
HAL Id: hal-01285704
https://hal.science/hal-01285704v1

Submitted on 10 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Committee Selection with a Weight Constraint Based on
a Pairwise Dominance Relation

Charles Delort, Olivier Spanjaard, Paul Weng

To cite this version:
Charles Delort, Olivier Spanjaard, Paul Weng. Committee Selection with a Weight Constraint Based
on a Pairwise Dominance Relation. 2nd International Conference on Algorithmic Decision Theory
(ADT’11), Oct 2011, Piscataway, NJ, United States. pp.28-41, �10.1007/978-3-642-24873-3_3�. �hal-
01285704�

https://hal.science/hal-01285704v1
https://hal.archives-ouvertes.fr

Committee Selection with a Weight Constraint
Based on a Pairwise Dominance Relation?

Charles Delort, Olivier Spanjaard, and Paul Weng

UPMC, LIP6-CNRS, UMR 7606
4 Place Jussieu, F-75005 Paris, France

{charles.delort,olivier.spanjaard,paul.weng}@lip6.fr

Abstract. This paper is devoted to a knapsack problem with a cardinal-
ity constraint when dropping the assumption of additive representability
[10]. More precisely, we assume that we only have a classification of the
items into ordered classes. We aim at generating the set of preferred sub-
sets of items, according to a pairwise dominance relation between subsets
that naturally extends the ordering relation over classes [4, 16]. We first
show that the problem reduces to a multiobjective knapsack problem
with cardinality constraint. We then propose two polynomial algorithms
to solve it, one based on a multiobjective dynamic programming scheme
and the other on a multiobjective branch and bound procedure. We con-
clude by providing numerical tests to compare both approaches.

Key words: Committee selection; Ordinal combinatorial optimization;
Multiobjective combinatorial optimization; Knapsack with cardinality
constraint; Polynomial algorithms

1 Introduction

Ranking sets of objects based on a ranking relation on objects has been exten-
sively studied in social choice theory within an axiomatic approach [1]. Many
extension rules have been proposed and axiomatically justified to extend an or-
der relation over a set of objects to an order relation over its power set. This issue
is indeed of primary interest in various fields such as choice under uncertainty
[12], ranking opportunity sets [3], and of course committee selection [11]. The
committee selection problem consists in choosing a subset of inviduals based on
an ordering of individuals. Although a lot of works deal with this problem in
the economic literature, it has received much less attention from the algorithmic
viewpoint. In other words, the computational aspect (i.e., the effective calcula-
bility of the preferred committees) is often a secondary issue. This is precisely
the issue we study in this paper.

More formally, we investigate the problem of selecting K individuals (or more
generally objects) among n with budget B, where the selection of individual i

? This research has been supported by the project ANR-09-BLAN-0361 GUaranteed
Efficiency for PAReto optimal solutions Determination (GUEPARD).

2 Charles Delort, Olivier Spanjaard, and Paul Weng

requires a cost wi. The only preferential information is an assignment of each
individual i in a preference class γi ∈ {1, . . . , C}, with 1B 2B . . .BC, where B
means “is strictly preferred to”. For illustration, consider the following example.
Assume that an English soccer team wishes to recruit K = 2 players with budget
B = 6. The set N of available players consists of international players (class 1),
Premier League players (class 2) and Division 1 players (class 3). This problem
can be modeled as a knapsack problem where one seeks a subset S ⊆ N such
that

∑
i∈S w

i ≤ 6 and |S| = 2, but where the objective function is not explicited.
Consider now the following instance: N = {1, 2, 3, 4}, w1 = 5, w2 = 2, w3 = 4,
w4 = 1. Player 1 is international, players 2, 3 are from the Premier League, and
player 4 is from the Division 1 championship: γ1 = 1, γ2 = γ3 = 2, γ4 = 3.

When the individuals are evaluated in this way (i.e., on an ordinal scale),
arbitrarily assigning numerical values to classes (each class can be viewed as a
grade in the scale) introduces a bias in the modeling [2]. For instance, if value
8 is assigned to class 1, value 4 is assigned to class 2 and value 1 to class 3,
then the ensuing recruitment choice (the one maximizing the sum of the value
according to the budget) is {1, 4}. By valuing class 2 by 5 instead of 4 (which is
still compatible with the ordinal classes), the ensuing recruitment choice becomes
{2, 3}. Thus, one observes that slight changes in the numerical values lead to very
different choices. This illustrates the need for algorithms specifically dedicated
to combinatorial problems with ordinal measurement.

This problem has been studied in a slightly different setting by Klamler et
al. [14]. They assume to have a preference relation over the set of individuals,
expressed as a reflexive, complete and transitive binary relation. Note that, in
our setting with C predefined preference classes, it amounts to set C = n (some
preference classes may be empty if there are equivalent individuals). The authors
provide linear time algorithms to compute optimal committees according to var-
ious extension rules, namely variations of max ordering, leximax and leximin.
The max (resp. min) ordering relation consists in ranking committees according
to the best (resp. worst) individual they include, while the leximax and leximin
relations are enrichments of max and min respectively that consist in breaking
ties by going down the ranking (e.g., if the best individuals are indifferent, one
compares the second bests, and so on...). Though appealing from the algorithmic
viewpoint, these extension rules are nevertheless quite simple from the normative
and descriptive viewpoints.

In this paper, we investigate an extension rule that encompasses a much
larger set of decision behaviors (at the expense of working with preference classes
instead of a complete ranking of individuals). Actually, it leads to identify a set
of preferred committees, instead of a single one. Provided the ordinal nature
of data, it seems indeed relevant to determine a set of acceptable committees,
among which the final choice will be made. In order to extend order relation B
over the preference classes (1, 2, 3 in the recruitment example, with 1 B 2 B 3)
to a (reflexive and transitive) preference relation % over the committees, the
extension rule we study is the following pairwise dominance relation: a committee
S is preferred to another committee S ′ if, to each individual i in S ′, one can assign

Committee Selection Based on a Pairwise Dominance Relation 3

a not-yet-assigned individual i′ in S such that γi
′
D γi (i.e. γi

′
B γi or γi

′
= γi).

For instance, in the previous recruiting example, one has {1, 3} % {2, 3} since
γ3 = γ2 and γ1B γ3 (note that {1, 3} is actually not feasible, due to the budget
constraint, but it does not matter for our purposes). To our knowledge, this
extension rule was proposed by Bossong and Schweigert [4, 16]. More recent
works with ordinal data also use this rule [5–7].

Our first contribution in the present paper is to relate ordinal combinato-
rial optimization to multiobjective combinatorial optimization, by reducing the
determination of the non-dominated solutions in an ordinal problem to the de-
termination of the Pareto set in an appropriately defined corresponding multiob-
jective problem. We then propose two algorithms to determine a set of optimal
committees according to the pairwise dominance relation, one based on a multi-
objective dynamic programming scheme and the other one on a multiobjective
branch and bound procedure. The complexity of both procedures is polynomial
for a fixed number C of preference classes. Note that in another context, Della
Croce et al. [8] also represented an ordinal optimization problem as a multi-
objective problem, but their transformation is different from the one presented
here.

The paper is organized as follows. Section 2 relates ordinal optimization
to multiobjective optimization. Two polynomial (multiobjective) procedures to
solve the commitee selection problem are then presented in Sections 3 and 4. Fi-
nally, experimental results are provided in Section 5 to compare both approaches.

2 From Ordinal Combinatorial Optimization to
Multiobjective Optimization

Formally, an ordinal combinatorial optimization problem can be defined as fol-
lows. Consider a set N of objects (e.g. items in a knapsack problem, edges in
a path or tree problem. . .). A feasible solution is a subset S ⊆ N satisfying a
given property (for example, satisfying knapsack constraints). As mentioned in
the introduction, for each object i ∈ N , the only preferential information at our
disposal is the preference class γi ∈ {1, . . . , C} it belongs to, with 1B2B . . .BC.
Given an extension rule that lifts preference relation B to a preference relation
% over subsets of N , a feasible solution S is said to be preferred if there exists
no feasible solution S ′ such that S ′ � S, where � denotes the asymmetric part
of %. The aim of an ordinal combinatorial optimization problem is then to find
a complete minimal set of preferred solutions [13]. A set of solutions is said to
be complete if for any preferred solution, there is a solution in that set that is
indifferent to it. A set of solutions is said to be minimal if there does not exist
a pair S,S ′ of solutions in this set such that S 6= S ′ and S % S ′.

Let us denote by max% the operation that consists in determining a com-
plete minimal set of preferred solutions according to %. The committee selection
problem we consider in this paper can then be simply stated as follows:

max%{S ⊆ N : |S| = K and
∑
i∈S

wi ≤ B}

4 Charles Delort, Olivier Spanjaard, and Paul Weng

where K is the size of the committee and wi the cost of selecting individual i.
In the sequel, we consider the following extension rule:

Definition 1. The pairwise dominance relation between subsets of a set N is
defined, for all S,S ′ ⊆ N , by S % S ′ if there exists an injection π : S ′ →
S such that ∀i ∈ S ′, γπ(i) D γi.

Coming back to the example of the introduction, one detects that {1, 3} % {2, 3}
by setting π(2) = 1 (γ1 = 1 B 2 = γ2) and π(3) = 3, or by setting π(2) = 3
(γ2 = γ3 = 2) and π(3) = 1 (γ1 = 1B 2 = γ3). Since the opposite relation is not
true, one has {1, 3} � {2, 3}.

We are now going to make an original link between ordinal optimization
and multiobjective optimization. In this purpose, the following notion will prove
useful: for each solution S and each preference class c ≤ C, one defines Sc = {i ∈
S : γi D c}. To each solution one associates a cumulative vector (|S1|, . . . , |SC |).
Therefore, one has |S1| ≤ |S2| ≤ . . . ≤ |SC |. Interestingly enough, we now show
that comparing solutions according to pairwise dominance amounts to compare
those vectors according to weak (Pareto) dominance, which is defined as follows:

Definition 2. The weak dominance relation on C-vectors of NC is defined, for
all y, y′ ∈ NC , by y < y′ ⇔ [∀c ∈ {1, . . . , C}, yc ≥ y′c)]. The dominance relation
� is defined as the asymmetric part of <: y � y′ ⇔ [y < y′ and y′ 6< y].

The equivalence result writes formally as follows:

Proposition 1. For any pair S,S ′ of solutions, we have:
S % S ′ ⇐⇒ (|S1|, . . . , |SC |) < (|S ′1|, . . . , |S ′C |)

Proof. We first prove that S % S ′ ⇒ (|S1|, . . . , |SC |) < (|S ′1|, . . . , |S ′C |). Assume
there exists an injection π : S ′ → S. Then |Sc| ≥ |π(S ′c)| = |S ′c| for all c, since
γπ(i) D γi D c for all i = 1, . . . , n. Therefore (|S1|, . . . , |SC |) < (|S ′1|, . . . , |S ′C |) by
definition of <.

Conversely, we now show that (|S1|, . . . , |SC |) < (|S ′1|, . . . , |S ′C |) ⇒ S % S ′.
Assume that |Sc| ≥ |S ′c| for all c. Since |S1| ≥ |S ′1|, there exists an injection
π1 : S ′1 → S1. Obviously, ∀i ∈ S ′1, γπ1(i) D γi. For any c > 1, one can then define
by mutual recursion:

– an injection π′c : S ′c\S ′c−1 → Sc\πc−1(S ′c−1)
– an injection πc : S ′c → Sc by πc(i) = πc−1(i) if i ∈ S ′c−1 and πc(i) = π′c(i)

otherwise.

Injection π′c exists for any c > 1 because |Sc\πc−1(S ′c−1)| ≥ |S ′c\S ′c−1|. We have
indeed |Sc\πc−1(S ′c−1)| = |Sc| − |πc−1(S ′c−1)| since πc−1(S ′c−1) ⊆ Sc, |Sc| −
|πc−1(S ′c−1)| = |Sc| − |S ′c−1| since πc−1 is an injection, |Sc| − |S ′c−1| ≥ |S ′c\S ′c−1|
since |Sc| ≥ |S ′c|. Note that by construction, for any c, ∀i ∈ S ′c, γπc(i) D γi. For
c = C this is precisely the definition, therefore S % S ′. �

Coming back again to the example of the introduction, cumulative vector
(1, 2, 2) is associated to {1, 3}, and (0, 2, 2) to {2, 3}. Note then, that (1, 2, 2) �
(0, 2, 2), consistently with {1, 3} � {2, 3}.

Committee Selection Based on a Pairwise Dominance Relation 5

The committee selection problem we consider in this paper can then be for-
mulated as a multiobjective knapsack problem with a cardinality constraint. An
instance of this problem consists of a knapsack of integer capacity B, and a set of
items N = {1, . . . , n}. Each item i has a weight wi and a profit pi = (pi1, . . . , p

i
C),

variables wi, pic (c ∈ {1, . . . , C}) being integers. Without loss of generality, we
assume from now on that items in N are such that γ1 D γ2 D · · · D γn and
∀i, i′ ∈ N ,

(
γi = γi

′
and i ≤ i′

)
⇒ wi ≤ wi

′
(i.e. the items of N are indexed in

decreasing order of preference classes and in increasing order of weights in case
of ties). Otherwise, one can renumber the items.

Consequently, the profit vector of item i is defined by pic = 0 for c < γi, and
pic = 1 for c ≥ γi. This way, summing up the profit vectors of the items in a
solution S yields the cumulative vector of S. A solution S is characterized by a
binary n-vector x, where xi = 1 iff i ∈ S. A solution is feasible if binary vector
x satisfies the constraints

∑n
i=1 w

ixi ≤ B and
∑n
i=1 x

i = K. The goal of the
problem is to find a complete minimal set of feasible solutions (i.e. one feasible
solution by non-dominated cumulative vector), which can be formally stated as
follows:

maximize

n∑
i=1

picx
i c ∈ {1, . . . , C}

subject to

n∑
i=1

wixi ≤ B∑n
i=1 x

i = K
xi ∈ {0, 1} i ∈ {1, . . . , n}

Note that, since vectors pi are non-decreasing (i.e. pi1 ≤ . . . ≤ piC), the image
of all feasible solutions is a subset of J0,KKC↑ , which denotes the set of non-

decreasing vectors in J0,KKC = {0, . . . ,K}C . Furthermore, one has |SC | = K
for any feasible solution S.

Example 1 The example of the introduction is formalized as follows:
maximize x1
maximize x1 + x2 + x3
maximize x1 + x2 + x3 + x4
subject to 5x1 + 2x2 + 4x3 + x4 ≤ 6

x1 + x2 + x3 + x4 = 2
xi ∈ {0, 1} i ∈ {1, . . . , 4}

3 A Multiobjective Dynamic Programming Algorithm

Multiobjective dynamic programming is a well-known approach to solve multi-
objective knapsack problems [15]. In this section, we will present an algorithm
proposed by Erlebach et al. [9], and apply it to our committee selection problem.
The method is a generalization of the dynamic programming approach for the
single objective knapsack problem using the following recursion:

W [p+ pi, i] = min{W [p+ pi, i− 1],W [p, i− 1] + wi} for i = 1, . . . , n

6 Charles Delort, Olivier Spanjaard, and Paul Weng

where W [p, i] is the minimal weight for a subset of items in {1, . . . , i} with profit
p. The recursion is initialized by setting W [0, 0] = 0 and W [p, 0] = B + 1 for all
p ≥ 1. The formula can be explained as follows. To compute W [p + pi, i], one
compares the minimal weight for a subset of {1, . . . , i} with profit p + pi that
does not include item i, and the minimal weight for a subset of {1, . . . , i} with
profit p+ pi that does include item i.

In a multiobjective setting, the difference lies in the profits, which are now
vectors instead of scalars. Nevertheless, the dynamic programming procedure
works in a similar way, by using the following recursion:

W [(p1 + pi1, . . . , pC + piC), i] = min

{
W [(p1 + pi1, . . . , pC + piC), i− 1]
W [(p1, . . . , pC), i− 1] + wi

for i = 1, . . . , n. The recursion is initialized by setting W [(0, . . . , 0), 0] = 0 and
W [p, 0] = B + 1 for all p 6= (0, . . . , 0). Once column W [·, n] is computed, the
preferred items can then be identified in two steps:

1. one identifies profit vectors p for which W [p, n] ≤ B;
2. one extracts the non-dominated elements among them.

The corresponding preferred solutions can then be retrieved by using standard
bookkeeping techniques.

We adapt this method as follows to fit the committee selection problem,
where one has to take into account cardinality constraint

∑n
i=1 x

i = K and
where (p1, . . . , pC) ∈ J0,KKC↑ . In step 1 above, one identifies profit vectors p for
which W [p, n] ≤ B and pC = K. This latter condition amounts to check that the
cardinality of the corresponding solution is K: all items are indeed of preference
class at least C (in other words, piC = 1 for i ∈ {1, . . . , n}).

Example 2 For the instance of Example 1, the dynamic programming procedure
can be seen as filling the cells of Table 1.

Table 1. Dynamic programming table for Example 1. Each cell is computed by using
the recursion W [p + pi, i] = min{W [p + pi, i − 1],W [p, i − 1] + wi}. For instance, the
dark gray cell is computed from the light gray cells.

i 1 2 3 4
p

(0, 0, 0) 0 0 0 0
(0, 0, 1) 7 7 7 min(7, 0 + 1) = 1
(0, 0, 2) 7 7 7 7
(0, 1, 1) 7 min(7, 0 + 2) = 2 2 2
(0, 1, 2) 7 7 7 3
(0, 2, 2) 7 7 min(7, 2 + 4) = 6 6
(1, 1, 1) min(7, 0 + 5) = 5 5 5 5
(1, 1, 2) 7 7 7 min(7, 5 + 1) = 6
(1, 2, 2) 7 7 7 7
(2, 2, 2) 7 7 7 7

Committee Selection Based on a Pairwise Dominance Relation 7

In order to determine the complexity of this procedure, we assume that the
number C of preference classes is fixed. At each step of the recursion, the com-
putations required to compute one cell of the dynamic programming table are
performed in constant time since it simply consists in a min operation. Further-
more, the number of steps is also polynomial since the number of rows (resp.
columns) is within Θ(KC) (resp. n). There are indeed as many rows as the num-
ber of vectors in J0,KKC↑ . The cardinality of J0,KKC↑ is upper bounded by KC

(the cardinality of J0,KKC) and lower bounded by KC/C! (since there are at
most C! distinct vectors in J0,KKC which are permutations of a same vector
in J0,KKC↑), and therefore the number of rows is within Θ(KC). Finally, the
identification of preferred items can of course also be done in polynomial time
as the number of cells in column W [·, n] is within Θ(KC).

To summarize, the time complexity of the procedure is polynomial for a
fixed number C of preference classes, and the dynamic programming table has
Θ(nKC) cells. Regarding the spatial complexity, note that one only needs to
keep one column at each step to perform the recursion, and therefore it is in
Θ(KC).

4 A Multiobjective Branch and Bound Algorithm

4.1 Principle

A classical branch and bound algorithm (BB) explores an enumeration tree
whose leaves represent a set of possibly optimal solutions (i.e., it is not required
that the leaves represent the set of all feasible solutions, provided it is guar-
anteed that at least one optimal solution is present). One can distinguish two
main parts in this type of procedure: the branching part describing how the set
of solutions associated with a node of the tree is separated into subsets, and
the bounding part describing how the quality of the current subset of solutions
is optimistically evaluated. The complete enumeration of the children of a node
can be avoided when its optimistic evaluation is worse than the best solution
found so far.

A multiobjective BB (MOBB) is an extension of the classical BB. The branch-
ing scheme now must be able to enumerate a complete set of feasible solutions
in an enumeration tree (i.e., at least one solution must be present in the leaves
for each Pareto point in the objective space). In the bounding part, the opti-
mistic evaluation is a vector and the enumeration is stopped when the optimistic
evaluation of a node is dominated by an already found non-dominated solution.

4.2 Branching Part

Let us introduce a new notation. For any pair of classes c, c′, let Nc,c′ = {i ∈
N : c D γi D c′} be the set of items whose classes are between classes c and c′.
Set N1,c will be denoted by Nc.

Our multiobjective branch and bound approach for the committee selection
problem relies on the following property:

8 Charles Delort, Olivier Spanjaard, and Paul Weng

Proposition 2. For any feasible profit vector p = (p1, . . . , pC), solution x =
(x1, . . . , xn) defined by

– xi = 1, ∀i = 1, . . . , p1
– xi = 0, ∀i = p1 + 1, . . . , |N1|
– xi = 1, ∀i = |Nc−1|+ 1, . . . , |Nc−1|+ pc − pc−1 ∀c = 2, . . . , C
– xi = 0, ∀i = |Nc−1|+ pc − pc−1 + 1, . . . , |Nc| ∀c = 2, . . . , C

is a minimal weight feasible solution for this profit vector.

Proof. We recall that the lower the index, the better the class, and within each
class, the lower the index, the lighter the item. We first show by induction that
solution x yields profit vector p. Clearly, solution x admits p1 items of class 1
and therefore its value on component 1 is p1. Assume now that the value of x on
component c − 1 is pc−1 (induction hypothesis). Then its value on component
c is by construction pc = pc − pc−1 + pc−1 since pc − pc−1 items of class c are
selected. Solution x yields therefore profit vector (p1, . . . , pC).

By noting that at each step one selects the lightest items of each class, one
concludes that x is a minimal weight feasible solution for profit vector p. �

This observation justifies that we focus on feasible solutions of this type.
Now, the branching scheme can be simply explained. Let P (k, c, p, b) denote
the subproblem where one wants to select k items whose total weight is less
than budget b, where the remaining items are classified in classes (c, . . . , C)
and the profit vector of the already selected items is p ∈ J0,KKC↑ . The initial
problem is then denoted by P (K, 1, (0, . . . , 0), B). A node in the enumeration
tree represents a problem P (k, c, p, b) where p = (p1, . . . , pC) accounts for the
items selected in the previous steps. Such a problem can be subdivided into at
most k + 1 subproblems P (k′, c + 1, p′, b′) for k′ = 0, . . . ,min{k, |Nc,c|}, where
branching consists in deciding to select exactly k − k′ items in class c (the ones
with the lowest weights in class c), and p′, b′ are the updated profit vector and
budget to take into account these newly selected items.

Note that in some cases, some subproblems have an empty set of feasible
solutions due to the budget constraint, and are therefore discarded. For illus-
tration, the enumeration tree for Example 1 is provided in Figure 1. The vector
in a node is the current value of p, and each branch is labelled by the selected
items at this step. The dashed node (on the right) is discarded due to the budget
constraint, and the gray nodes correspond to non-dominated solutions.

4.3 Bounding Part

For a problem P (k, c, p, b) and a preference class c′ such that cDc′, the optimistic
evaluation UB of the corresponding node in the enumeration tree is defined by:

UB = (m1, . . . ,mC) where

{
mc′ = pc′ ∀c′ = 1, . . . , c− 1
mc′ = mc,c′ ∀c′ = c, . . . , C

(1)

Committee Selection Based on a Pairwise Dominance Relation 9

c = 1

c = 2 ∅ {2} {2, 3}

∅ {1}

∅ {2}

c = 3 {4} ∅ {4}

(0,0,0)

(0,0,0) (1,1,1)

(1,2,2)(1,1,1)(0,2,2)(0,1,1)(0,0,0)

(0,1,2) (0,2,2) (1,1,2)

Fig. 1. Enumeration tree for Example 1.

and where mc,c′ is defined by:

mc,c′ =

max

∑
i∈Nc,c,′

xi

s.t.
∑

i∈Nc,c,′

wixi ≤ b
∑

i∈Nc,c,′

xi ≤ k

xi ∈ {0, 1} ∀i ∈ Nc,c′

Note that the above program can be very simply solved by a greedy algorithm.
The following proposition states that UB is indeed an optimistic evaluation:

Proposition 3. For any k = 0, . . . ,K, any c = 1, . . . , C, any vector p of
J0,KKC↑ and any b = 0, . . . , B, the profit vector of any feasible solution in
P (k, c, p, b) is weakly dominated by UB.

Proof. Let p′ be the profit vector of a feasible solution in P (k, c, p, b). Let UB =
(m1, . . . ,mC) be computed as in Eq. 1. For c′ = 1, . . . , c − 1, by definition,
mc′ ≥ p′c′ . For c′ = c, . . . , C, by definition, mc,c′ is the greatest number of items
one can pick in Nc,c′ . Therefore mc′ ≥ p′c′ . �

Example 3 At the root of the enumeration tree for Example 1, one has UB =
(1, 2, 2). For instance, when considering class 1 and 2, the greatest number of
items that can be selected under the constraints is 2 (individuals 2 and 3, with
w2 + w3 = 6), and therefore the second component of UB equals 2.

4.4 Complexity

The number of nodes in the enumeration tree is clearly upper bounded by (K +
1)C , since the tree is of depth C and the number of children of a node is upper
bounded by K + 1. Furthermore, note that each node representing a problem
P (k,C − 1, ·, ·) with k ≤ K has at most one child: the only decision that can be
made is indeed to select K−k items of class C, so that the cardinality constraint
holds. The number of nodes in the enumeration tree is therefore in O(KC−1).

10 Charles Delort, Olivier Spanjaard, and Paul Weng

As the computation time required for the bounding procedure (at each node)
is polynomial provided C is a constant, the complexity of the whole branch and
bound algorithm is also polynomial. By comparing the number of cells in the
dynamic programming table (Θ(nKC)) and the number of nodes in the enumer-
ation tree (O(KC−1)), it appears that the branch and bound algorithm should
perform better. This observation is confirmed experimentally for all problems
we tested.

Besides, the spatial complexity of the branch and bound algorithm in the
worst case is in O(KC−1). Therefore it is also better than the dynamic program-
ming algorithm from this point of view.

5 Experimental Results

We present here numerical results concerning the multiobjective dynamic pro-
gramming method, and the branch and bound method. The computer used is
an Intel Core 2 duo @3GHz, with 3GB RAM, and the algorithms were coded in
C++. We first test our methods on randomly generated instances, and then on
a real-world data set (IMDb dataset).

5.1 Randomly Generated Instances

We chose to run our tests on two different types of instances:

– uncorrelated instances (Un): for each item i, γi is randomly drawn in {1, . . . , C},
and wi is randomly drawn in {1, . . . , 1000}.

– correlated instances (Co): for each item i, γi is randomly drawn in {1, . . . , C},
and wi is randomly drawn in {1+1000∗(C−γi)/C, . . . , 1000∗(C−γi+1)/C}.
In other words, the better the class, the higher the weight; for instance, if
γi = 3 (resp. γi = 2) and C = 5, then wi is randomly drawn in {401, . . . , 600}
(resp. {601, . . . , 800}).

For all instances, we chose to set B so that the following properties hold:

– B ≥
∑K
i=1 w

(i), where item (i) is the item with the i-th smallest weight: this
inequality ensures that there is at least one feasible solution;

– B <
∑K
i=1 w

i: this inequality ensures that the solution consisting of the K
best items is not feasible (we recall that items are first ordered decreasingly
with respect to their classes, and increasingly ordered with respect to their
weights within each class).

By setting B = 0.5
∑K
i=1 w

(i) + 0.5
∑K
i=1 w

i in the tests, both properties hold

(unless
∑K
i=1 w

(i) =
∑K
i=1 w

i, in which case the only non-dominated solution
consists in selecting the K first items).

Table 2 shows the average computation times in seconds for both methods
(DP: dynamic programming, BB: branch and bound), and the average number
of non-dominated profit vectors (in other words, the size of a complete mini-
mal set of preferred solutions) over 30 random instances for each type and size.

Committee Selection Based on a Pairwise Dominance Relation 11

Symbol “-” means that no instance could be solved due to memory constraints,
i.e. more than 3GB RAM were required. All generated instances have n = 1000
items. Notation “Un-x-y” (resp. “Co-x-y”) means Uncorrelated (resp. Corre-
lated) instances with C = x and K = y. Since there is very little variance in
the computation times for a given type and size, only the average computation
times are reported.

Table 2. Average computation times of both methods, and average number of non-
dominated profit vectors (ND), for uncorrelated and correlated instances of size n =
1000.

Type DP (sec.) BB(sec.) ND Type DP(sec.) BB(sec.) ND

Un-3-100 3.9 0.005 3 Co-3-100 3.9 0.004 44
Un-3-200 32.1 0.06 4 Co-3-200 32.0 0.06 75
Un-3-500 506 0.45 38 Co-3-500 505 0.5 108

Un-4-100 132 0.007 5 Co-4-100 132 0.08 1101
Un-4-150 656 0.03 12 Co-4-150 654 0.4 2166
Un-4-200 - 0.07 16 Co-4-200 - 0.8 3346

Un-5-50 117 0.003 2 Co-5-50 121 0.5 3657
Un-5-80 1114 0.004 7 Co-5-80 1263 7.0 13526
Un-5-100 - 0.018 15 Co-5-100 - 23.2 24800

First note that, for all instances, the branch and bound approach is faster
than the dynamic programming one. As expected, more classes make the prob-
lem harder, and the same goes for size K of the committee. The number of
non-dominated profit vectors is small for uncorrelated instances, because there
are low weighted items in good classes. This number is much larger for correlated
instances, because this property does not hold anymore. Comparing the results
obtained for uncorrelated and correlated instances shows that the correlation has
no impact on the computation times of the dynamic programming procedure.
However, its impact is noticeable for the branch and bound method, since the
number of nodes expanded in the enumeration tree grows with the number of
non-dominated profit vectors, and this number is very high for correlated in-
stances. The impact of the correlation on the number of non-dominated profit
vectors is consistent with what can be observed in multiobjective combinatorial
optimization. We will come back to the question of the size of the non-dominated
set in the next subsection.

Since the branch and bound procedure is very fast, and does not have high
memory requirements, we tested it on larger instances. We set n = 10000 and
K = 100 for all these instances. Table 3 shows the results of those experiments
for C ∈ {3, 4, 5, 10, 20, 50}. Resolution times are in seconds, and symbol “-”
means that it exceeds 600 seconds. Most of the resolution time is now spent in
the bounding part, more precisely for the comparison between the optimistic
evaluation of a node and the non-dominated profit vectors. For uncorrelated
instances with 3, 4, 5 classes, the resolution times are nevertheless particularly
small because the bounds enable to discard a huge amount of nodes, since there

12 Charles Delort, Olivier Spanjaard, and Paul Weng

are few good feasible profit vectors (around 70% of selected items in these so-
lutions belong to class 1). This is no longer true for correlated instances, which
results in much greater resolution times.

Furthermore, as is well-known in multiobjective optimization, the number of
objectives (here, the number C of classes) is a crucial parameter for the efficiency
of the solution methods. For this reason, when C = 10, 20 or 50, the resolution is
of course computationally more demanding, as can be observed in the table (for
instance, for C = 20 and K = 100, the resolution time is on average 2.21 seconds
for uncorrelated instances). The method seems nevertheless to scale well, though
the variance in the resolution times is much higher.

Table 3. Average computation times of the BB method, and average number of non-
dominated profit vectors (ND), for uncorrelated and correlated instances of size n =
10000 with K = 100 and C ∈ {3 · · · 50}.

Type BB(sec.) ND Type BB(sec.) ND
min. avg. max. min. avg. max.

Un-3-100 0.01 0.02 0.02 3 Co-3-100 0.03 0.05 0.06 50
Un-4-100 0.02 0.02 0.03 6 Co-4-100 1.27 1.31 1.37 4960
Un-5-100 0.02 0.03 0.04 10 Co-5-100 27.3 28.0 29.0 29418
Un-10-100 0.10 0.12 0.15 264 Co-10-100 - - - -
Un-20-100 0.37 2.21 14.24 467 Co-20-100 - - - -
Un-50-100 2.09 21.1* 101* 968* Co-50-100 - - - -

* Note that one instance largely exceeded the time limit, and the values indicated do

not take this instance into account.

Table 4(A) (resp. 4(B)) is there to give an idea of the order of magnitude
of K with respect to C in order to get tractable uncorrelated (resp. correlated)
instances. For each C, the order of magnitude of parameter K in the table is the
one beyond which the resolution becomes cumbersome.

Table 4. Average computation times of the BB method, and average number of non-
dominated profit vectors (ND), for uncorrelated and correlated instances of size n =
10000 with C ∈ {3 · · · 50}, for different values of K.

Type BB(sec.) ND Type BB(sec.) ND
min. avg. max. min. avg. max.

Un-3-5000 375 394 425 368 Co-3-5000 415 419 424 1086
Un-4-3000 208 237 266 7203 Co-4-1000 666 706 767 105976
Un-5-2000 185 292 428 15812 Co-5-100 27.3 28.0 29.0 29418
Un-10-250 1.86 10.5 55.4 2646 Co-10-15 95.2 97.4 103 30441
Un-20-150 0.69 91.5 562 2603 Co-20-7 20.0 20.2 20.6 14800
Un-50-80 1.98 24.6 208 1052 Co-50-5 521 526 534 36471

(A) (B)

Committee Selection Based on a Pairwise Dominance Relation 13

5.2 IMDb Dataset

Let us now evaluate the operationality of the BB method on a real data set,
namely the Internet Movie Database (www.imdb.com). On this web site, one
can indeed find a top 250 movies as voted by the users. Assume that a film
festival organizer wants to project K top movies within a given time limit. If the
organizer refers to the IMDb Top 250 to make his/her choice (i.e., the preference
classes are directly inferred from the Top 250), it amounts to a committee selec-
tion problem where the weights are the durations of the movies. The numerical
tests carried out are the following:

– size K of the committee varies from 5 to 50;
– number C of classes varies from 10 to 250 (in this latter case, the setting is

the same as in Klamler et al. [14], i.e. there is a linear order on the elements);
– the time limit follows the formula used for the budget constraint in the

previous tests, so that both constraints (cardinality and weight) are taken
into account in the choice.

Table 5 shows the computation times in seconds for the BB method, as well
as the number ND of non-dominated committees (i.e., non-dominated subsets
of movies). Symbol “-” means that the computation time exceeds 600 sec. In-
terestingly, one observes that the method remains operational even when the
number of preference classes is high. The size of the non-dominated set of course
increases, but this is not a real drawback if one sees the pairwise dominance
relation as a first filter before an interactive exploration of the non-dominated
set (by interactively adding constraints for instance, so as to reduce the set of
potential selections).

Table 5. Computation times of the BB method for the IMDb data set.

C = 10 C = 25 C = 50 C = 250

Time ND Time ND Time ND Time ND
K = 5 0.01 5 0.03 9 0.15 7 2.7 11
K = 10 0.01 8 0.08 24 0.6 108 131.6 323
K = 15 0.01 12 0.6 156 11.5 469 - -
K = 20 0.01 16 5.17 222 295 1310 - -
K = 25 0.01 14 131.3 883 - - - -
K = 50 3.0 749 - - - - - -

6 Conclusion

We studied the committee selection problem with a cardinality constraint, where
the items are classified into ordered classes. By reducing the problem to a mul-
tiobjective knapsack problem with a cardinality constraint, we proposed two
polynomial time solution algorithms: a dynamic programming scheme and a

14 Charles Delort, Olivier Spanjaard, and Paul Weng

branch and bound procedure. The theoretical complexities and numerical tests
tend to prove that the latter one is better, both in time and space requirements.

Note that all the results presented here naturally extends when the preference
classes are only partially ordered. The only difference is that the profit vectors
are then not necessarily non-decreasing. For instance, consider three partially
ordered preference classes 1, 2 and 3 with: 1 B 2 and 1 B 3 (2 and 3 are not
comparable). The profit vector for an item of class 2 is then (0, 1, 0).

Finally, it would be interesting to study more expressive settings for ranking
sets of objects. For instance, when the order relation is directly defined on the
items, Fishburn [11] proposed a setting where preferences for the inclusion (resp.
exclusion) of items in (resp. from) a subset can be expressed.

Acknowledgments. We would like to thank the reviewers for their helpful
comments and suggestions.

References

1. S. Barberà, W. Bossert, and P.K. Pattanaik. Ranking sets of objects. In S. Barberà,
P.J. Hammond, and C. Seidl, editors, Handbook of Utility Theory, vol. 2. Kluwer
Academic Publishers, 2004.

2. E.M. Bartee. Problem solving with ordinal measurement. Management Science,
17(10):622–633, 1971.

3. W. Bossert, P.K. Pattanaik, and Y. Xu. Ranking opportunity sets: An axiomatic
approach. Journal of Economic Theory, 63(2):326–345, 1994.

4. U. Bossong and D. Schweigert. Minimal paths on ordered graphs. Technical Re-
port 24, Report in Wirtschaftsmathematik, Universität Kaiserslautern, 1996.

5. S. Bouveret, U. Endriss, and J. Lang. Fair division under ordinal preferences:
Computing envy-free allocations of indivisible goods. In European Conference on
Artificial Intelligence (ECAI 2010), pages 387–392. IOS Press, 2010.

6. S. Brams, P. Edelman, and P. Fishburn. Fair division of indivisible items. Theory
and Decision, 5(2):147–180, 2004.

7. S. Brams and D. King. Efficient fair division – help the worst off or avoid envy?
Rationality and Society, 17(4):387–421, 2005.

8. F. Della Croce, V. Th. Paschos, and A. Tsoukias. An improved general procedure
for lexicographic bottleneck problems. Op. Res. Letters, 24:187–194, 1999.

9. T. Erlebach, H. Kellerer, and U. Pferschy. Approximating multi-objective knapsack
problems. In F. Dehne, J.-R. Sack, and R. Tamassia, editors, Algorithms and
Data Structures, volume 2125 of LNCS 2125, pages 210–221. Springer Berlin /
Heidelberg, 2001.

10. P.C. Fishburn. Utility Theory for Decision Making. Wiley, New York, 1970.

11. P.C. Fishburn. Signed orders and power set extensions. Journal of Economic
Theory, 56:1–19, 1992.

12. J.Y. Halpern. Defining relative likelihood in partially-ordered preferential struc-
tures. Journal of Artificial Intelligence Research, 7:1–24, 1997.

13. P. Hansen. Bicriterion path problems. In G. Fandel and T. Gal, editors, Multicri-
teria Decision Making, 1980.

Committee Selection Based on a Pairwise Dominance Relation 15

14. C. Klamler, U. Pferschy, and S. Ruzika. Committee selection with a weight con-
straint based on lexicographic rankings of individuals. In First International Con-
ference on Algorithmic Decision Theory (ADT 2009), pages 50–61. Springer, 2009.

15. K. Klamroth and M.M. Wiecek. Dynamic programming approaches to the multiple
criteria knapsack problem. Naval Research Logistics, 47:57–76, 2000.

16. D. Schweigert. Ordered graphs and minimal spanning trees. Foundations of Com-
puting and Decision Sciences, 24(4):219–229, 1999.

