of
Anarchy and Stability [8]. These issues are also interesting from the viewpoint
of strategy-proofness. Assume that each server replicates some data to optimize
the requests of the clients, but the positions of the clients in the network are
private. The efficiency of the request answer depends on the distance from the
client to the nearest server. The clients are thus asked for their positions, and
one wishes to minimize the sum of the distances from the clients to the nearest
servers.

In this paper, we study strategy-proof mechanisms for the game with n agents
and n − 1 facilities in a general metric space and in a tree metric space. Our
main results are the following ones. For general metric spaces, we give a random-
ized strategy-proof mechanism, called Inversely Proportional Mechanism, that
is an n/2-approximation for the utilitarian objective and an n-approximation
for the egalitarian one. For tree metric spaces, we present another randomized
strategy-proof mechanism that particularly exploit the property of the metric.
This mechanism is also an n/2-approximation under the utilitarian objective but
it induces a 3/2-approximation (tight bound) under the egalitarian objective.

Besides, several lower bounds on the approximation ratio of determinis-
tic/randomized strategy-proof mechanisms are derived (see Table 1 for a sum-
mary). We proved that any randomized strategy-proof mechanism has ratio at
least 1.055 even in the tree metric space. The interpretation of this result is that
no mechanism, even randomized one, is both socially optimal and strategy-proof.
Moreover, deterministic lower bounds of strategy-proof mechanisms are shown
to be: at least 3/2 in a tree metric space, utilitarian objective; at least 3 in a
general metric space, utilitarian objective; and at least 2 in a general metric
space, egalitarian objective. Note that the lower bounds given for a tree metric
space hold even for a line metric space.
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Organization We study the performance of randomized SP mechanisms in gen-
eral metric spaces and in tree metric spaces in Section 2, and Section 3, respec-
tively. Due to lack of space, some claims are only stated or partially proved.

2 SP Mechanisms for General Metric Spaces

2.1 Inversely Proportional Mechanism

Consider the setting of n agents whose true locations are x = (x1, . . . , xn).
For each location profile y = (y1, . . . , yn), define Pi(y) as the placement of
(n − 1) facilities at the reported locations of all but agent i, i.e., Pi(y) =
{y1, . . . , yi−1, yi+1, . . . , yn}. Moreover, d(yi, Pi(y)) is the distance between yi and
her closest location in Pi(y). The idea of the mechanism is to choose with a given
probability a location yi where no facility is open (and to put n − 1 facilities
precisely on the n− 1 locations of the other agents), i.e., to choose with a given
probability the placement Pi(y). The main issue is to find suitable probabilities
such that the mechanism is strategy-proof, and such that the expected cost is
as small as possible.

Inversely proportional mechanism Let y be a reported location profile. If there
are at most (n − 1) distinct locations in profile y then open facilities at the
locations in y. Otherwise, choose placement Pi(y) with probability

pi(y) =

1
d(yi,Pi(y))∑n
j=1

1
d(yj ,Pj(y))

Lemma 1. The Inversely Proportional Mechanism is strategy-proof in a general
metric space.

Sketch of the proof. Let x = (x1, . . . , xn) be the true location profile of the
agents, and let dj := d(xj , Pj(x)) for 1 ≤ j ≤ n.

If there are at most (n−1) distinct locations in profile x then the mechanism
locates one facility on each position: no agent has incentive to misreports its
location. In the sequel, we assume that all the agent locations in x are distinct.
If all the agents report truthfully their locations, the cost of agent i is

ci := ci(f,x) =

n∑
j=1

pj(x) · d(xi, Pj(x)) = pi(x) · di =
1∑n

j=1 1/dj

Thus ci < di. Let us now suppose that i misreports its location and bids x′i.
Let x′ = (x′i, x−i) be the location profile when i reports x′i and the other agents
report truthfully their locations. Let d′j = d(Pj(xj ,x

′)) for j 6= i and d′i =
d(Pi(x

′
i,x
′)). We will prove that c′i := ci(f,x

′) ≥ ci. The new cost of agent i is:

c′i =

n∑
j=1

pj(x
′) · d(xi, Pj(x

′)) ≥ pi(x′) · di + (1− pi(x′)) min{di, d(xi, x
′
i)}
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where the inequality is due to the fact that in Pj(x
′) (for j 6= i), agent i can

choose either some facility in {x1, . . . , xi−1, xi+1, . . . , xn} or the facility opened
at x′i. Define T := {j : d′j 6= dj , j 6= i}. Note that

pi(x
′) =

1/d′i∑
j /∈T 1/dj +

∑
j∈T 1/d′j + 1/d′i

Let e := d(xi, x
′
i). Remark that i has no incentive to report its location x′i in

such a way that e ≥ di since otherwise c′i ≥ pi(x′) · di + (1− pi(x′))di = di > ci.
In the sequel, consider e < di. In this case,

c′i ≥ pi(x′) · di + (1− pi(x′)) · e

We also show that e ≥ |d′i−di| by using the triangle inequality. Then, by consid-
ering two cases (whether

∑
j∈T

1
d′j

is larger than
∑
j∈T

1
dj

or not), we show that

in both case c′i ≥ ci (technical details are omitted): any agent i has no incentive
to misreport its location, i.e., the mechanism is strategy-proof. 2

Theorem 1. The Inversely Proportional Mechanism is strategy-proof, an n/2-
approximation with respect to the utilitarian social cost and an n-approximation
with respect to the egalitarian one. Moreover, there exists an instance in which
the mechanism gives the approximation ratio at least n

2 − ε for the utilitarian
social cost, and n− ε for the egalitarian one, where ε > 0 is arbitrarily small.

Proof. By the previous lemma, the mechanism is strategy-proof. We consider the
approximation ratio of this mechanism. Recall that x = (x1, . . . , xn) is the true
location profile of the agents. Let Pi := Pi(x), di := d(xi, Pi) and pi = pi(x). Let
` := arg min{di : 1 ≤ i ≤ n}. For the egalitarian social cost, due to the triangle
inequality at least one agent has to pay d`/2, while the optimal solution for the
utilitarian objective has cost d` (placement P` for instance).

The mechanism chooses placement Pi with probability pi. In Pi, agent i has
cost di and the other agents have cost 0. Hence, the social cost induced by
the mechanism (in both objectives) is

∑
j pj(x)dj = n∑

j 1/dj
. For the utilitarian

objective, the approximation ratio is n
d`

∑
j 1/dj

< n
2 since in the sum of the

denominator, there are two terms 1/d`. Similarly, it is at most 2n
d`

∑
j 1/dj

< n for

the egalitarian objective.
We describe an instance on a line metric space in which the bounds n/2 and

n are tight. Let M be a large constant. Consider the instance on a real line in
which x1 = 1, x2 = 2, xi+1 = xi + M for 2 ≤ i ≤ n. We get d1 = d2 = 1 and
di = M for 3 ≤ i ≤ n. An optimal solution chooses to put a facility in each xi
for i ≥ 2 and to put the last one in the middle of [x1, x2]. Its social cost is 1
for the utilitarian objective and 1/2 for the egalitarian one. The cost (in both
objectives) of the mechanism is

n∑n
j=1 1/dj

=
n

2 + (n− 2)/M
=

nM

2M + n− 2
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A0 B0 B1 B2A1A2

C2

1− ε

1

1

1

1− ε 1− ε

2− 2ε

2− 2ε2− 2ε

C0

Fig. 1. Graph metric that gives a lower bound on the ratio of strategy-proof mecha-
nisms in a general metric space (dots are the agents’ locations in profile x).

Hence, for any ε > 0, one can choose M large enough such that the approxima-
tion ratio is larger than n

2 − ε for the utilitarian objective and to n − ε for the
egalitarian one. 2

2.2 Lower Bounds on the Approximation Ratio for SP Mechanisms

Proposition 1. Any deterministic strategy-proof mechanism has approximation
ratio at least 3 − 2ε for the utilitarian objective and 2 − 2ε for the egalitarian
objective where ε > 0 is arbitrarily small.

Proof. We consider the metric space induced by the graph in Figure 1. Note
that this is a discrete space where agents and possible locations for facilities are
restricted to be on vertices of the graph, i.e., Ω = V . There are three agents and
two facilities to be opened. Let f be a deterministic strategy-proof mechanism.
Let x be a profile where x1 = A0, x2 = B0, x3 = C0. For any (deterministic)
placement of two facilities, there is one agent with cost at least 1. By symmetry
of the graph as well as profile x, suppose that agent 1 has cost at least 1.

Consider another profile y where y1 = A1, y2 = B0, y3 = C0 (y and x only
differ on the location of agent 1). In this profile, no facility is opened neither
at A0 nor at A1 since otherwise agent 1 in profile x could report its location as
being A1 and reduce its cost from 1 to 1 − ε or 0. We study two cases: (i) in
profile f(y), there is a facility opened at A2; and (ii) in profile f(y), no facility
is opened at A2.

In the former, a facility is opened at A2, no facility is opened at A0, A1. For
the egalitarian objective, the social cost is at least 2 − 2ε. For the utilitarian
objective, the total cost of agents 2 and 3 is at least 1 and the cost of agent 1 is
2− 2ε, that induces a social cost at least 3− 2ε. An optimal solution has cost 1
(for both objective) by opening a facility at A1 and a facility at B0.

In the latter, the cost of agent 1 is at least 2−ε (since no facility is opened at
A0, A1, A2). Consider a profile z similar to y but the location of agent 1 is now
at A2. By strategy-proofness, no facility is opened at A0, A1, A2 in f(z) (since
otherwise, agent 1 in profile y can decrease its cost by reporting its location as
A2). So, the social cost induced by mechanism f in z is at least 4− 3ε (for both
objectives), while optimal is 1 (for both objectives) by placing a facility at A2

and other at B0.
Therefore, in any case, the approximation ratio of mechanism f is at least

3− 2ε for the utilitarian objective and 2− 2ε for the egalitarian objective. 2
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3 Randomized SP Mechanisms on Trees

We study in this section the infinite tree metric. This is a generalization of the
(infinite) line metric, where the topology is now a tree. Infinite means that, like
in the line metric, branches of the tree are infinite. As for the line metric, the
locations (reported by agents or for placing facilities) might be anywhere on the
tree. We first devise a randomized mechanism. To achieve this, we need to build
a partition of the tree into subtrees that we call components, and to associate
a status even or odd to each component. This will be very useful in particular
to show that the mechanism is strategy-proof. In the last part of this section,
we propose a lower bound on the approximation ratio of any strategy-proof
mechanism.

3.1 Preliminary Tool: Partition into Odd and Even Components

Partition procedure Given a tree T and a set of vertices V on this tree, we
partition T into subtrees with respect to V . For the ease of description, consider
also some virtual vertices, named ∞, which represent the extremities of the
branches in T . We say that two vertices i and j are neighbor if the unique path
in T connecting i and j contains no other vertex `. A component Tt is a region of
the tree delimited by a maximal set of pairwise neighbor vertices (see below for
an illustration). The maximality is in the sense of inclusion: Tt is maximal means
that there is no vertex i /∈ Tt such that vertex i is a neighbor of all vertices in
Tt. The set {T1, . . . , Tm} of all components is a cover of the tree T . Note that
a vertex i can appear in many sets Tt. As T is a tree, the set of all Tt’s is well
and uniquely defined.

For instance, in Figure 2, the components are the subtrees delimited by the
following sets of vertices: {1, 2, 3}, {1, 4}, {2, 5}, {2, 6}, {6, 10}, {4, 7}, {4, 8, 9},
{3,∞}, {5,∞}, {7,∞}, {8,∞}, {9,∞}, {10,∞}.

7

6

10

2

3

41

5

9

8

Fig. 2. An illustration of the partition procedure

Odd and even components Root the tree at some vertex i0, and define the depth
of a vertex j as the number of vertices in the unique path from i0 to j (i0 has
depth 1). Then each component T corresponds to the region of the tree between
a vertex j (at depth p) and some of its sons (at depth p+ 1) in the tree. We say
that T is odd (resp. even) if the depth p of j is odd (resp. even). This obviously
depends on the chosen root.

For instance, in Figure 2 vertices of the same depth are in the same horizontal
position (the tree is rooted at vertex 1). Then the components corresponding
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to {1, 2, 3}, {1, 4}, {5,∞}, {6, 10}, . . . are odd while the ones corresponding to
{2, 5}, {2, 6}, {3,∞}, {4, 8, 9}, . . . are even.

Note that each vertex except the root — and the ∞-vertices — is both in
(at least) one even component and in (at least) one odd component. The root is
in (at least) one odd component.

3.2 A Randomized Mechanism

Given a reported profile y and a tree T as a metric space, let 2α = 2α(y) be
the minimum distance between any two neighbor agents. Let i∗ = i∗(y) and
j∗ = j∗(y) be neighbor agents such that d(yi∗ , yj∗) = 2α (if there are more
than one choice, break ties arbitrarily). We partition T into its components as
described previously, considering as vertices the set of locations y. Let T ∗ be
the component containing yi∗ and yj∗ , and let U be the set of agents in T ∗.
For instance, in Figure 3, the components are {7, 10, 11, 12}, {4, 6, 7, 8}, {6, 13},
{13,∞},· · · Suppose that i∗ = 4 and j∗ = 7. Then T ∗ is the component whose
set of agents is U = {4, 6, 7, 8}.

We design a mechanism made of four deterministic placements P1, P2, P3

and P4; each Pi occurs with probability 1/4. Intuitively, the mechanism satisfies
the following properties: (i) all agents have the same expected cost α, and (ii)
for any component in T , with probability 1/2, no facility is opened inside the
component (but possibly at its extremities). To get this, each agent i different
from i∗ and j∗ will have its own facility Fi open at distance α, while i∗ and j∗

will “share” a facility open either at yi∗ , or at yj∗ , or in the middle of the path
between yi∗ and yj∗ . However, to ensure strategy-proofness, we need to carefully
combine these positions.

If we remove the component T ∗ (while keeping its vertices) from T , we now
have a collection of subtrees Ti for i ∈ U , where Ti is rooted at yi (the location
of agent i). For each rooted-subtree Ti, assign the status odd or even to its
components according to the procedure previously defined. In Figure 3 (B) if we
remove T ∗ we have four subtrees rooted at 4, 6, 7 and 8. Bold components are
odd.

(A) (B)

2

1

2 3

4

5
6

7

8
9

10

11

12

13

1

3

4

5
6

7

8
9

10

11

12

13

Fig. 3. (A) A tree T and a profile y where agents’ locations are dots. (B) The four
subtrees obtained after removing T ∗. Bold components are the odd ones.
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P1

P3 P4

P2

2

i∗ j∗ i∗ j∗

i∗ j∗ i∗ j∗

2

2 2

Fig. 4. Placements P1, P2, P3, P4 for the instance in Figure 3. Agents i∗, j∗ are 4, 7.
Facilities are represented by squares.

We are now able to define the four placements P1, P2, P3, P4. Nevertheless,
recall that a node is in at least one odd component and at least one even com-
ponent. Each agent i 6= i∗, j∗ is associated with a facility Fi, while i∗ and j∗

share a common facility. We describe in the following the placements of these
facilities. We distinguish the agents with respect to the subtree Ti where they are.

Placement i∗ i ∈ Ti∗ j∗ i ∈ Tj∗ i ∈ U \ {i∗, j∗} i ∈ T` \ U
for ` ∈ U

P1 at yi∗ O no facility E O O

P2 no facility E at yj∗ O O O

P3 mid. yi∗ , yj∗ O no facility E T ∗ E

P4 no facility E mid. yi∗ , yj∗ O T ∗ E
Table 2. Placements of facilities associated with agents

In Table 2, E (resp. O) means that we open a facility Fi in an even component
(resp. odd component) at distance α of yi for agent i; T ∗ means that the facility
Fi is opened in the component T ∗, with distance α from yi. For the location of
any facility, if there are several choices, pick one arbitrarily. In placements P3

and P4 “mid. i∗, j∗” means that the position is the middle of the path connecting
yi∗ and yj∗ . We denote by F ∗(y) the facility opened at this position. In this case,
i∗ and j∗ share the same facility F ∗(y).

An illustration is shown in Figure 4. For instance, since y2 is in the subtree
T4 = Ti∗ , the facility F2 associated with agent 2 is opened in an odd (bold)
component in placements P1 and P3 and in an even one in placements P2 and
P4.

Analysis By definition, all the placements P1, P2, P3, P4 are well defined, i.e.,
there are at most n − 1 opening facilities in each placement (one associated to
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each agent i 6= i∗, j∗, plus only one shared by i∗ and j∗). The following lemma
shows some properties of the mechanism.

Lemma 2. Given a reported profile y, the expected distance between yi and its
closest facility equals α(y) for 1 ≤ i ≤ n. Moreover, for any component, there
are at least two placements in {P1, P2, P3, P4} where the component does not
contain any facility (but facilities can be at the extremities of the component).

Proof. Consider an agent i 6= i∗(y), j∗(y) where we recall that i∗(y), j∗(y) de-
note the two players whose reported locations are at minimum distance. In any
placement, the closest facility is opened at distance α(y) from yi. For agent
i∗ = i∗(y), the distance from yi∗ to the closest facility is: 0 in P1, 2α(y) in P2,
α(y) in P3 and P4. Hence, the average is α(y), and similarly for agent j∗(y).

Let T be the component containing the locations of agents i∗(y) and j∗(y).
No facility is opened inside T under placements P1 and P2. Besides, by the def-
inition of the mechanism, there are at least two placements in {P1, P2, P3, P4}
where a component does not contain a facility1. 2

Now we prove the strategy-proofness of the mechanism. Suppose that an
agent i strategically misreports its location as x′i (while other agents’ locations
remain unchanged). Let x′ = (x′i, x−i), where x = (x1, . . . , xn) is the true lo-
cation profile. Define the parameters 2α := 2α(x), i∗ := i∗(x), j∗ := j∗(x). For
every agent i, N (i,x) denotes the set of its neighbors in profile x (N (i,x) does
not contain i). The strategy-proofness is due to the two following main lemmas.

Lemma 3. No agent i has incentive to misreport its location as x′i such that
N (i,x) 6= N (i,x′).

Proof. Suppose that N (i,x) 6= N (i,x′). In this case, the locations of agents in
N (i,x) form a component T ′ of tree T with respect to profile x′. By Lemma 2,
with probability at least 1/2, no facility is opened in T ′, i.e., in those cases agent
i is serviced by a facility outside T ′. Note that the distance from xi to the loca-
tion of any agent in N (i,x) is at least 2α. Therefore, the new cost of agent i is
at least α, meaning i has no incentive to report x′i. 2

Lemma 4. Agent i cannot strictly decrease its cost by reporting a location x′i 6=
xi such that N (i,x) = N (i,x′).

Proof. As N (i,x) = N (i,x′), the path connecting xi and x′i contains no other
agent’s location. Hence, there is a component T ′i in the partition of T with
respect to x′ such that x′i ∈ T ′i and xi ∈ T ′i . Let 2α′ be the minimum distance
between two neighbors in x′. Also let e = d(xi, x

′
i).

1 There are facilities in T under P3 and P4 but facilities are put on the extremities
under placements P1 and P2. Notice that a component may never receive a facility
if there are two components named {i,∞} and i is located at the intersection of two
branches of the tree, see location 3 in Figure 2.
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Case 1: Consider the case where, with the new location x′i, i is neither i∗(x′)
nor j∗(x′). Hence, α′ ≥ α. By Lemma 2, with probability at least 1/2, no facility
is opened inside T ′i . In this case, the distance from xi to the closest facility is at
least min{d(xi, x

′
i) + d(x′i, F

′
i ), d(xi, x`) + d(x`, F

′
`)} where: ` ∈ N (i,x) and F ′` is

its associated facility; and F ′i is the facility opened at distance α′ from x′i, F
′
i is in

a component different from T ′i . In other words, this distance is at least min{e+
α′, 2α} since d(x′i, F

′
i ) = α′ and d(xi, x`) ≥ 2α. Besides, with probability at most

1/2, the closest facility to xi is either F ′i (the facility opened in component T ′i
at distance α′ from x′i) or some other facility F ′` in T ′i for some ` ∈ N (i,x). The
former gives a distance d(xi, F

′
i ) ≥ max{d(x′i, F

′
i )−d(x′i, xi), 0} = max{α′−e, 0}

(by triangular inequality). The latter gives a distance d(xi, F
′
`) ≥ max{d(xi, x`)−

d(x`, F
′
`), 0} ≥ max{2α− α′, 0}. Hence, the cost of agent i is at least

1

2
(min{e+ α′, 2α}+ min{max{α′ − e, 0},max{2α− α′, 0}}) ≥ α

where the inequality is due to α′ ≥ α. Indeed, this is immediate if e+ α′ ≥ 2α.
Otherwise, the cost is either at least e+α′+α′−e = 2α′, or e+α′+2α−α′ ≥ 2α.
Hence, ci(x

′) ≥ ci(x).

Case 2: Consider the case where with the new location x′i agent i = i∗(x′) (the
case where i = j∗(x′) is completely similar)2. Let j = j∗(x′). Let d1, d2, d3, d4 be
the distance from xi to the closest facility in placements P1, P2, P3, P4 (in x′),
respectively. Let T ′ be the component in T with respect to x′ that contains x′i
and xj . By the triangle inequality, we know that

e+ 2α′ = d(xi, x
′
i) + d(x′i, xj) ≥ d(xi, xj) ≥ 2α (1)

We study the two sub-cases and prove that
∑4
t=1 dt ≥ 4α always holds, meaning

that agent i’s deviation cannot be profitable since its cost is α when it reports
its true location xi.

(a) The true location xi belongs to T ′.
For each agent ` 6= i, j, let F ′` be its associated facility. The facility opened
in the middle of [x′i, xj ] is denoted by F ∗(x′). We have:

d1 = min{d(xi, x
′
i), d(xi, F

′
`)} = min{e, d(xi, x`) + d(x`, F

′
`)} ≥ min{e, 2α+ α′}

(2)

d2 = min{d(xi, xj), d(xi, F
′
`)} ≥ min{d(xi, xj), 2α+ α′} ≥ 2α (3)

d3 = min{d(xi, F
∗(x′)), d(xi, F

′
`)} ≥ min{2α− α′, e+ α′, 2α+ α′} (4)

d4 = min{d(xi, F
∗(x′)), d(xi, F

′
`)} ≥ min{2α− α′, e+ α′, 2α+ α′} (5)

where ` 6= i, j is some agent in N (i,x′) (note that agents ` in the expressions
above are not necessarily the same). The first equality in (2) is due to the
fact that in placement P1, agent i goes either to the facility opened at x′i or

2 Contrasting with Case 1, α′ ≤ α does not necessarily hold.
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to a facility (outside T ′) associated to some other agent. In placement P2,
agent i can either choose a facility opened at xj or another one outside T ′,
that is translated in the equality in (3). In placement P3 and P4, agent i
can go either to facility F ∗(x′) opened in the midpoint connecting x′i and
xj , or to the facility associated with some agent ` (inside and outside T ′

respectively).

If e+α′ < 2α−α′ then
∑4
t=2 dt ≥ 2α+ 2e+ 2α′ ≥ 4α (since e+ 2α′ ≥ 2α).

In the sequel, assume e + α′ ≥ 2α − α′. If e ≥ 2α + α′ then d1 + d3 ≥
4α. Otherwise,

∑4
t=1 dt ≥ e + min{d(xi, xj), 2α + α′} + 2 max{2α − α′, 0}.

Note that by the triangle inequality e + d(xi, xj) = d(x′i, xi) + d(xi, xj) ≥
d(x′i, xj) = 2α′. Therefore,

∑4
t=1 dt ≥ min{2α′+4α−2α′, 2α+α′+2α−α′} =

4α. Hence, the new cost of i is at least α.
(b) The true location xi does not belong to T ′.

Let T ′i be the component in T with respect to profile x′ such that T ′i contains
xi and x′i. Similar to the previous case, we have:

d2 = min{d(xi, xj), d(xi, F
′
`)} = min{d(xi, x

′
i) + d(x′i, xj), d(xi, x`) + d(x`, F

′
`)}

≥ min{e+ 2α′, 2α+ α′} ≥ 2α (6)

d3 = min{d(xi, F
∗(x′)), d(xi, F

′
`)}

≥ min{d(xi, x
′
i) + d(x′i, F

∗(x′)), d(xi, x`)− d(x`, F
′
`)} = min{e+ α′, 2α− α′}

(7)

d4 = min{d(xi, F
∗(x′)), d(xi, F

′
`)} ≥ min{e+ α′, 2α+ α′} (8)

where ` 6= i, j is some agent in N (i,x′) (again agents ` in the expressions
above are not necessarily the same). In placement P2, agent i can choose
either a facility opened at xj or another one outside T ′i . The last inequality
of (6) is due to e+ 2α′ ≥ 2α (Inequality 1). In placement P3 and P4, agent
i can go either to facility F ∗(x′) opened in the midpoint connecting x′i and
xj , or some facilities associated with some agent `.

If e+α′ < 2α−α′ then
∑4
t=2 dt ≥ 2α+ 2e+ 2α′ ≥ 4α (since e+ 2α′ ≥ 2α).

Otherwise,
∑4
t=2 dt ≥ min{e+ 4α, 4α} ≥ 4α. Again, the new cost of agent i

is at least α.

In conclusion, no agent has incentive to strategically misreport its location. 2

Theorem 2. The mechanism is strategy-proof and it induces an n/2-approximation
according to the utilitarian objective and a tight 3/2-approximation according to
the egalitarian objective.

Proof. The mechanism is strategy-proof by previous lemmas. The cost of each
agent is α, so in the utilitarian objective, the cost induced by the mechanism is
nα. An optimal placement is to open facilities at the locations of all agents but
i∗, which induces a cost 2α. Hence, the mechanism is n/2-approximation for the
utilitarian objective.
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Consider the egalitarian objective. By the mechanism, in P3 and P4 the max-
imum cost of an agent is α, while in P1 and P2 it is 2α. The average maximum
cost of the mechanism is 3α/2. An optimal solution is to open facilities at lo-
cations of agents other than i∗, j∗ and open one facility at the midpoint of the
path connecting xi∗ and xj∗ ; that gives a cost α. So, the approximation ratio is
3/2 and this ratio is tight, i.e., no randomized strategy-proof mechanism can do
better [9, Theorem 2.4]. 2

3.3 Lower Bounds on the Approximation Ratio of SP Mechanisms

In this section, we consider only the utilitarian objective (as the tight bound for
the egalitarian objective has been derived in the previous section). The proof of
Proposition 2 is omitted.

Proposition 2. No deterministic strategy-proof mechanism on a line metric
space has an approximation ratio smaller than 3/2.

The following proposition indicates that even with randomization, we cannot
get an optimal strategy-proof mechanism for the utilitarian objective.

Proposition 3. No randomized strategy-proof mechanism on a line metric space
has an approximation ratio smaller than 10− 4

√
5 ≈ 1.055.

Proof. Let f be a randomized strategy-proof mechanism with an approximation
ratio strictly better than 1 + ε > 1. Consider a profile x where the positions of
the agents are x1 = A, x2 = B, x3 = C, x4 = D (Figure 5). For any placement
of three facilities, the total cost is at least 1. Hence, there exists an agent with
(expected) cost at least 1/4. Without loss of generality, suppose that agent 1
(with x1 = A) has cost c1(f,x) ≥ 1/4.

δ +∞ 11

A′ A B C D

Fig. 5. Instance which gives the lower bound on the ratio of a randomized strategy-
proof mechanism in a line metric space.

Let 0 < δ < 1/4 be a constant to be defined later. Let A′ /∈ [A,B] be a
location at distance δ from A. Let y be the profile in which agent 1 is located
at y1 = A′ and the other agents’ locations are the same as in x. By strategy-
proofness, c1(f,x) ≤ δ + c1(f,y). Hence, c1(f,y) ≥ 1/4 − δ. In y, an optimal
solution has cost 1 (e.g. place the facilities at the locations of the agents other
than agent 4). As f is a (1 + ε)-approximation, the total cost of the solution
returned by the mechanism is c1(f,y) + c2(f,y) + c3(f,y) + c4(f,y) ≤ 1 + ε.
Thus, c3(f,y) + c4(f,y) ≤ 3/4 + ε+ δ.

In outcome f(y), let p be the probability that the closest facility of agent
3 is also the closest facility of agent 4 (in other words, agents 3 and 4 share
one facility with probability p; and with probability (1− p) there is at most one
facility between A′ and B). We have c3(f,y) + c4(f,y) ≥ p · 1 = p. Therefore,
p ≤ 3/4 + ε+ δ.
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Besides, the social cost of f(y) is at least p + (1 − p)(1 + δ) = 1 + δ − pδ.
This is lower bounded by 1 + δ− (3/4 + ε+ δ)δ. Hence, 1 + δ− (3/4 + ε+ δ)δ ≤
C(f,y) ≤ 1 + ε. We deduce that ε ≥ δ/4−δ2

1+δ .

The function δ/4−δ2
1+δ for δ ∈ (0, 14 ) attains maximal value 9 − 4

√
5 for δ =√

5/2− 1. Thus the approximation ratio is at least 1 + ε ≥ 10− 4
√

5 ≈ 1.055.2

4 Discussion and Further Directions

The results presented in this paper are a first step toward handling the general
case where one wishes to locate k facilities in a metric space with n agents (for
1 ≤ k ≤ n). The general case is widely open since nothing on the performance
of strategy-proof mechanisms is known. Any positive or negative results on the
problem would be interesting. We suggest a mechanism based on the Inversely
Proportional Mechanism in which the k facilities are put on reported locations.
Starting with the n reported locations the mechanism would iteratively elimi-
nate a candidate until k locations remain. We do not know whether this mech-
anism is strategy-proof. For restricted spaces such as line, cycle or tree metric
spaces, there might be some specific strategy-proof mechanisms with guaranteed
performance which exploits the structures of such spaces. Besides, some char-
acterization of strategy-proof mechanisms (as done by Moulin [6] or Schummer
and Vohra [10]), even not a complete characterization, would be helpful.
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