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CONJUGACY GROWTH SERIES OF SOME INFINITELY

GENERATED GROUPS

ROLAND BACHER AND PIERRE DE LA HARPE

Abstract. It is observed that the conjugacy growth series of the infinite fini-
tary symmetric group with respect to the generating set of transpositions is
the generating series of the partition function. Other conjugacy growth series
are computed, for other generating sets, for restricted permutational wreath
products of finite groups by the finitary symmetric group, and for alternat-
ing groups. Similar methods are used to compute usual growth polynomials
and conjugacy growth polynomials for finite symmetric groups and alternating
groups, with respect to various generating sets of transpositions.

Computations suggest a class of finite graphs, that we call partition-complete,
which generalizes the class of semi-hamiltonian graphs, and which is of inde-
pendent interest.

The coefficients of a series related to the finitary alternating group satisfy
congruence relations analogous to Ramanujan congruences for the partition
function. They follow from partly conjectural “generalized Ramanujan congru-
ences”, as we call them, for which we give numerical evidence in Appendix C.

Pour le parfait flâneur, pour l’observateur passionné,
c’est une immense jouissance que d’élire domicile
dans le nombre, dans l’ondoyant dans le mouvement,
dans le fugitif et l’infini.
(Baudelaire, in Le peintre de la vie moderne [Baud–63].)

1. Explicit conjugation growth series

Let G be a group generated by a set S. For g ∈ G, the word length

ℓG,S(g) is defined to be the smallest non-negative integer n for which there are
s1, s2, . . . , sn ∈ S ∪ S−1 such that g = s1s2 · · · sn, and the conjugacy length

κG,S(g) is the smallest integer n for which there exists h in the conjugacy class of
g such that ℓG,S(h) = n. For n ∈ N, denote by γG,S(n) ∈ N∪{∞} the number of
conjugacy classes in G consisting of elements g with κG,S(g) = n (we agree that
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0 ∈ N). Assuming that the pair (G, S) satisfies the condition

(Fin) γG,S(n) is finite for all n ∈ N,

we define the conjugacy growth series

CG,S(q) =

∞∑

n=0

γG,S(n)q
n =

∑

g∈Conj(G)

qκG,S(g) ∈ N[[q]] .

Here
∑

g∈Conj(G) indicates a summation over a set of representatives in G of the
set of conjugacy classes of G. The exponential rate of conjugacy growth is

Hconj
G,S = lim supn→∞

log γG,S(n)

n
; note that exp(−Hconj

G,S ) is the radius of convergence
of the series CG,S(q).

In case G is generated by a finite set S, Condition (Fin) is obviously satisfied,

so that the formal series CG,S(q) and the number Hconj
G,S are well defined; they

have recently been given some attention, see e.g. [AnCi], [BCLM–13], [Fink–14],
[GuSa–10], [HuOs–13], [Mann–12, Chap. 17], [PaPa–15], [Rivi–10]. The subject
is related to that of counting closed geodesics in compact Riemannian manifolds
[Babe–88], [CoKn–04], [Hube–56], [Knie–83], [Marg–69].

When S is finite, denote for n ∈ N by σG,S(n) ∈ N the number of elements
g ∈ G with ℓG,S(g) = n. In this situation, it is tempting to compare the series
CG,S to the growth series

LG,S(q) =

∞∑

n=0

σG,S(n)q
n =

∑

g∈G

qℓG,S(g) ∈ N[[q]] .

For finite series, e.g. for finite groups, we rather write “conjugacy growth poly-
nomial” and “growth polynomial”.

The first purpose of the present article is to observe that there are groups
G which are not finitely generated, and yet have interesting series CG,S(q) for
appropriate infinite generating sets S. Groups of concern here are locally finite
infinite symmetric groups, some of their wreath products, and infinite alternating
groups. We are also led to compute and compare polynomials CG,S and LG,S for
finite symmetric and alternating groups, for various generating sets S.

For a non-empty set X , we denote by Sym(X) the finitary symmetric group

of X , i.e. the group of permutations of X with finite support. The support of
a permutation g of X is the subset sup(g) = {x ∈ X|g(x) 6= x} of X . Two
permutations of X are disjoint if their supports are disjoint (below, this will be
used mainly for cycles). It is convenient to agree that, for g, h ∈ Sym(X),

we denote by gh the result of the permutation h followed by g,

such that (gh)(x) = g(h(x)) for all x ∈ X . For example, for X = N, we have
(1, 2)(2, 3) = (1, 2, 3), and not (1, 3, 2) as with the other convention.
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The conjugacy class

TX = {(x, y) ∈ Sym(X) | x, y ∈ X are distinct} ⊂ Sym(X)

of all transpositions in Sym(X) is a generating set of Sym(X). We consider also
other generating sets, in particular for X = N

SCox
N

= {(i, i+ 1) | i ∈ N},
which makes Sym(N) look like an infinitely generated irreducible Coxeter group
of type A.

When X is finite, Sym(X) is the usual symmetric group of X . For n ≥ 1 and
X = {1, 2, . . . , n}, we write Sym(n). The sets of transpositions

SCox
n = {(1, 2), (2, 3), · · · , (n− 1, n)}, Tn = {(i, j) | 1 ≤ i, j ≤ n, i < j}

are particular cases for Sym(n) of generating sets which are standard for finite
Coxeter groups.

In the following proposition, we collect a sample of equalities that appear again
in Proposition 8 in a more general situation.

Proposition 1. Let S ⊂ Sym(N) be a generating set such that SCox

N
⊂ S ⊂ TN.

For every n ≥ 1, let Sn ⊂ Sym(n) be a generating set such that SCox

n ⊂ Sn ⊂ Tn.
Then

(i) CSym(N),S(q) =
∑∞

m=0 p(m)qm =
∏∞

j=1
1

1−qj
,

in particular the sequence of coefficients of CSym(N),S(q) if of intermediate
growth,

(ii) CSym(n),Sn
(q) =

∑n−1
k=0 pn−k(n)q

k ,

(iii)
∑∞

n=0CSym(n),Sn
(q)tn =

∏∞
j=1

1
1−qj−1tj

,

where the partition function p(n) and the second equality of (i) are as recalled in
Appendix B.a, and the number pn−k(n) of partitions of n with n−k positive parts
as in Appendix B.b. Moreover:

(iv) when n→ ∞, the polynomials CSym(n),Sn
(q) of (ii) converge coefficientwise

towards the series CSym(N),S(q) of (i).

For example:

CSym(2),S2(q) = 1 + q,

CSym(3),S3
(q) = 1 + q + q2,

CSym(4),S4(q) = 1 + q + 2q2 + q3,

CSym(5),S5(q) = 1 + q + 2q2 + 2q3 + q4,

CSym(6),S6
(q) = 1 + q + 2q2 + 3q3 + 3q4 + q5 ,

CSym(n),Sn(q) = 1 + q + 2q2 + · · ·+ ⌊n/2⌋qn−2 + qn−1 (n ≥ 5).



4 ROLAND BACHER AND PIERRE DE LA HARPE

The main ingredients for the proof of Proposition 1 are the classical Observation
2 and Lemma 3. We use the following standard notation: for an integer n ≥ 0,
we denote by λ = (λ1, λ2, · · · , λk) ⊢ n a partition of weight n = λ1+λ2+ · · ·+λk,
with k ≥ 0 and λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1.

In Proposition 18 of Section 2, we come back to the convergence of CSym(n),Sn(q)
to CSym(N),S(q).

Observation 2. Let X be a non-empty set, finite or infinite. Denote by |X| its
cardinality. Conjugacy classes in Sym(X) are in natural bijection with appropri-
ate sets of partitions. More precisely, for each pair (L, k) of non-negative integers
with L+ k ≤ |X|, there is a bijection between the set of partitions of the form

(2.a) λ = (λ1, . . . , λk) ⊢ L
on the one hand, and conjugacy classes in Sym(X) of elements of the form

(2.b)

g = c1c2 · · · ck ∈ Sym(X) where

ci is a cycle of some length λi + 1 ≥ 2 for i = 1, 2, . . . , k,

ci and ci′ are disjoint for i 6= i′,

and therefore |sup(g)| − k = L =

k∑

i=1

λi,

on the other hand. In this article,

the length of a cycle is at least 2, unless otherwise stated;

we always make it explicit when we want to consider fixed points as cycles of
length 1.

Lemma 3. Consider two integers L, k ≥ 0, a set X of cardinal at least L + k
(possibly infinite), an element g ∈ Sym(X) product of k disjoint cycles with
|sup(g)| = L+ k, and the corresponding partition λ ⊢ L in k parts, as in Obser-
vation 2.

(i) There exist transpositions s1, . . . , sL ∈ Sym(X) such that g = s1 · · · sL
and sup(sl) ⊂ sup(g) for all l ∈ {1, . . . , L}.

(ii) There exist transpositions t1, . . . , tM ∈ Sym(X) such that g = t1 · · · tM if
and only if M ≥ L and M − L is even.

Suppose moreover that X is given together with trees T1, . . . , Tk with the following
properties: for i ∈ {1, . . . , k}, the vertex set of Ti is a subset of X of cardinality
λi+1, and these subsets are disjoint from each other. Let

{
{x1, x′1}, . . . , {xL, x′L}

}

be an enumeration of the edges of the forest
⋃k

i=1 Ti.

(iii) The product h = (x1, x
′
1) · · · (xL, x′L) is conjugate to g in Sym(X).

We postpone until Section 2 the proofs of these, and of further propositions
in the present section. Before we can state more general cases of some of the
equalities of Proposition 1, we introduce two definitions and provide examples.
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Definition 4. For a set S of transposition of a set X , the transposition graph

Γ(S) has vertex set X and edge set those pairs {x, y} ⊂ X for which the trans-
position (x, y) is in S.

But for their names, these graphs appear in [Serg–93]. It is well-known and
easy to check (Lemma 32) that

(GC)
the group Sym(X) is generated by S

if and only if the graph Γ(S) is connected.

Definition 5. For a set X , a set S of transpositions of X is partition-complete

if it satisfies the following condition:

(PC)

the transposition graph Γ(S) is connected and,

for every partition λ = (λ1, . . . , λk) ⊢ L such that L+ k ≤ |X|,
Γ(S) contains a forest consisting of k trees

having respectively λ1 + 1, . . . , λk + 1 vertices.

The graph Γ(S) itself is partition-complete when S is so.

Example 6. When X = {1, . . . , n}, sets of transpositions satisfying Condition
(PC) include sets S such that SCox

n ⊂ S ⊂ Tn, and also those for which Γ(S) is
one of the Dynkin graphs D2n+1 with n ≥ 2, or E7 or E8.

But if S is such that Γ(S) is one of D2n with n ≥ 2, or E6, then S does not
satisfy Condition (PC), because D2n does not contain n disjoint trees with two
vertices each, and E6 does not contain two disjoint trees with three vertices each.

When X is finite, S is partition-complete as soon as the graph Γ(S) is semi-
hamiltonian; recall that a graph is semi-hamiltonian [respectively hamiltonian]
if it contains a path [respectively a cycle] containing every vertex exactly once.
Condition (PC) for a graph can be seen as a weakening of the property of being
semi-hamiltonian.

When X is infinite, Condition (PC) is equivalent to (PC∞):

(PC∞)

S generates Sym(X) and, for all n ≥ 1,

the graph Γ(S) contains a disjoint union

of n trees with at least n vertices each.

When X = N, here are two families of examples of sets S satisfying Condition
(PC∞). The first is that of sets of transpositions of which the transposition
graph contains arbitrarily long segments; this family contains sets S such that
SCox
N

⊂ S ⊂ TN. For a set of the second family, choose an increasing sequence
(kn)n≥1 of positive integers such that kn+2−kn+1 > kn+1−kn for all n ≥ 1; define
then S as the set of transpositions (0, kn) and (kn, j) for all n ≥ 1 and j with
kn + 1 ≤ j ≤ kn+1 − 1, so that Γ(S) is obtained from a star with centre 0 and
infinitely many neighbours kn by attaching kn+1 − kn − 1 vertices to each vertex
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kn; thus Γ(S) is a tree of diameter 4, with all vertices but one (the origin) of
finite degrees.

On the contrary, the set S0
N

= {(0, n) | n ≥ 1} does not satisfy Condi-
tion (PC∞). Proposition 9 provides the conjugacy growth series for the pair
(Sym(N), S0

N
).

We ignore the existence of a simple criterion for graphs or trees to be partition
complete.

Using Definition 5, we reformulate Lemma 3(iii) and generalize Proposition 1
as follows:

Lemma 7. Let X be a non-empty set and S a partition-complete set of transpo-
sitions of X. Let g = c1 · · · ck ∈ Sym(X) be a product of disjoint cycles of non-

increasing lengths; denote these lengths by λ1+1, . . . , λk+1, and set L =
∑k

i=1 λi,
so that |sup(g)| = L+ k. Then

κSym(X),S(g) = L.

Proposition 8. Let X be an infinite set and S ⊂ Sym(X) a partition-complete
set of transpositions.

(a) The equalities of (i) in Proposition 1 hold true. In particular the series
CSym(X),S(q) does not depend on the cardinality of X, as long as X is
infinite.

For every n ≥ 1, let Sn ⊂ Sym(n) be a partition-complete set of transpositions.

(b) Claims (ii), (iii), and (iv) in Proposition 1 hold true.

For the next proposition, we consider the generating sets of transpositions

S0
N

= {(0, n) ∈ Sym(N) | n ≥ 1} ⊂ Sym(N),

S0
n = {(0, i) | 1 ≤ i ≤ n− 1} ⊂ Sym(n) = Sym({0, 1, . . . , n− 1}),

which do not satisfy Condition (PC).

Proposition 9. Let S0
N
⊂ Sym(N) and, for every n ≥ 1, let S0

n ⊂ Sym(n) be as
above. Then

(i) CSym(N),S0
N

(q) = 1 +

∞∑

k=1

q3k−2
k∏

j=1

1

1− qj
=

1 + q + q2 + q3 + 2q4 + 2q5 + 3q6 + 4q7 + 5q8 + 6q9 + 9q10+

10q11 + 13q12 + 17q13 + 21q14 + 25q15 + 33q16 + 39q17 + 49q18+

60q19 + 73q20 + 88q21 + 110q22 + 130q23 + 158q24 + · · · ,

(ii) CSym(n),S0
n
(q) = 1 +

⌊n/2⌋∑

k=1

q2k−2
n∑

j=k

pk(j)q
j .
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Moreover, when n → ∞, the polynomials CSym(n),S0
n
of (ii) converge coefficient-

wise towards the series CSym(N),S0
N

(q) of (i).

At the day of writing, the sequence

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
cn 1 1 1 1 2 2 3 4 5 6 9 10 13 17 21 25 33 39 49

of coefficients of the series CSym(N),S0
N

(q) :=
∑∞

n=0 cnq
n of (i) does not appear in

[OEIS]. The equality of (ii) is repeated in Proposition 22 below.
Numerically, the series of Proposition 9(i) converges in the unit disc, and shows

two roots of smallest absolute value, near −0.53 ± 0.68i. This makes it unlikely
that the series of Proposition 9 has such a nice product expansion like that of
Proposition 1(i).

Let X be an infinite set and H a finite group. Let W = H ≀X Sym(X) be
the corresponding permutational wreath product. Let S be a generating set of
W containing a set of transpositions SX of X generating Sym(X) and satisfying
Condition (PCwr) of Section 3. Denote by M the number of conjugacy classes
of H .

Proposition 10 (see Proposition 19 below). Let W = H ≀X Sym(X), S and M
be as above. Then

CW,S(q) =
(
CSym(X),SX

(q)
)N

=
∞∏

k=1

1

(1− qk)M
.

The finitary alternating group of N is the subgroup Alt(N) of Sym(N) of
permutations of even signature. Consider its generating set

SA
N

= {(i, i+ 1, i+ 2) ∈ Alt(N) | i ∈ N},
as well as the subset TA

N
:=
⋃

g∈Alt(N) gS
A
N
g−1 of all 3-cycles. Proposition 11 is

the analogue for the finitary alternating group of N of Proposition 1(i) for the
finitary symmetric group.

Proposition 11. Let S ⊂ Alt(N) be a generating set such that SA
N

⊂ S ⊂ TA
N .

Then

CAlt(X),S(q) =
∞∑

u=0

p(u)qu
∞∑

v=0

pe(v)q
v

=
1

2

∞∏

j=1

1

(1− qj)2
+

1

2

∞∏

j=1

1

1− q2j

= 1 + q + 3q2 + 5q3 + 11q4 + 18q5 + 34q6

+ 55q7 + 95q8 + 150q9 + 244q10 + · · · .
where pe(v) denotes the number of partitions of v ∈ N involving an even number
of positive parts, as in Appendix B.c.
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Observation 12. For the series of Proposition 11, set

CAlt(N),S(q) =

∞∑

n=0

pA(n)qn.

The coefficients pA(n) satisfy the following congruence relations:

pA(5n+ 3) ≡ 0 (mod 5),

pA(10n+ 7) ≡ 0 (mod 5),

pA(10n+ 9) ≡ 0 (mod 5),

pA(25n+ 23) ≡ 0 (mod 25).

Moreover, conjecturally :

pA(49n+ 17) ≡ 0 (mod 7),

pA(49n+ 31) ≡ 0 (mod 7),

pA(49n+ 38) ≡ 0 (mod 7),

pA(49n+ 45) ≡ 0 (mod 7),

pA(121n+ 111) ≡ 0 (mod 11).

See Proposition 30 for the first four relations. The conjectured relations have
been verified numerically for pA(m) when m ≤ 5000, as discussed in Section 6
and Appendix C.

Remark 13. (i) Let G be a group generated by a subset T . Then

(κT = ℓT ) κG,T (g) = ℓG,T (g) for all g ∈ G

if and only if T is closed by conjugation, as it is straightforward to check.

(ii) Suppose that G is also generated by a subset S, and assume that T =⋃
h∈G hSh

−1. Then

(κT ≤ κS) κG,T (g) ≤ κG,S(g) for all g ∈ G,

but equality need not hold.
For example, if G = Sym(4) and S = {(1, 2), (2, 3, 4)}, then

κG,T ((1, 2)(3, 4)) = 2 < κG,S((1, 2)(3, 4)) = 4.

(iii) It is remarkable that we have

(κT = κS) κG,T (g) = κG,S(g) for all g ∈ G,

in many cases of interest here, including

– G = Sym(N) and S as in Proposition 1(i), so that T = TN,
– G = Sym(n) and S = Sn as in Proposition 1(ii), so that T = Tn,
– G = Alt(N) and S as in Proposition 11, so that T = TA

N
.
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In these cases, it follows that

(CT = CS) CG,T (q) = CG,S(q).

Note however that, in the case of G = Sym(N) and S = S0
N
, and therefore

T = TN, the series CG,S(q) of Proposition 9 and CG,T (q) of Proposition 1(i) are
different, so that the equalities (κT = κS) and (CT = CS) do not hold.

Overview. Section 2 contains proofs of Propositions 1, 8, 9 and Lemmas 3, 7.
In Section 3, we write and prove formulas for conjugacy growth series of wreath
products, see Propositions 10 and 19.

Suppose that G is a finite symmetric group Sym(n), and S a system of gener-
ators. When S is either SCox

n or Tn, the polynomial LG,S(q) is well-known, and
is recalled in Proposition 20 below. Indeed, these polynomials make sense and
are explicitely known for all finite Coxeter systems; they appear in many places,
for example [Solo–66] and [Bour–68, exercises of § IV.1], as well as [ShTo–54]. In
Section 4, we compute CSym(n),S(q), and compare these polynomials with those for
another generating set, the set S0

n defined above; this uses lemmas of Section 2,
as well as some facts on derangements recalled in Appendix B.

In Section 5, we present results of analogous computations for finitary alter-
nating groups, and in particular the proof of Proposition 11. In the final Section
6, we discuss the context of Observation 12.

There is a short Appendix A with three lemmas on symmetric and alternating
groups, and a longer Appendix B that is a reminder of various definitions and
identities involving partitions and derangements. Finally, in Appendix C, we
define a generalization of Ramanujan congruences and we record a large number
of these for the coefficients p(n)(e1,e2,e3,...) of the power series

∞∑

n=0

p(n)(e1,e2,e3,...)q
n =

∞∏

n=1

1

(1− qn)e1(1− q2n)e2(1− q3n)e3 · · · ,

where (e1, e2, e3, . . .) is a finite sequence of non-negative integers. Some of these
congruences are established in the literature, but most are (as far as we know)
conjectural only, based on our numerical evidence.

2. Proof of Lemma 3 and 7, and Propositions 1, 8, and 9

We will moreover state and prove a sharpening of Proposition 1(iv), in Propo-
sition 18.

2.a. Proof of Lemmas 3 and 7. As a preliminary step for the proof, consider
a cycle

c = (x1, . . . , xµ+1) ∈ Sym(X),

where 1 ≤ µ ≤ |X|−1. By Lemma 31 applied µ−1 times (see Appendix A), the
cycle c can be written as a product of µ transpositions with supports in sup(c).
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Let g ∈ Sym(X) and λ = (λ1, . . . , λk) ⊢ L + k be as in Lemma 3. Write
g = c1 · · · ck, where c1, . . . , ck are disjoint cycles of lengths λ1 + 1, . . . , λk + 1
respectively. For i ∈ {1, . . . , k}, it follows from the preliminary step that ci can
be written as a product of λi transpositions with supports in sup(g). Hence g can

be written as a product of L =
∑k

i=1 λi transpositions with supports in sup(g).
This proves (i) of Lemma 3.

With the extra ingredient of Lemma 32, this also proves (iii) of Lemma 3 and
Lemma 7.

Consider now g = t1 · · · tM as in (ii) of Lemma 3. For i = 1, . . . , k, write
ci = (xi1, x

i
2, . . . , x

i
λi+1). Define a multigraph G = G(t1, . . . , tM) as follows: its

vertex set is VG :=
⋃M

ν=1 sup(tν), and there is one edge between the two vertices

of sup(tν) for each ν ∈ {1, . . . ,M}. Observe that VG ⊃ sup(g) =
⋃k

i=1 sup(ci).
Erasing from the product t1 · · · tM those tν contributing to connected compo-

nents of G disjoint from sup(g) does not change this product. We can there-
fore assume that each connected component of G intersects sup(g). For each
i ∈ {1, . . . , k} and j ∈ {1, . . . , λi + 1}, the connected component of G containing
xij contains sup(ci); it follows that each connected component of G contains at
least one of the sup(ci) ’s, and therefore that the number of connected components
of G, say γG, is at most k.

Given any finite multigraph with v vertices, e edges, and γ connected compo-
nents, e ≥ v − γ, with equality if and only if the multigraph is a forest. For the
multigraph G, we have therefore

M ≥ |VG| − γG ≥ |sup(g)| − k =

k∑

i=1

λi .

Moreover, M and L have the same parity, which is also the signature of g.
Conversely, for every M ≥ L with M − L even, g can be written as a product

ofM transpositions, for example the L transpositions of (i) and (M −L)/2 times
the product s1s1. This proves (ii) of Lemma 3. �

2.b. Proof of Propositions 1 and 8. We prove the equalities of Proposition 1
in the more general case of Proposition 8.

(i) Let X be an infinite set and S ⊂ Sym(X) a partition-complete set of
transpositions. The series CSym(X),S(q) is a sum over partitions λ ⊢ L as in (2.a)
of Observation 2, and the contribution of such a partition is qL by Lemma 7.
Hence CSym(X),S(q) =

∑∞
L=0 p(L)q

L. Equality with
∏∞

j=1
1

1−qj
is Euler’s identity

(EP1) recalled in Appendix B.a.

(ii) Consider a positive integer n and a partition-complete set Sn ⊂ Sym(n).
Conjugacy classes in Sym(n) are now in bijection with partitions of n as fol-
lows: a partition (µ1, . . . , µk) ⊢ n with exactly k positive parts corresponds
to a permutation g = c1 · · · ck where cj is a cycle of length µj, and “cycles”
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of length 1, i.e. fixed points of g, are now allowed (this is why we use µ here
rather than λ as above). By Lemma 7, the Sn-conjugacy length of such a g is

κSym(n),Sn(g) =
∑k

j=1(µj − 1) = n − k. Hence the polynomial CSym(n),Sn(q) is a

sum over partitions of n (where n is fixed) with exactly k parts (where k ranges
from 1 (long cycles) to n (identity)), and each such partition contributes by qn−k.
Hence CSym(n),Sn

(q) =
∑n

k=1 pk(n)q
n−k =

∑n−1
k=0 pn−k(n)q

k.

(iii) Exchanging product and sum, we have
∞∏

k=1

1

1− qk−1tk
=

∞∏

k=1

∞∑

ℓk=0

qℓk(k−1)tℓkk =
∑

ℓ1,ℓ1,ℓ3,...≥0

∞∏

k=1

qℓk(k−1)tℓkk

=

∞∑

n=0

(
∑

ℓ1,ℓ2,ℓ3,...≥0
ℓ1+2ℓ2+···+kℓk+···=n

q
∑

∞

k=1 ℓk(k−1)

)
tn.

For n ≥ 0, there is a contribution to the coefficient of tn for each sequence
(ℓ1, ℓ2, ℓ3, . . .) of non-negative integers such that ℓ1 + 2ℓ2 + 3ℓ3 + · · · = n, equiv-
alently for each partition 1ℓ12ℓ23ℓ3 · · · of n, with ℓ1 parts 1, and ℓ2 parts 2,
and ℓ3 parts 3, ..., equivalently for each conjugacy class in Sym(n). Since
0ℓ1 + 1ℓ2 + 2ℓ3 + · · · is the Sn-length of such a conjugacy class, the contribu-
tions to the coefficient of tn add up precisely to CSym(n),Sn

(q).

(iv) The polynomials of (ii) converge coefficientwise towards the series of (i)
because pn−k(n) = p(k) when 2k ≤ n. See (EP

′

4) in Appendix B.b). �

2.c. A computation of lengths. For the next two lemmas, we agree that
Sym(n) denotes the group of permutations of {0, 1, . . . , n− 1}, and we consider
the generating set S0

n defined just before Proposition 9.

Lemma 14. Let g = c1c2 . . . ck ∈ Sym(n), where c1, . . . , ck are disjoint cycles,
each of length at least 2; set m = |sup(g)|.

ℓSym(n),S0
n
(g) ≤

{
m+ k if g(0) = 0,

m+ k − 2 if g(0) 6= 0.

Proof. Choose i ∈ {1, . . . , k}. Let µi denote the length of ci, and write ci =
(x1, x2, . . . , xµi

).
If sup(ci) does not contain 0, then

ci = (0, x1)(0, xµi
)(0, xµi−1) · · · (0, x2)(0, x1)

and ℓSym(n),S0
n
(ci) ≤ µi + 1. If sup(ci) contains 0, say x1 = 0, (this occurs for at

most one value of i), then

ci = (0, xµi
)(0, xµi−1)(0, xµi−2) · · · (0, x2)

and ℓSym(n),S0
n
(ci) ≤ µi − 1.

Since ℓSym(n),S0
n
(g) ≤∑k

i=1 ℓSym(n),S0
n
(ci), the lemma follows. �
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Lemma 15. Let g = c1c2 . . . ck ∈ Sym(n) and m = |sup(g)| be as in the previous
lemma. Then

ℓSym(n),S0
n
(g) =

{
m+ k if g(0) = 0,

m+ k − 2 if g(0) 6= 0,

κSym(n),S0
n
(g) = m+ k − 2 as soon as g 6= id.

Proof. Set L = ℓSym(n),S0
n
(g); there exist r1, . . . , rL ∈ S0

n such that g = r1r2 · · · rL.
For i ∈ {1, . . . , k}, there are distinct elements xi1, . . . , x

i
µi

∈ {0, 1, . . . , n − 1}
such that ci = (xi1, x

i
2, . . . , x

i
µi
); and µ1 + · · · + µk = m. Observe that, for all

i ∈ {1, . . . , k} and j ∈ {1, . . . , µi}, the transposition (0, xij) occurs in the list
r1, . . . , rL, at least once.

Suppose first that 0 /∈ sup(g). We know from Lemma 14 that L ≤ m + k. If
one had L < m+ k, there would exist i ∈ {1, . . . , k} such that (0, x) occurs only
one time in the list r1, . . . , rL for each x ∈ sup(ci); but this is not possible since
0 /∈ sup(ci). Hence L = m+ k.

Suppose now that 0 ∈ sup(g); we can assume that x11 = 0. We know from
Lemma 14 that L ≤ m + k − 2. If one had L < m + k − 2, at least one of the
two following situations would hold:

(a) there exists i ∈ {2, . . . , k} such that (0, x) occurs only one time in the list
r1, . . . , rL for each x ∈ sup(ci),

(b) there exists j ∈ {2, 3, . . . , µ1} such that the transposition (0, x1j) does not
occur in the list r1, . . . , rL;

but this is not possible. Hence L = m+ k − 2, and the formula for ℓSym(n),S0
n
(g)

follows.
For all g 6= id in Sym(n), there exists a conjugate h of g such that h(0) 6= 0 to

which the same computation applies. The formula for κSym(n),S0
n
(g) follows. �

Similarly:

Lemma 16. Let g = c1c2 · · · ck ∈ Sym(N), where c1, . . . , ck are disjoint cycles,
each of length at least 2; set m = |sup(g)|. Then ℓSym(N),S0

N

(g) and κSym(N),S0
N

(g)
are given by the formulas of the previous lemma.

2.d. Proof of Proposition 9. We record a minor variation of Observation 2,
as follows. Given m ≥ 2 and k ≥ 1, there is a bijection between

(a) the set of partitions of m with k parts, all at least 2,
(i.e. partitions of the form µ = (µ1, . . . , µk) ⊢ m with µ1 ≥ · · · ≥ µk ≥ 2),

and

(b) the set of conjugacy classes of elements g 6= 1 in Sym(N) or Sym(n),
with |sup(g)| = m, which are products of k disjoint cycles,
where moreover m ≤ n in the case of Sym(n)
(i.e. of elements of the form g = c1 · · · ck with length(ci) = µi).

For each µ as in (a), set
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ν = (ν1, . . . , νk) := (µ1 − 1, · · · , µk − 1) ⊢ m− k.
which is a partition in k positive parts.

The relevant length of the conjugacy class of g as in (b) is m+k−2, by Lemmas
15 and 16.

For (i) of Proposition 9, it follows that

CSym(N),S0
N

(q) =

∞∑

m=0

γSym(N),S0
N

(m)qm

= 1 +

∞∑

m=2

⌊m/2⌋∑

k=1

pk(m− k)qm+k−2

= 1 +

∞∑

k=1

q2k−2

∞∑

m=2k

pk(m− k)qm−k

= 1 +

∞∑

k=1

q2k−2
∞∑

n=k

pk(n)q
n

= 1 +
∞∑

k=1

q3k−2
k∏

j=1

1

1− qj

where the last equality holds by (EP2) of Appendix B.b.

(ii) Similarly:

CSym(n),S0
n
(q) = 1 +

n∑

m=2

⌊m/2⌋∑

k=1

pk(m− k)qm+k−2

= 1 +

⌊n/2⌋∑

k=1

q2k−2

n∑

m=2k

pk(m− k)qm−k

= 1 +

⌊n/2⌋∑

k=1

q2k−2

n∑

j=k

pk(j)q
j .

(Note:
∑n

j=k pk(j)q
j =

∑n
j=0 pk(j)q

j .) It is now clear that these polynomi-

als converge coefficientwise to 1 +
∑∞

m=2

∑⌊m/2⌋
k=1 pk(m − k)qm+k−2, that is to

CSym(N),S0
N

(q). �

We end this section with a sharpening of Claim (iv) of Proposition 1; this
applies more generally to the situation of Proposition 8. Let S ⊂ Sym(N) be a
partition-complete set of transpositions, and let L be a non-negative integer. Set

KL(S) = {g ∈ Sym(N) | κSym(N),S(g) = L}.
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Observe that KL(S) is a union of conjugacy classes in Sym(N). For g ∈ Sym(N),
we denote by kg the number of disjoint cycles of which g is the product.

Lemma 17. Let S, L, and KL(S) be as above.

(i) Let g ∈ KL(S). Then |sup(g)| = L+ kg ≤ 2L for all g ∈ KL(S). Equality
kg = L holds if and only if g is a product of L disjoint transpositions.

(ii) Let s ∈ N be such that 0 ≤ s ≤ L/2. Then KL(S) contains exactly p(s)
conjugacy classes of elements g such that |sup(g)| = 2L− s.

Proof. (i) Let g ∈ KL(S) be written as a product c1 · · · ckg of disjoint cycles
of decreasing sizes. For i ∈ {1, . . . , kg}, denote by λi + 1 the length of ci; set
λ = (λ1, . . . , λkg), so that λ ⊢ L by Lemma 7. Since kg ≤ L, we have |sup(g)| =
L + kg ≤ 2L. If |sup(g)| = 2L, then λi = 1 for i = 1, . . . , kg, and every ci is a
transposition.

(ii) Let s be such that 0 ≤ s ≤ L/2. We proceed to establish a bijection
between the set of partitions of s on the one hand, and the set of conjugacy
classes of elements g ∈ Sym(N) such that g ∈ KL(S) and |sup(g)| = 2L − s on
the other hand; this will end the proof. As Claim (i) covers the case s = 0, we
could assume that s ≥ 1.

Choose a partition µ = (µ1, . . . , µm) ⊢ s. Since s ≤ L/2, we have L− s ≥ m.
Set

λ = (λ1, . . . , λL−s) = (µ1 + 1, . . . , µm + 1, 1, . . . 1),

a partition of L with L − (s + m) parts 1. Let g ∈ Sym(N) be a product of
disjoint cycles of lengths λ1 + 1, . . . , λL−s + 1. Then

κSym(N),S(g) =

L−s∑

j=1

λj =
( m∑

j=1

µj

)
+ L− s = L,

in particular g ∈ KL(S), and

|sup(g)| =
L−s∑

j=1

(λj + 1) = 2L− s.

Conversely, choose g ∈ KL(S) with |sup(g)| = 2L− s. Let λ1 +1, . . . , λL−s +1
be the lengths, in decreasing order, of the disjoint cycles of which g is the product;
note that λ = (λ1, . . . , λL−s) ⊢ L. Define a partition µ = (µ1, . . . , µm) by m =
max{j ∈ {1, . . . , L − s} | λj ≥ 2}, and µj = λj − 1 for j ∈ {1, . . . , m}. Then
µ ⊢ L− (L− s) = s. �

Here is the announced sharpening, see Propositions 1 and 8.

Proposition 18. Let S be a partition-complete set of transpositions in Sym(N)
and, for each m ≥ 1, let Sm be a partition-complete set of transpositions in
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Sym(m). Write C∞(q) for CSym(N),S(q) and Cm(q) for CSym(m),Sm(q). Then:

lim
n→∞

1

qn+1

(
C∞(q)− C2n+1(q)

)
=

∞∑

i=0

p(≤ 2i)qi ,

lim
n→∞

1

qn+1

(
C∞(q)− C2n(q)

)
=

∞∑

i=0

p(≤ (2i+ 1))qi ,

where p(≤ j) := p(0) + p(1) + · · ·+ p(j) for all j ∈ N.

Proof. Note first that, for L,m, k ∈ N, a conjugacy class in KL(S) of elements g
such that |sup(g)| = L+ k intersects Sym(m) if and only if L+ k ≤ m.

Let n ≥ 1. Choose an integer k such that 1 ≤ k ≤ n+4
3
. Let C be a conjugacy

class in Sym(N) such that C ⊂ Kn+k(S).
Suppose that C contributes to the coefficient of qn+k in C∞(q) and not to the

coefficient of qn+k in C2n+1(q). Equivalently, suppose that, for every g ∈ C, we
have |sup(g)| ≥ 2n+ 2; if s ≥ 0 is defined by |sup(g)| = 2(n+ k)− s, this means
that s ≤ 2k−2. Since k ≤ n+4

3
, i.e. 3k−4

2
≤ n

2
, we have s ≤ 3k−4

2
+ k

2
≤ n+k

2
, so that

C is one of the
∑2k−2

s=0 p(s) classes which appear in Lemma 17(ii). It follows that
the coefficient of qn+k in C∞(q)−C2n+1(q) is p(≤ (2k−2)), so that the coefficient
of qk−1 in 1

qn+1 (C∞(q) − C2n+1(q)) is p(≤ (2k − 2)) for k with 1 ≤ k ≤ n+4
3
.

Consequently, for given i ∈ N, the coefficient of qi in 1
qn+1 (C∞(q) − C2n+1(q)) is

p(≤ 2i) as soon as n is large enough.
Similarly, suppose that C contributes to the coefficient of qn+k in C∞(q) and

not to the coefficient of qn+k in C2n(q). A similar argument shows that C is one

of the
∑2k−1

s=0 p(s) classes which appear in Lemma 17(ii), and finally that, for
i ∈ N, the coefficients of qi in 1

qn+1 (C∞(q)− C2n(q)) is p(≤ (2i+ 1)) for n large

enough. �

3. Some wreath products

Consider a non-empty set X , a group H , and the permutational wreath

product H ≀X Sym(X) := H(X)
⋊ Sym(X). Here, H(X) denotes the group of

functions fromX toH having finite support, for the pointwise multiplication, and
the semi-direct product “⋊” refers to the natural action of Sym(X) on H(X), i.e.
to f ∈ Sym(X) acting on ψ ∈ H(X) by ψ 7−→ f(ψ) := ψ◦f−1. The multiplication
in this wreath product is given by (ϕ, f)(ψ, g) = (ϕf(ψ), fg), for ϕ, ψ ∈ H(X)

and f, g ∈ Sym(X). There is a natural action of the group H ≀X Sym(X) on the
set H × X , for which (ϕ, f) acts by (h, x) 7−→ (ϕ(f(x))h, f(x)); this action is
faithful.

For a ∈ H r {1} and u ∈ X , denote by ϕa
u ∈ H ≀X Sym(X) the permutation

that maps (h, x) ∈ H × X to (ah, u) if x = u, and to (h, x) otherwise; the
support of ϕa

u is the set {(h, u)}h∈H. Observe that (ϕa
u)a∈Hr{1},u∈X generates the
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subgroup H(X), and that ϕa
u, ϕ

b
v are conjugate in H ≀X Sym(X) if and only if a, b

are conjugate in H .
For u ∈ X , we denote by Hu the set of elements ϕa

u for a ∈ H r {1}, and by
TH the subset

⋃
u∈X Hu of H(X); recall that TX is the subset of all transpositions

in Sym(X). Consider subsets SH ⊂ TH and SX ⊂ TX , and define S to be the
disjoint union SH ⊔SX , inside H ≀X Sym(X). It is again elementary to check that

(GCwr)

if Γ(SX) is connected and if SH = {ϕa1
u1
, . . . , ϕar

ur
}

for some generating subset {a1, . . . , ar} ⊂ H

and some sequence u1, . . . , ur of points of X .

then the group H ≀X Sym(X) is generated by S.

WhenX is infinite, we consider subsets ofH ≀XSym(X) of the form S = SH⊔SX

that satisfy the following condition:

(PCwr)

the transposition graph Γ(SX) is connected and,

for all L ≥ 0 and partition λ = (λ1, . . . , λk) ⊢ L,
Γ(SX) contains a forest of k trees T1, . . . , Tk,

with Ti having λi vertices, including one of them, say x(i),

such that ϕa
x(i) ∈ SH for all a ∈ H r {1}.

(The conditions “for all a ∈ H r {1}” could be replaced by “for all a in a set of
representatives of the conjugacy classes in H distinct from {1}”.)
Proposition 19. Let H be a finite group; denote by M the number of conjugacy
classes in H. Consider an infinite set X, the wreath product W = H ≀X Sym(X),
and a generating subset S that satisfies Condition (PCwr). Then

CW,S(q) =
∞∏

k=1

1

(1− qk)M
.

Set
∏∞

k=1
1

(1−qk)M
=
∑∞

n=0 p(n)(M)q
n. For low values of the integer M , the

sequences
(
p(n)(M)

)
n=0,1,2,...

are well documented. For example, with A000041

and other similar numbers referring to those of [OEIS], we have:

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, . . . for (p(n)(1))n≥0, see A000041;

1, 2, 5, 10, 20, 36, 65, 110, 185, 300, 481, . . . for (p(n)(2))n≥0, see A000712;

1, 3, 9, 22, 51, 108, 221, 429, 810, 1479, 2640, . . . for (p(n)(3))n≥0, see A000716;

1, 12, 90, 520, 2535, 10908, 42614, 153960, . . . for (p(n)(12))n≥0, see A005758;

for (p(n)(M))n≥0 when 4 ≤M ≤ 23, M 6= 12, see A023003 to A023021.

See also Section 6 and Appendix C for some congruence relations satisfied by the
coefficients p(n)(M).
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Proof of Proposition 19. In this proof, we write G for Sym(X) and W for H ≀X
Sym(X) = H(X)

⋊G,

Preliminary Remark. There are several ways to associate a conjugacy class in
a symmetric group to a partition. For example, when X = N, in Observation 2
above and many other places of this article, the conjugay class associated to a
partition such as (3, 3, 1) ⊢ 7 is that of

(1, 2, 3, 4)(5, 6, 7, 8)(9, 10) ∈ Sym(N).

In other places, in particular at some point of the present proof, some fixed
points of permutations are counted as parts of size 1, so that the conjugacy class
associated to the same partition is that of1

(1, 2, 3)(4, 5, 6) ∈ Sym(N).

This is the reason for which we use below one symbol, λ, for a partition indexed
by 1 ∈ H∗ and a different symbol, µ, for a partition indexed by η 6= 1 in H∗.

First step: reminder on the conjugacy classes of W . The set of conjugacy
classes of W is in bijection with the set of H∗-decorated partitions, as we now
describe, much as in [Macd–95]. Here, H∗ denotes the set of conjugacy classes of
H ; we write 1 ∈ H∗ rather than {1} ∈ H∗ for the class {1} ⊂ H .

Let w = (ϕ, f) ∈ H(X)
⋊X Sym(X). We proceed to associate a H∗-indexed

family of partitions

(†)
(
λ(1),

(
µ(η)
)
η∈H∗r1

)

to w.
Let X(w) be the finite subset of X that is the union of the supports of ϕ and

f . Denote by c1, . . . , ck the disjoint cycles of which f is the product. Here,
we include a cycle of length 1 for each point x ∈ X such that x ∈ sup(ϕ)
and x /∈ sup(f), so that we have a disjoint union X(w) =

⊔
1≤i≤k sup(ci). For

i ∈ {1, . . . , k}, there are points xij in X(w), with 1 ≤ j ≤ νi := length(ci), such

that ci = (x
(i)
1 , x

(i)
2 , . . . , x

(i)
νi ). Define ηw∗ (ci) ∈ H∗ to be the conjugacy class of the

product ϕ(x
(i)
νi )ϕ(x

(i)
νi−1) · · ·ϕ(x(i)1 ) ∈ H . Observe that the product itself is not

well-defined by ci, since the x
(i)
j are well-defined up to cyclic permutation only,

but that its conjugacy class is well-defined. Observe also that, if νi = 1, then
ηw∗ (ci) 6= 1.

For η ∈ H∗ and ℓ ≥ 1, let mw,η
ℓ denote the number of cycles c in {c1, . . . , ck}

that are of length ℓ and are such that ηw∗ (c) = η. Let µw,η be the partition with
mw,η

ℓ parts equal to ℓ, for all ℓ ≥ 1; let nw,η be the sum of the parts of this
partition, so that µw,η ⊢ nw,η. We have

∑
η∈H∗

nw,η =
∑

η∈H∗,ℓ≥1 ℓm
w,η
ℓ = |X(w)|.

1At this point, it could be more consistent to include some fixed points in cycle decomposi-
tions of permutations, and thus to write (1, 2, 3)(4, 5, 6)(7)(8)(9) · · · ∈ Sym(N).
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We define the pretype of w as the family (µw,η)η∈H∗

. By a routine argument,
it can now be checked that

(i) for all w = (ϕ, f) ∈ W and g ∈ Sym(X),
the pretypes of w and (1, g)w(1, g−1) coincide;

(ii) for all w = (ϕ, f) ∈ W and ψ ∈ H(X),
the pretypes of w and (ψ, 1)w(ψ−1, 1) coincide;

hence conjugate elements in W have the same pretype. Moreover:

(iii) two elements in W that have the same pretype are conjugate.

For details, we refer to [Macd–95, Appendix I.B, No. 3].
For w = (ϕ, f) ∈ W , observe that the partition µw,1 does not have parts of

size 1. With the same notation as above, denote by λw,1 the partiton with mw,1
ℓ

parts equal to ℓ− 1. We define the type of w as the family
(
λw,1,

(
µw,η

)
η∈H∗r1

)
.

Then (i) to (iii) hold with “type” instead of “pretype”. Moreover:

(iv) every H∗-indexed family of partitions, i.e.,
(
λ(1),

(
µ(η)
)
η∈H∗r1

)
as in (†),

is the type of one conjugacy class in W .

Second step: proof of the formula for CW,S(q). Consider a H∗-index family of
partitions

(
λ(1),

(
µ(η)
)
η∈H∗r1

)
as in (†) and the corresponding conjugacy class in

W . Denote by n(1), n(η) the sum of the parts and by k(1), k(η) the number of the
parts of λ(1), µ(η), respectively. Choose a representative w = (ϕ, f) of this class,

with f of the form f =
∏k

i=1 ci =
∏k

i=1(x
(i)
1 , x

(i)
2 , . . . , x

(i)
µi ) and

ϕ(x
(i)
j ) = 1 ∈ H for all j ∈ {1, . . . , µi} when ηw∗ (ci) = 1

ϕ(x
(i)
j ) =

{
1 for all j ∈ {1, . . . , µi − 1}

h 6= 1 for j = µi
when ηw∗ (ci) 6= 1.

Recall that ηw∗ (ci) 6= 1 when µi = 1, and observe that

k = k(1) +
∑

η∈H∗,η 6=1

k(η)

|X(w)| = n(1) + k(1) +
∑

η∈H∗,η 6=1

n(η).

The contribution of (ϕ|sup(ci), ci) to κW,S(q) is µi − 1 if ηw∗ (ci) = 1, and µi if

ηw∗ (ci) 6= 1. Hence, the contribution of the type
(
λ(1),

(
µ(η)
)
η∈H∗r1

)
to CW,S(q) is

qn
(1)∏

η∈H∗,η 6=1 q
n(η)

. It follows that

CW,S(q) =
( ∞∑

n1=0

p(n1)q
n1

) ∏

η∈H∗,η 6=1

( ∞∑

nη=0

p(nη)q
nη

)

=
∞∏

k=1

1

(1− qk)|H∗|
.
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This ends the proof of Proposition 19. �

4. A sample of growth polynomials and conjugacy growth

polynomials for finite symmetric groups

The purpose of the present section is to compute for Sym(n) growth polyno-
mials LSym(n),S(q) and conjugacy growth polynomials CSym(n),S(q), with respect
to a sample of generating sets S. Our computations rely partly on Lemmas 3 of
Section 1 and 15 of Section 2.

Before this, we review part of what is known in the broader and classical
setting of finite Coxeter groups. Though we will not recall precise statements,
this is strongly related to the topology of connected compact Lie groups and their
homogenous spaces.

Let (W,S) be a finite Coxeter system; set l = |S|. Denote the correspond-
ing Coxeter exponents by m1, . . . , ml; they are positive integers. The growth
polynomial is known to be

(LW,S) LW,S(q) =
l∏

k=1

(1 + q + · · ·+ qmk).

This has received much attention; see for example [Solo–66] and [Bour–68, ex-
ercises of § IV.1 and VI.4]. As Solomon observes, the computation of LW,S for
the particular case of the symmetric groups goes back to Rodrigues, in the first
half of XIXth century (with a different formulation). Set T =

⋃
w∈W wSw−1.

The word length ℓW,T is sometimes called the reflection length [Cart–72] and the
corresponding growth polynomial is known to be

(LW,T ) LW,T (q) =

l∏

k=1

(1 +mkq).

For a group W ⊂ GL(V ) generated by reflections, define ρ : W −→ N by

ρ(w) = dim(V )− dim({v ∈ V | w(v) = v})
and set RW (q) =

∑
w∈W qρ(w). Then RW (q) =

∏l
k=1(1 +mkq); this is a special

case of [ShTo–54, Number 5.3], verified there by inspection, and shown again
more conceptually in [Solo–63]. For a finite Weyl group, it is easy to show that
ρ(w) = ℓW,S(w), see e.g. [Cart–72, Lemma 2], so that LW,T = RW , and (LW,T )
holds; this carries over to every finite Coxeter group, see e.g. [Lehr–87]. Other
avatars of these polynomials are discussed in [BaGo–94].

We do not know whether the companion polynomials CW,S, CW,T have already
been given any attention.

In the next proposition, we particularize LW,S(q) and LW,T (q) toW = Sym(n),
and we provide expressions for the corresponding conjugacy growth polynomials.
In the special case of finite symmetric groups, there is an ad hoc proof for (LW,T )
in Remark 21 and one for (LW,S) in [Harp–91].
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Proposition 20. Consider an integer n ≥ 1, the symmetric group Sym(n) and
its generating sets

SCox

n = {(1, 2), (2, 3), · · · , (n− 1, n)},
Tn = {(i, j) | 1 ≤ i, j ≤ n, i < j},

as in Proposition 1. The corresponding growth polynomial and conjugacy growth
polynomial are

LSym(n),SCox
n

(q) =

n−1∏

k=1

(1 + q + · · ·+ qk),

LSym(n),Tn
(q) =

n−1∏

k=1

(1 + kq),

CSym(n),SCox
n

(q) = CSym(n),Tn
(q) =

n−1∑

k=0

pn−k(n)q
k ,

where pn−k(n) is as in Appendix B.b.

Proof. The equalities involving the two products are particular cases of (LW,S)
and (LW,T ), since the Coxeter exponents of (Sym(n), SCox

n ) are 1, 2, . . . , n − 1.
The equality for CSym(n),SCox

n
(q) is that of Proposition 1(ii), and CSym(n),Tn

(q) is
the same polynomial, see Remark 13. �

The polynomials CSym(n),Tn(q) for small n ’s are given by

CSym(2),T2(q) = 1 + q,

CSym(3),T3
(q) = 1 + q + q2,

CSym(4),T4(q) = 1 + q + 2q2 + q3,

CSym(5),T5(q) = 1 + q + 2q2 + 2q3 + q4,

CSym(6),T6
(q) = 1 + q + 2q2 + 3q3 + 3q4 + q5 .

(Compare with the polynomials written after Proposition 22.)

Remark 21. (i) The second polynomial of Proposition 20 can also be written

LSym(n),Tn
(q) = 1 +

n∑

m=2

(
n

m

) ⌊m/2⌋∑

k=1

dk(m)qm−k,

where dk(m) is as in Appendix B.d.

(ii) It is easy to check directly from (i) that we have also

LSym(n),Tn(q) =

n−1∏

k=1

(1 + kq),

as in Proposition 20.
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Proof. (i) For m ∈ {0, 1, . . . , n}, there are
(
n
m

)
subsets of size m in {1, 2, . . . , n}.

For each such subset, say A, and each k ∈ {0, 1, . . . , n}, there are dk(m) permu-
tations in Sym(n) with support A which are products of k disjoint cycles, and
these elements have Tn-word length m−k, by Lemma 3. The growth polynomial
of the situation is therefore

n∑

m=0

(
n

m

) n∑

k=0

dk(m)qm−k .

To end this computation, we observe that the contribution of m = 0 is 1, that of
m = 1 is 0, and dk(m) = 0 for 2k > n.

(ii) We proceed by induction on n. There is nothing to check for n = 1; we
assume now that n ≥ 2, and that the statement holds for n− 1.

Consider an element g ∈ Sym(n) which is not in Sym(n−1). There is a unique
pair consisting of i ∈ {1, . . . , n − 1} and h ∈ Sym(n − 1) such that g = (i, n)h.
This implies that

CSym(n),Tn
(q) = CSym(n−1),Tn−1

(q) + (n− 1)qCSym(n−1),Tn−1
(q).

Hence

CSym(n),Tn(q) = CSym(n−1),Tn−1(q)
(
1 + (n− 1)q

)
=

n−1∏

i=1

(1 + kq)

by the induction hypothesis. �

The final proposition of this section shows polynomials L and C for finite
symmetric groups and a third generating set S0

n, essentially distinct from the
generating sets SCox

n and Tn of Proposition 20 for n ≥ 4. It is convenient to see
Sym(n) as the symmetric group of {0, 1, . . . , n− 1}; the generating set S0

n is that
already considered in Lemmas 14 and 15.

Proposition 22. Consider an integer n ≥ 1, the symmetric group Sym(n) and
the generating set S0

n = {(0, i) | 1 ≤ i ≤ n − 1}. The corresponding growth
polynomial and conjugacy growth polynomial are

LSym(n),S0
n
(q) = 1 +

n−1∑

m=2

(
n− 1

m

) ⌊m/2⌋∑

k=1

dk(m)qm+k

+
n∑

m=2

(
n− 1

m− 1

) ⌊m/2⌋∑

k=1

dk(m)qm+k−2 ,

CSym(n),S0
n
(q) = 1 +

⌊n/2⌋∑

k=1

q2k−2
n∑

j=k

pk(j)q
j (as in Proposition 9).
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For example:

LSym(4),S0
4
(q) = 1 + 3q + 6q2 + 9q3 + 5q4,

LSym(5),S0
5
(q) = 1 + 4q + 12q2 + 30q3 + 44q4 + 26q5 + 3q6,

LSym(6),S0
6
(q) = 1 + 5q + 20q2 + 70q3 + 170q4 + 250q5 + 169q4 + 35q7,

and
CSym(4),S0

4
(q) = 1 + q + q2 + q3 + q4,

CSym(5),S0
5
(q) = 1 + q + q2 + q3 + 2q4 + q5,

CSym(6),S0
6
(q) = 1 + q + q2 + q3 + 2q4 + 2q5 + 2q6 + q7 .

(Compare with the polynomials written after Proposition 20.)

Proof. Let us deal with the polynomial L. Consider first elements g ∈ Sym(n)
with 0 /∈ sup(g). For each m ∈ {0, 1, . . . , n−1}, there are

(
n−1
m

)
subsets of size m

in {1, 2, . . . , n − 1}. For each such subset, say A, and each k ∈ {0, 1, 2, . . . , m},
there are dk(m) elements with support A which are products of k cycles, and
these elements have S0

n-word length m + k, by Lemma 15. The contribution to
the growth polynomial of elements with 0 /∈ sup(g) is therefore

(0 /∈ sup)

n−1∑

m=0

(
n− 1

m

) m∑

k=0

dk(m)qm+k .

The contribution of m = 0 is 1 and that of m = 1 is zero; for m ≥ 2, the
contributions of terms with k = 0 or k > m/2 is also zero.

Consider now elements g ∈ Sym(n) with 0 ∈ sup(g). For eachm ∈ {1, 2, . . . , n},
there are

(
n−1
m−1

)
subsets of size m in {0, 1, . . . , n− 1} containing 0. For each such

subset, say B, and each k ∈ {1, 2, . . . , m}, there are dk(m) elements with sup-
port B which are products of k cycles, and these elements have S0

n-word length
m+ k − 2. The contribution of these elements is therefore

(0 ∈ sup)

n∑

m=1

(
n− 1

m− 1

) m∑

k=1

dk(m)qm+k−2 .

As above, the contributions of terms with m = 1 or k > m/2 vanish.
The formula for LSym(n),S0

n
(q) follows. That for CSym(n),S0

n
(q) is a repetition of

part of Proposition 9. �

5. Alternating groups

For a non-empty set X , we denote by Alt(X) the finitary alternating group

of X , i.e. the subgroup of Sym(X) of permutations of even signature. Set

TA
X =

{
(x, y, z) ∈ Alt(X) | x, y, z ∈ X are distinct

}
,

UA
X =

{
(x, y)(z, u) ∈ Alt(X) | x, y, z, u ∈ X are distinct

}
.
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Recall from the introduction that, when X = N, we have defined

SA
N

= {(i, i+ 1, i+ 2) ∈ Alt(N) | i ∈ N},

and we consider also

RA
N

=
{
(1, i, i+ 1) ∈ Alt(N) | i ≥ 2

}
.

When X = {1, . . . n} for some n ≥ 3, we write

Alt(n) = Alt({1, 2, . . . , n}),
SA
n = {(i, i+ 1, i+ 2) ∈ Alt(n) | 1 ≤ i ≤ n− 2},

RA
n = {(1, i, i+ 1) ∈ Alt(n) | 2 ≤ i ≤ n− 1}.

When X is either N or {1, . . . , n} for some n ≥ 1, we write SA
X to denote the

relevant set, either SA
N

or SA
n , and similarly for RA

X .
The following lemma is well-known, even if we did not find a convenient refer-

ence.

Lemma 23. With the notation above:
for all n ≥ 3, the sets SA

n and RA
n both generate Alt(n);

the sets SA
N

and RA
N

both generate Alt(N);
and the set TA

X generates Alt(X).

Proof. Let Hn denote the subgroup of Alt(n) generated by SA
n ; we claim that

Hn = Alt(n). The case of n = 3 is obvious; we proceed by induction on n,
assuming that n ≥ 4 and that the claim holds for n− 1.

The group Hn acts transitively on {1, . . . , n}, because it contains the 3-cycle
(n−2, n−1, n) as well as Hn−1 = Alt(n−1). Hence the order of Hn is n times the
index of the isotropy group {h ∈ Hn | h(n) = n}, that is |Hn| = n1

2
(n−1)! = 1

2
n!.

It follows that Hn = Alt(n).
As a consequence, RA

n also generates Alt(n), since
(1, i+ 1, i)(1, i+ 2, i+ 1)(1, i, i+ 1) = (i, i+ 1, i+ 2) for all i ∈ {2, . . . , n− 1}.

The claims for SA
N
, RA

N
and TA

X follow. �

Note that TA
X ∪ UA

X is the set of products of two distinct elements of the gen-
erating set SX of Sym(X). It follows that

κAlt(X),TA
X∪UA

X
(g) =

1

2
κSym(X),SX

(g) for all g ∈ Alt(X).

Since, for X infinite, two elements of Alt(X) are conjugate in Alt(X) if and
only if they are conjugate in Sym(X), we obtain the following straightforward
consequence of Proposition 8:
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Proposition 24. Let X be an infinite set, and TA
X , U

A
X as above. Then

CAlt(X),TA
X∪UA

X
(q) =

∞∑

m=0

p(2m)qm

= 1 + 2q + 5q2 + 11q3 + 22q4 + 42q5 + 77q6

+ 135q7 + 231q8 + 385q9 + 627q10 + 1002q11 + 1575q12 + · · · ,
where the numerical coefficients are those of the series [OEIS, A058696].

Let X be a set containing at least 5 elements. It is easy to check that UA
X

generates Alt(X), and it can be shown that

κAlt(X),UA
X
(g) =

{
κAlt(X),TA

X∪UA
X
(g) if g = id or |sup(g)| > 3,

2 if g is a 3-cycle.

It follows that

Proposition 25. Let X be an infinite set, and UA
X as above. Then

CAlt(X),UA
X
(q) = q2 − q +

∞∑

m=0

p(2m)qm.

Remark. For the generating set

V A
N

:= {(i, i+1, i+2) ∈ Alt(N) | i ≥ 0}∪{(i, i+1)(i+2, i+3) ∈ Alt(N) | i ≥ 0},
it can be shown that

CAlt(N),V A
N

(q) = CAlt(N),TA
N
∪UA

N

(q).

Our next target is to identify CAlt(X),TA
X
(q).

Lemma 26. Let g ∈ Alt(X) and g = t1 · · · tL a writing of g as a word of minimal
length L = ℓAlt(X),TA

X
(g) in the generators of TA

X .

Then tj 6= t±1
i , equivalently sup(ti) 6= sup(tj), for all i, j ∈ {1, . . . , L} with

i 6= j.

Proof. Let g = u1 · · ·uM be a writing of g as a word in the generators of TA
X .

Suppose first that there exist j, k ∈ {1, . . . ,M} with j < k such that uk = u−1
j .

If k = j + 1, then deleting ujuk produces a new TA
X -word of length M − 2

representing g; if k ≥ j + 2, then g can be written as

u1 · · ·uj−1

(
ujuj+1u

−1
j

)
· · ·
(
ujuk−1u

−1
j

)
uk+1 · · ·um,

i.e. g can again be written as a TA
X -word of length M − 2 representing g.

Suppose now that there exist j, k ∈ {1, . . . ,M} with j < k such that uk = uj.
If k = j+1, then replacing ujuk by u

−1
j produces a new TA

X -word of lengthM −1
representing g; if k ≥ j + 2, then g can be written as

u1 · · ·uj−1ujuj+1 · · ·uk−1u
−1
j u−1

j uk+1 · · ·uM
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and the previous procedure provides a TA
X -word representing g of length M − 1.

The lemma follows. �

For g ∈ Alt(X) a product of disjoint cycles, we denote by k′g the number of
cycles of odd lengths ≥ 3 and by 2k′′g the number of cycles of even lengths ≥ 2.
Note that kg = k′g + 2k′′g for kg as in Lemma 17.

Lemma 27. Let X be a set and S a generating set of Alt(X). Let g ∈ Alt(X)
be a product of disjoint cycles, with k′g, k

′′
g as above. Suppose either that S = TA

X

or that X is one of N, {1, . . . , n} for some n ≥ 1, and that SA
X ⊂ S ⊂ TA

X . We
have

ℓAlt(X),TA
X
(g) = κAlt(X),S(g) =

1

2

(
|sup(g)| − k′g

)
.

In the proof below, we write ℓ for ℓAlt(X),TA
X
and κ for κAlt(X),S.

Proof of the upper bounds κ(g), ℓ(g) ≤ 1
2

(
|sup(g)| − k′g

)
. We show the bound for

ℓ(g), and leave it to the reader to check that a minor modification of the same
argument shows the bound for κ(g). Whenever convenient, we write k′, k′′ rather
than k′g, k

′′
g .

Consider a cycle of odd length, say

cα = (x1, x2, . . . , x2p+1)

for x1, . . . , x2p+1 ∈ X . We have

cα = (x1, x2, x3)(x3, x4, x5)(x5, x6, x7) · · · (x2p−1, x2p, x2p+1)

and therefore ℓ(cα) ≤ p = 1
2
(|sup(cα)| − 1).

Consider a pair of disjoint cycles of even lengths, say

cβcγ = (x1, x2, . . . , x2r)(y1, y2, . . . , y2s)

for x1, . . . , x2r, y1 . . . , y2s ∈ X (where we consider an appropriate conjugate of g
and 2r+2s consecutive integers y1, y2, . . . , y2s, x1, x2, . . . , x2r for the case of κ(g)).
We have

cβcγ = (y1, y2, y3)(y3, y4, y5) · · · (y2s−3, y2s−2, y2s−1)(y2s−1, y2s, x1)

(x1, x2, x3)(x3, x4, x5) · · · (x2r−3, x2r−2, x2r−1)(x2r−1, x2r, y2s)

and therefore ℓ(cβcγ) ≤ r + s = 1
2
(|sup(cβ)|+ |sup(cγ)|).

For g = c1c2 · · · ck′ck′+1ck′+2 · · · ck′+2k′′ , where c1, . . . , ck′+2k′′ are disjoint cycles,
cν of odd length for 1 ≤ ν ≤ k′ and of even length for k′ + 1 ≤ ν ≤ k′ + 2k′′, it
follows that

ℓ(g) ≤
k′+2k′′∑

ν=1

ℓ(cν) ≤ 1

2

( k′∑

α=1

(|sup(cα)| − 1) +

2k′′∑

β=k′+1

|sup(cβ)|
)

=
1

2

(
|sup(g)| − k′

)
,

as was to be shown. �
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Proof of the lower bounds ℓ(g), κ(g) ≥ 1
2

(
|sup(g)| − k′g

)
. For g 6= id in Alt(X)

such that |sup(g)| ≤ 3, we have obviously 1 = ℓ(g) = κ(g) ≥ 1
2

(
|sup(g)| − k′g

)
=

1
2
(3 − 1). We consider from now on an element g in Alt(X) with |sup(g)| > 3,

and therefore with ℓ(g) > 1 and κ(g) > 1. As above, we continue and deal with
ℓ(g) only.

Suppose by contradiction that there exists g ∈ Alt(X) with |sup(g)| > 3 and

(♭) ℓ(g) <
1

2

(
|sup(g)| − k′g

)
;

suppose moreover that ℓ(g) is minimal for the elements for which (♭) holds. We
can write

(♭♭) g = t1 · · · tL
for some t1, . . . , tL ∈ TA

X with 1 < L = ℓ(g) < 1
2

(
|sup(g)| − k′g

)
. By Lemma 26,

we know that the supports sup(ti) are pairwise distinct.
For each i ∈ {1, . . . , L}, let xi, yi, zi ∈ X be such that ti = (xi, yi, zi). Set

Yi = sup(ti) = {xi, yi, zi} and Zi =
⋃

1≤j≤L, j 6=i Yj.

Claim: We have

(♯) |Yi ∩ Zi| ≥ 2 for all i ∈ {1, . . . , L}.
Upon conjugating g by ti+1 · · · tL, we can assume that i = L for the proof of

the claim.
Let us first check that |YL ∩ ZL| ≥ 1. Indeed, otherwise, set

(‡) h =

L−1∏

i=1

ti .

Observe that ℓ(h) ≤ L−1. We have |sup(h)| = |sup(g)|−3, and also k′h = k′g−1,
since the cycle of odd length ti has been deleted in the product defining h. It
follows that ℓ(h) < 1

2

(
|sup(h)| − k′h

)
. This contradicts the minimality hypothesis

on g made above; hence |YL ∩ ZL| ≥ 1.
Let us now show that |YL ∩ ZL| ≥ 2. Indeed, otherwise, |YL ∩ ZL| = 1. Let

again h be defined by (‡); observe again that ℓ(h) ≤ L− 1, and that |sup(h)| =
|sup(g)| − 2; it can be shown that k′h = k′g (details below). It follows that

ℓ(h) < 1
2

(
|sup(h)|−k′h

)
. This contradicts again the minimality hypothesis above;

hence |YL ∩ ZL| ≥ 2.
Here are the announced details. Let x, y, z ∈ X be such that YL ∩ ZL = {x}

and tL = (x, y, z); Then x is contained in the support of a cycle d of h of length
ℓ ≥ 2, and also by Lemma 31 in the support of a cycle c = dtL of g = htL of
length ℓ+ 2. Hence k′h = k′g.

This ends the proof of the Claim.

Lemma 26 and the claim just proven imply that, for each i ∈ {1, . . . , L}, there
are xi, yi, zi ∈ X such that
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ti = (xi, yi, zi),
yi, zi ∈ Zi.

Consider the product of 2L transpositions, equal to g, obtained from the product
(♭♭) by changing each ti to (xi, zi)(xi, yi), say

g = s1s2 · · · s2L−1s2L.

Set S = {s1, . . . , s2L}; define Γ̃(S) to be the multigraph with vertex set V :=⋃2L
j=1 sup(sj), and one edge connecting x, y ∈ V for every j ∈ {1, . . . , 2L} with

sj = (x, y); here, “multigraph” means that Γ̃(S) may have multiple edges. On
the one hand, the number of vertices of this graph is bounded below by |sup(g)|;
on the other hand, what we have shown so far implies that the degree of each

vertex of Γ̃(S) is at least 2; it follows that the number of edges of this graph,
which is at least twice its number of vertices, is bounded below by |sup(g)|; in
other words, L ≥ 1

2
|sup(g)|. This is strongly in contradiction with (♭); hence the

inequality of (♭) is not true, and this ends the proof of the lemma. �

Remark concerning the claim of the previous proof. Consider an element g ∈
Alt(X) which is a word g = t1 · · · tL in the letters of TA

X of minimal length
L = ℓ(g), now with 2 ≤ L ≤ 1

2
(sup(g)| − k′g). The cardinality |Y1 ∩ Z1| can be

any of 0, 1, 2, 3, as the following examples show:

g0 = (1, 2, 3)(4, 5, 6) for which

L = 2, |sup(g0)| − k′g0 = 6− 2, and Y1 ∩ Z1 = ∅,
g1 = (1, 4, 5)(1, 2, 3) = (1, 2, 3, 4, 5) for which

L = 2, |sup(g1)| − k′g1 = 5− 1, and Y2 ∩ Z2 = {1},
g2 = (5, 6, 7)(2, 3, 4)(1, 4, 7) = (1, 2, 3, 4, 5, 6, 7) for which

L = 3, |sup(g2)| − k′g2 = 7− 1, and Y3 ∩ Z3 = {4, 7},
g3 = (1, 8, 9)(5, 6, 7)(2, 3, 4)(1, 4, 7) = (1, 2, 3, 4, 5, 6, 7, 8, 9) for which

L = 4, |sup(g3)| − k′g3 = 9− 1, and Y4 ∩ Z4 = {1, 4, 7}.

Proposition 28 is a minor generalization of Proposition 11. Recall from Ap-
pendix B.c that pe(n) denotes the number of partitions of n ∈ N involving an
even number of positive parts.
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Proposition 28. Let X be an infinite set and S a generating set of Alt(X).
Suppose either that S = TA

X or that X = N and that SA
N
⊂ S ⊂ TA

N
. Then

CAlt(X),S(q) =
∞∑

u=0

p(u)qu
∞∑

v=0

pe(v)q
v

=
1

2

∞∏

j=1

1

(1− qj)2
+

1

2

∞∏

j=1

1

1− q2j

= 1 + q + 3q2 + 5q3 + 11q4 + 18q5 + 34q6

+ 55q7 + 95q8 + 150q9 + 244q10 + · · · .
Proof. We write κ for κAlt(X),S .

Let g ∈ Alt(X) be written as a product of disjoint cycles, say k′ of them of odd
lengths and 2k′′ of them of even lengths. Denote by go the product of the cycles of
odd lengths and by ge the product of the cycles of even lengths, so that g = goge.

Let λ(g) = (λ
(g)
1 , . . . , λ

(g)
k′ ) ⊢ u and ν(g) = (ν

(g)
1 , . . . , ν

(g)
2k′′) ⊢ v be the partitions

such that go is the product of cycles of lengths 2λ
(g)
1 +1, . . . , 2λ

(g)
k′ +1, and ge the

product of cycles of lengths 2ν
(g)
1 , . . . , 2ν

(g)
2k′′; note that |sup(go)| = 2u + k′ and

|sup(ge)| = 2v. By Lemma 27, we have

κ(go) = u, κ(ge) = v, and κ(g) = κ(go) + κ(ge) = u+ v.

The set of conjugacy classes in Alt(X) is naturally parametrized by pairs (λ, ν)
of partitions such that ν has an even number of positive parts. (It is important
here that the set X is infinite, otherwise some pairs correspond to two conjugacy
classes in the alternating group). The contribution to CAlt(X),S(q) of classes of el-
ements such that g = go is therefore

∑∞
u=0 p(u)q

u =
∏∞

i=1
1

1−qi
; the contribution of

classes of elements such that g = ge is
∑∞

v=0 pe(v)q
v = 1

2

∏∞
j=1

1
1−qj

+ 1
2

∏∞
j=1

1
1+qj

(this uses Proposition 34); finally CAlt(X),S is the product of these two contribu-
tions. �

Remark 29. (i) Recall from Observation 12 that we denote by
(
pA(n)

)
n≥0

= (1, 1, 3, 5, 11, 18, 34, 55, 95, 150, 244, . . .)

the sequence of coefficients of the series of Proposition 28. At the day of writing,
this sequence does not appear in [OEIS].

(ii) The sums and products in the previous proposition converge again for
q complex with |q| < 1. Numerically, the roots of smallest absolute value of
CAlt(N),TA

N

(q) are simple and located at ∼ 0.67± 0.43i.

(iii) As in the case of CSym(X),S(q), see Proposition 8(a), it can be observed
that the series CAlt(X),TA

X
(q) does not depend on the cardinality of X , as long as

X is infinite.
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6. Congruences à la Ramanujan for the coefficients of the series of

Proposition 28

Ramanujan, and later Watson, Atkin, Andrews, and others, have discovered
remarkable congruence properties for the partition function, including

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11),

p(25n+ 24) ≡ 0 (mod 52),

p(125n+ 99) ≡ 0 (mod 53),

p(49n+ 47) ≡ 0 (mod 72),

p(121n+ 116) ≡ 0 (mod 112).

See for example [Hard–40], or [Bern–06] and references there.

Consider a finite group H with M conjugacy class, an infinite set X , the
permutational wreath productW = H ≀XSym(X), a generating set S that satisfies
Condition (PCwr), and the corresponding conjugacy growth series

CW,S(q) =

∞∏

k=1

1

(1− qk)M
=

∞∑

n=0

p(n)(M)q
n

as in Proposition 19. There is an important literature on congruence properties of
the sequences

(
p(n)(M)

)
n=0,1,2,...

of so-calledmultipartition numbers. In particular:

(Gandhi)
p(5n+ 3)(2) ≡ 0 (mod 5),

p(11n+ 4)(8) ≡ 0 (mod 11),

(Andrews) p(5n+B)(2) ≡ 0 (mod 5) for B ∈ {2, 3, 4},

(CDHS) p(25n+ 23)(2) ≡ 0 (mod 25).

See [Gand–63], a particular case of Theorem 1 in [Andr–08], and Fromula (1.17)
in [CDHS–14], respectively.

Like the partition numbers p(n) and the multipartition numbers p(n)(M), the
coefficients of the conjugacy growth series

CAlt(X),S(q) =
1

2

∞∏

j=1

1

(1− qj)2
+

1

2

∞∏

j=1

1

1− q2j
=

∞∑

n=0

pA(n)qn

of Proposition 28 verify intriguing congruence relations, as was recorded in Obser-
vation 12 of the Introduction. With the notation of Appendix C, the coefficients
of this series can be written as

pA(n) =
1

2

(
p(n)(2) + p(n)(0,1)

)
.



30 ROLAND BACHER AND PIERRE DE LA HARPE

Proposition 30. With the notation above, we have

pA(5n+ 3) ≡ 0 (mod 5),

pA(10n+ 7) ≡ 0 (mod 5),

pA(10n+ 9) ≡ 0 (mod 5),

pA(25n+ 23) ≡ 0 (mod 25).

Proof. One the one hand, as recorded above in (Gandhi), it is known that p(5n+
3)(2) ≡ 0 (mod 5) for all n ≥ 0. On the other hand, it follows from the definitions
that

p(k)(0,1) =

{
p(m) if k = 2m

0 if k is odd.

Since p(5n+4) ≡ 0 (mod 5) for all n ≥ 0, we have also p(5n+3)(0,1) ≡ 0 (mod 5)

for all n ≥ 0. Hence pA(5n + 3) = 1
2

(
p(4n+ 3)(2) + p(4n + 3)(0,1)

)
≡ 0 (mod 5)

for all n ≥ 0.
Similarly, since p(n)(0,1) = 0 for all odd n, the congruences for pA(10n+7) and

pA(10n+ 9) follows from (Andrews), and for pA(25n+ 23) from (CDHS). �

On the conjectured relations of Observation 12. For pA(·), Proposition 30
contains the established part of Observation 12. The remaining congruences of
this observation follow from the congruences

p(49n+ 17)(2) ≡ 0 (mod 7), p(49n+ 33)(1) ≡ 0 (mod 7),

p(49n+ 31)(2) ≡ 0 (mod 7), p(49n+ 40)(1) ≡ 0 (mod 7),

p(49n+ 38)(2) ≡ 0 (mod 7), p(49n+ 19)(1) ≡ 0 (mod 7),

p(49n+ 45)(2) ≡ 0 (mod 7), p(49n+ 47)(1) ≡ 0 (mod 7),

p(121n+ 111)(2) ≡ 0 (mod 11), p(121n+ 116)(1) ≡ 0 (mod 11).

For what we know, the congruences of the left-hand side are conjectural, with
numerical evidence recorded in our Appendix C. The congruences on the right-
hand side are all established, and are indeed particular cases of the classical
congruences p(7n + 5) ≡ 0 (mod 7) and p(11n+ 6) ≡ 0 (mod 11).

Appendix A. Three lemmas on symmetric and alternating groups

For reference elsewhere, we state here three elementary facts. Recall from the
introduction that, for a, b ∈ Sym(X), we agree that ab denotes b followed by a.
The first lemma is straightforward:

Lemma 31. Let X be a set with at least 3 elements, and a, b ∈ Sym(X) two
cycles such that their supports have exactly one element in common.

Then ab is a cycle and sup(ab) = sup(a) ∪ sup(b). More precisely, if a =
(x1, . . . , xr) and b = (xr, . . . , xr+s−1), then ab = (x1, . . . , xr+s−1).
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The next lemma is well-known. See e.g. [GoRo–01, Lemmas 3.10.1 and 3.10.2],
where the proof of (2) is left as an exercise.

Lemma 32. Let X be a non-empty set, S a set of transpositions of X, and Γ(S)
the transposition graph, as in Definition 4.

(1) S generates Sym(X) if and only if Γ(S) is connected.
(2) Suppose that X is finite, say of cardinality n, and that Γ(S) is a tree. Let

s1, s2, . . . , sn−1 be an enumeration of the elements of S.
Then the product s1s2 · · · sn−1 is a cycle of length n.

Proof. (1) Denote by G the subgroup of Sym(X) generated by S.
Suppose that Γ(S) is not connected. Choose a connected component of Γ(S),

denote by X1 its vertex set, and set X2 = X r X1. Then G is a subgroup of
the proper subgroup Sym(X1)×Sym(X2) of Sym(X), hence S does not generate
Sym(X).

Assume that Γ(S) is connected. We have to show that G = Sym(X). Since
this is trivial when |X| ≤ 2, we assume that |X| ≥ 3. Let x, y, z be three
distinct elements in X ; observe that (y, z)(x, y)(y, z) = (x, z). For two distinct
elements u, v in X , it follows that (u, v) ∈ G by induction on the length of a path
connecting u and v in Γ(S). Hence G contains all transpositions of elements of
X , and therefore G = Sym(X).

(2) We proceed by induction on n. Note that the lemma is obvious for n = 2;
suppose that n > 2, and that the lemma holds up to n− 1.

Choose a leaf x of Γ(S). There is a unique i(x) ∈ {1, . . . , n − 1} such that
x ∈ sup(si(x)). Upon replacing the product s1 · · · sn−1 by a conjugate element, we
can assume that si(x) = sn−1. By the induction hypothesis, the product s1 · · · sn−2

is now a cycle c′ of length n−1. By Lemma 31, s1 · · · sn−2sn−1 = c′sn−1 is a cycle
of length n. �

The third lemma is a cheap confirmation of the fact that most pairs of elements
of Sym(n) generate either Alt(n) or Sym(n) [Baba–89].

Lemma 33. Let X be a non-empty set with at least 3 elements, a, b ∈ Sym(X)
two cycles, respectively of lengths ℓ,m ≥ 2, such that their supports have exactly
one element in common (as in Lemma 31). Let G be the subgroup of Sym(X)
generated by {a, b}.

Then G is isomorphic to the alternating group Alt(ℓ +m− 1) if ℓ,m are both
odd, and to Sym(ℓ+m− 1) otherwise.

Proof. Denote by x the element in sup(a)∩sup(b); set y = a−1(x) and z = b−1(x).
The commutator a−1b−1ab is the 3-cycle c := (x, y, z). By Lemma 23 for RA

ℓ+1,
the conjugates of c by the powers of a generate Alt(sup(a) ∪ {z}); similarly the
conjugates of c by the powers of b generate Alt({x} ∪ sup(b)).

Observe that the intersection Alt(sup(a) ∪ {z}) ∩ Alt({x} ∪ sup(b)) contains
c, and the union Alt(sup(a) ∪ {z}) ∪Alt({x} ∪ sup(b)) contains a set of 3-cycles
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similar to SA
ℓ+m−1. By Lemma 23 again, this time for SA

ℓ+m−1, the groupG contains
Alt(sup(a) ∪ sup(b)), isomorphic to Alt(ℓ+m− 1).

If ℓ and m are both odd, every element in G has an even signature, hence
G = Alt(sup(a) ∪ sup(b)) ≃ Alt(ℓ + m − 1). Otherwise, G is a subgroup of
Sym(sup(a) ∪ sup(b)) in which Alt(sup(a) ∪ sup(b)) is a proper subgroup, hence
G = Sym(sup(a) ∪ sup(b)) ≃ Sym(ℓ+m− 1). �

This lemma implies for example that the set

{(0, 1, 2), (2, 3, 4), (4, 5, 6), . . . , (2i, 2i+ 1, 2i+ 2), . . .}
generates Alt(N). It is a proper subset of the generating set SA

N
introduced in

the beginning of Section 5.

Appendix B. Reminder on partitions and derangements

B.a. The partition function. For n ∈ N, let p(n) denote the number of parti-
tions of n. The first values are given by the table

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
p(n) 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176

(more values in [OEIS, A000041]).
In our context p(n) is the number of conjugacy classes in the finite symmet-

ric group Sym(n), alternatively the number of conjugacy classes in Sym(N) of
elements of supports of size at most n. For this reason, the partition function
appears already in Propositions 1 and 9.

It is known since Euler that the generating series for p(n) has a product ex-
pansion

(EP1)
∞∑

n=0

p(n)qn =
∞∏

k=1

1

1− qk
.

See [Eule–48, Caput XVI], as well as, for example, [HaWr–79, Section 19.3]. The
equality can be viewed either between formal expressions, or between absolutely
converging sum and product for q ∈ C with |q| < 1.

There is an asymptotic formula for n→ ∞

p(n) =
1

4
√
3
(
n− 1

24

) exp

(
π

√
2

3

(
n− 1

24

) )

+ O

(
1

(
n− 1

24

)3/2 exp

(
π

√
2

3

(
n− 1

24

) ))

due to Hardy and Ramanujan [HaRa–18, Formula (1.41)]. For this and more on
p(n) when n → ∞, see e.g. [Chan–70, Chapter VII] and [Hard–40, Chapters VI
and VIII]. This shows in particiular that the sequence (p(n))n≥0 has intermedi-

ate growth, i.e. that its growth is superpolynomial and subexponential.
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B.b. Partitions with k parts. For n, k ∈ N, we denote by pk(n) the number of
partitions of n in exactly k positive parts, equivalently the number of partitions
of n with largest part k, equivalently the number of partitions of n − k in k
non-negative parts. Whenever needed, we set pk(n) = 0 for all n ∈ N and k < 0.
Numbers pk(·) appear in connection with finite symmetric groups, in Propositions
1, 9, 20, and 22.

We have classically

p0(0) = 1 and p0(n) = 0 for all n ≥ 1,

p1(0) = 0 and p1(n) = 1 for all n ≥ 1,

p2(n) = ⌊n/2⌋ for all n ≥ 0,

p3(n) = ⌊ 1

12
(n2 + 6)⌋ for all n ≥ 0 [OEIS, A069905],

. . . . . .

pn−2(n) = 2 for all n ≥ 4,

pn−1(n) = pn(n) = 1 for all n ≥ 2,

pk(n) = 0 for all k > n ≥ 0,

pk(n) = pk(n− k) + pk−1(n− 1) for all n ≥ k ≥ 1,
n∑

k=0

pk(n) =

n∑

k=1

pk(n) = p(n) for all n ≥ 1 ,

and the generating function

(EP2)
∑

n≥0

pk(n)q
n = qk

k∏

i=1

1

1− qi
for all k ≥ 0 .

(Observe that
∑

n≥0 pk(n)q
n =

∑
n≥k pk(n)q

n.) Up to the notation, Equality
(EP2) is contained in Number 312 of [Eule–48, Caput XVI].

Moreover, if P (n, t) :=
∑n

k=0 pk(n)t
k, then

(EP3)

∞∑

n=0

P (n, t)qn =

∞∏

j=1

1

1− tqj
.

This appears in Number 304 of [Eule–48, Caput XVI], and is used in the proof
of our Proposition 34.

For n, ℓ ∈ N with n ≤ 2ℓ, every partition of n − ℓ has at most ℓ parts. Thus
every partition of n − ℓ can be obtained from a unique partition of n in ℓ parts
by substracting 1 from each part. Consequently

(EP4) pℓ(n) = p(n− ℓ) for integers n, ℓ such that 0 ≤ ℓ ≤ n ≤ 2ℓ ,

or, setting k = n− ℓ,

(EP
′

4) pn−k(n) = p(k) for integers n, k such that k ≥ 0 and 2k ≤ n .
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The double sequence (pk(n))n≥0, 0≤k≤n gives rise to a generalized Pascal triangle
of which the first rows are:

(PTp)

p0(0)
p0(1) p1(1)
p0(2) p1(2) p2(2)
p0(3) p1(3) p2(3) p3(3)
p0(4) p1(4) p2(4) p3(4) p4(4)
p0(5) p1(5) p2(5) p3(5) p4(5) p5(5)
p0(6) p1(6) p2(6) p3(6) p4(6) p5(6) p6(6)
p0(7) p1(7) p2(7) p3(7) p4(7) p5(7) . . .

=

1
0 1
0 1 1
0 1 1 1
0 1 2 1 1
0 1 2 2 1 1
0 1 3 3 2 1 1
0 1 3 4 3 2 . . .

B.c. Partitions with even or odd numbers of parts. We denote by pe(n),
respectively po(n), the number of partitions of a non-negative integer n involving
an even, respectively odd, number of non-zero parts. Working with conjugate
partitions, we see that pe(n), respectively po(n), is equivalently given by the
number of partitions of n having an even largest part, respectively an odd largest
part. We have the trivial identity p(n) = pe(n) + po(n). These numbers pe(n)
appear in Proposition 28. Their values for n ≤ 15 are given by

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
pe(n) 1 0 1 1 3 3 6 7 12 14 22 27 40 49 69 86
po(n) 0 1 1 2 2 4 5 8 10 16 20 29 37 52 66 90
p(n) 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176

see A027187 and A027193 of [OEIS].

Proposition 34. (1) The generating series of the sequence pe(n) is

∞∑

n=0

pe(n)q
n =

∞∑

k=0

q2k
2k∏

j=1

1

1− qj

=
1

2

(
∞∏

j=1

1

1− qj
+

∞∏

j=1

1

1 + qj

)

=
∞∏

j=1

1

1− qj

∞∑

m=0

(−q)m2

.

(2) The generating series of the sequence po(n) is

∞∑

n=0

po(n)q
n =

∞∑

k=0

q2k+1

2k+1∏

j=1

1

1− qj

=
1

2

(
∞∏

j=1

1

1− qj
−

∞∏

j=1

1

1 + qj

)

= −
∞∏

j=1

1

1− qj

∞∑

m=1

(−q)m2

.
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Proof. (1) Using (EP2), we have

∞∑

n=0

pe(n)q
n =

∞∑

n=0

⌊n/2⌋∑

k=0

p2k(n)q
n =

∞∑

k=0

∞∑

n=0

p2k(n)q
n

=
∞∑

k=0

q2k
2k∏

j=1

1

1− qj
.

Also, if P (n, t) :=
∑n

k=0 pk(n)t
k as in (EP3), then

∞∑

n=0

pe(n)q
n =

1

2

(
∞∑

n=0

P (n, 1)qn +
∞∑

n=0

P (n,−1)qn

)

=
1

2

(
∞∏

j=1

1

1− qj
+

∞∏

j=1

1

1 + qj

)
.

For the third equality in (1), one way is to refer to [Fine–88]: see there Equation
(7.324), Page 6, and also Example 7, Page 39.

The proof of (2) is similar.

Here is an alternative to citing [Fine–88]. We have

∞∑

n=0

(pe(n)− po(n)) q
n = 2

∞∑

n=0

pe(n)q
n −

∞∑

n=0

p(n)qn =

∞∏

j=1

1

1 + qj

=
∞∏

j=1

1− qj

1− q2j
=

∞∏

j=1

(1− q2j−1) =
∞∏

j=1

1

1− qj

∞∏

k=1

(1− q2k−1)2(1− q2k) .

The Jacobi triple product identity reads

∞∏

k=1

(
1− x2k

)(
1 + x2k−1y2

)(
1 +

x2k−1

y2

)
=

∞∑

n=−∞

xn
2

y2n

(see e.g. [HaWr–79, Theorem 352]). For x = q and y =
√
−1 it reduces to

∞∏

k=1

(1− q2k−1)2(1− q2k) =
∞∑

n=−∞

(−q)n2

,

hence
∞∑

n=0

(pe(n)− po(n)) q
n =

∞∏

j=1

1

1− qj

∞∑

n=−∞

(−q)n2

.
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Finally:
∞∑

n=0

pe(n)q
n =

1

2

∞∑

n=0

(pe(n)− po(n)) q
n +

1

2

∞∑

n=0

(pe(n) + po(n)) q
n

=
1

2

∞∏

j=1

1

1− qj

∞∑

n=−∞

(−q)n2

+
1

2

∞∏

j=1

1

1− qj

=

∞∏

j=1

1

1− qj

∞∑

n=0

(−q)n2

,

as was to be shown. �

Observation 35. We have
( ∞∑

n=0

pe(n)q
n
)2

−
( ∞∑

n=0

po(n)q
n
)2

=
∞∑

n=0

p(n)q2n =
∞∏

j=1

1

1− q2j
.

Proof. The left-hand side can be written as

1

4

(
∞∏

j=1

1

1− qj
+

∞∏

j=1

1

1 + qj

)2

− 1

4

(
∞∏

j=1

1

1− qj
−

∞∏

j=1

1

1 + qj

)2

=
∞∏

j=1

1

1− q2j
,

and the claim follows. �

B.d. Derangements that are products of k cycles. A derangement is
a fixed point free permutation. For n, k ∈ N, denote by dk(n) the number
of derangements of {1, 2, . . . , n} that are products of k disjoint cycles. These
numbers appear in Remark 21 and Proposition 22.

Lemma 36. With the notation above, we have

(i) d0(0) = 1 ;
(ii) dk(1) = 0 for all k ∈ N ;
(iii) dk(n) = 0 for all n, k ∈ N with k = 0 or 2k > n ;

For all n ≥ 2 and k ≥ 1, we have

(iv) dk(n) = (n− 1)
(
dk(n− 1) + dk−1(n− 2)

)
;

(v) dk(n) =
∑n

a=2

(
n−1
a−1

)
(a− 1)! dk−1(n− a).

Proof. Claims (i) to (iii) are obvious.
For (iv), consider a derangement g of {1, . . . , n} product of k cycles.
Either n is in the support of a cycle (x1, . . . , xℓ−1, n) of length at least 3.

Replacing it by the cycle (x1, . . . , xℓ−1) produces a derangement of {1, . . . , n−1}
product of k cycles, and each of the latter is obtained n − 1 times in this way.
This explains the contribution (n− 1)dk(n− 1) of the right-hand side.
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Or n is in the support of a transposition, say (i, n) with i ∈ {1, . . . , n− 1}, so
that g is the product of (i, n) with a derangement h of {1, . . . , n−1}r{i} product
of k − 1 cycles. For each of the n− 1 possible values of i, there are dk−1(n− 2)
such permutations h, and this explains the contribution (n− 1)dk−1(n− 2).

For (v), a permutation contributing to dk(n) is the product of a cycle c of
length a ≥ 2, with n ∈ sup(c), and there are

(
n−1
a−1

)
(a − 1)! such cycles, with a

derangement of {1, . . . , n}r sup(c) which is a product of k − 1 cycles. �

Remark 37. (i) The double sequence (dk(n))n≥0, 0≤k≤n gives rise to a generalized
Pascal triangle of which the first rows are:

(PTd)

d0(0)
d0(1) d1(1)
d0(2) d1(2) d2(2)
d0(3) d1(3) d2(3) d3(3)
d0(4) d1(4) d2(4) d3(4) d4(4)
d0(5) d1(5) d2(5) d3(5) d4(5) d5(5)
d0(6) d1(6) d2(6) d3(6) d4(6) . . .

=

1
0 0
0 1 0
0 2 0 0
0 6 3 0 0
0 24 20 0 0 0
0 120 130 15 0 . . .

(ii) Besides the relations of Lemma 36, we have also

(Σd)

n∑

m=0

(
n

m

) m∑

k=0

dk(m) = n! for all n ∈ N,

which is useful to check numerical values. Indeed, each of the n! permutations g
of {1, . . . , n} induces a derangement of sup(g). For m ∈ {0, 1, . . . , n}, there are(
n
m

)
subsets of {1, . . . , n} of size m. Since there are

∑m
k=0 dk(m) derangements

of each of these subsets, we obtain the left-hand side. Relation (Σd) reduces to
d0(0) = 1 for n = 0, and to d0(0) + d0(1) + d1(1) = 1 + 0 + 0 = 1 for n = 1.
Otherwise, it can be written

(Σd′) 1 +
n∑

m=2

(
n

m

) ⌊m/2⌋∑

k=1

dk(m) = n! for all n ≥ 2.

The sum d(m) :=
∑m

k=0 dk(m) =
∑⌊m/2⌋

k=0 dk(m) is the number of derangements
of m objects, and there is a classical formula:

d(m) =
m∑

k=0

dk(m) = m!

(
1− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)m

1

m!

)

for all m ≥ 0; it follows that we have the relations

d(m) = md(m− 1) + (−1)m for all m ≥ 1 ,

d(m) = (m− 1)
(
d(m− 1) + d(m− 2)

)
for all m ≥ 2 ;

see e.g. [Stan–97, Example 2.2.1]. The sequence

(d(m))m≥0 = (1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961, ...)

is A000166 in [OEIS].
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(iii) Numbers dk(n) have some flavour of Stirling numbers. For n, k ∈ N with
0 ≤ k ≤ n, recall that the unsigned Stirling number of the fist kind

[
n
k

]

counts the number of ways to arrange n objects into k cycles (here, cycles of
length 1 are included, unlike elsewhere in this article, and this is why entries
in (PTd) are smaller or equal than entries in (PTStir). When n ≥ 1, we have[
n
k

]
= (n − 1)

[
n−1
k

]
+
[
n−1
k−1

]
. See for example [GrKP–89, Page 245] and [OEIS,

A132393]. The generalized Pascal triangle for
([

n
k

])
n≥0, 0≤k≤n

is

(PTStir)

1
0 1
0 1 1
0 2 3 1
0 6 11 6 1
0 24 50 35 10 1
0 120 274 225 85 15 1

Note that we have [
n

k

]
=

k∑

j=0

(
n

j

)
dk−j(n− j) .

Indeed, in the right-hand side, the term with a given value of j counts the number
of contributions to

[
n
k

]
with j fixed points.

Appendix C. Generalized Ramanujan congruences

This appendix is partly experimental. It grew out of our desire to understand
the reasons for the congruences for the numbers pA(n) described in Observation
12 and Section 6.

C.a. Definitions.

Definition 38. Given a sequence e = (e1, e2, e3, . . .) ∈ Z(1,2,3,...) of integers with
ed = 0 for d large enough, the corresponding generalized partition numbers

p(n)e are the coefficients of the power series

(1)

∞∑

n=0

p(n)eq
n =

∞∏

n=1

∞∏

d=1

1

(1− qdn)ed

=

∞∏

n=1

1

(1− qn)e1(1− q2n)e2(1− q3n)e3 · · · .

Remark 39. As a shorthand, we also write a sequence e as above as (e1, e2, . . . , ek)
when ek 6= 0 and ed = 0 for all d ≥ k + 1. For example:

(2)
∞∑

n=0

p(n)(0,3)q
n =

∞∏

n=1

1

(1− q2n)3
.
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For a sequence of the form (e1, . . . , ej , 0, . . . , 0, ek) with ek 6= 0, and ed = 0 when
j < d < k or d > k, we also write (e1, . . . , ej , (ek)k). For example:

(3)
∞∑

n=0

p(n)(0,1,28)q
n =

∞∏

n=1

1

(1− q2n)(1− q8n)2
.

For a positive integerM , the numbers p(n)(M) arising as coefficients of the series
defined by

∏∞
n=1

1
(1−qn)M

are called multi-partition numbers in the literature,

since p(n)(M) counts the number of ways of writing n as a sum of parts, each

coloured in one of M colours. More generally, for e ∈ Z(1,2,3,...) as above, p(n)e
can be interpreted as multi-partition numbers which constraints on the parts; for
example, the coefficient p(n)(0,1,28) of (3) counts the number of partitions of the
form

n = λ1 + · · ·+ λi + µ1 + · · ·+ µj + ν1 + · · ·+ νk

where
λ1 ≥ · · · ≥ λi ≥ 1 and λ1, . . . , λi are even,

µ1 ≥ · · · ≥ µj ≥ 1 and µ1, . . . , µj are multiples of 8,

ν1 ≥ · · · ≥ νk ≥ 1 and ν1, . . . , νk are multiples of 8.

Definition 40. A generalized Ramanujan congruence is

- a sequence e = (e1, e2, e3, . . .) ∈ Z(1,2,3,...) as above,
- an arithmetic progression (An+B)n≥0 with A ≥ 2 and 1 ≤ B ≤ A− 1
- a prime power ℓf , with ℓ prime and f ≥ 1,

such that

(4) p(An+B)e ≡ 0 (mod ℓf ) for all n ≥ 0.

Observation 41. (1) Let p(An+B)e ≡ 0 (mod ℓf ) be a generalized Ramanujan
congruence as above, and let m ≥ 2. Define a sequence e′ by e′d = ed/m if m
divides d and e′d = 0 otherwise. Then we have

(5)
p(mAn +mB)e′ ≡ 0 (mod ℓf ) for all n ≥ 0,

p(mn +B′)e′ = 0 for all n ≥ 0 and B′ ∈ {1, 2, . . . , m− 1}.
Observe that the integers of the support {d ≥ 1 | e′d 6= 0} of e′ have a common
divisor m ≥ 2.

A generalized Ramanujan congruence is primitive if the integers in its sup-
port are coprime. All examples of generalized Ramanujan congruences appearing
below are primitive.

(2) In lists of examples involving congruences modulo ℓ (and not ℓf with f ≥
2), we write shortly p(ℓn + B)e for p(ℓn + B)e ≡ 0 (mod ℓ). The Ramanujan
congruences of this sort in Section 6 can therefore be written

p(5n+ 4)(1), p(7n+ 5)(1), p(11n+ 6)(1), p(5n+B)(2), p(11n+ 4)(2).
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(With B ∈ {2, 3, 4}.) Moreover, we also write

p(ℓn+B)e, e′, ..., e′′

as a shorthand for p(ℓn+B)e, p(ℓn+B)e′ , . . ., p(ℓn +B)e′′ .
This shorthand notation will be used systematically in the lists of Subsections

C.b to C.f.

(3) When we consider below generalized Ramanujan congruence involving a
prime ℓ (and not a prime power ℓf with f ≥ 2), it suffices to consider sequences
e = (e1, e2, e3, . . .) with 0 ≤ ed ≤ ℓ − 1 for all d ≥ 0. This is a corollary of the
following standard proposition, for which we did not find a convenient reference.

Proposition 42. Let ℓ be a prime, S(q) =
∑∞

n=0 snq
n, T (q) =

∑∞
n=0 tnq

n two
power series in Z[[q]], and (pn + B)n≥0 an arithmetic progression of common
difference ℓ and first term B ≥ 1 not divisible by ℓ. Set

U(q) = S(q)
(
T (q)

)ℓ
=

∞∑

n=0

unq
n.

Assume that sℓn+B ≡ 0 (mod ℓ) for all n ≥ 0.
Then uℓn+B ≡ 0 (mod ℓ) for all n ≥ 0.

Proof. For the binomial coefficients, we have the well-known congruences
(
ℓ

j

)
≡ 0 (mod ℓ) for all j ≥ 0 with j 6≡ 0 (mod ℓ).

Hence the power series
(
T (q)

)ℓ
=
∑∞

n=0 t
′
nq

n and T (qℓ) =
∑∞

n=0 tnq
ℓn have coef-

ficients that are congruent modulo ℓ; in particular, t′n ≡ 0 (mod ℓ) for all n ≥ 0
with n 6≡ 0 (mod ℓ).

In particular, if sℓn+B ≡ 0 (mod ℓ) for all n ≥ 0, then uℓn+B ≡ 0 (mod ℓ) for
all n ≥ 0. �

Corollary 43. Consider a sequence e = (e1, e2, e3, . . .) ∈ Z(1,2,3,...), an arithmetic
progression (An+B)n≥0 with A ≥ 2 and 1 ≤ B ≤ A− 1, a prime ℓ, and another
sequence e′ = (e′1, e

′
2, e

′
3, . . .) ∈ Z(1,2,3,...). Assume that e′d ≡ ed (mod ℓ) for all

d ≥ 0.
If p(An + B)e ≡ 0 (mod ℓ) for all n ≥ 0 (as in Definition 40), then p(An +

B)e′ ≡ 0 (mod ℓ) for all n ≥ 0.

We now proceed to indicate a list of examples of generalized Ramanujan con-
gruences. Except for a few exceptions, they are CONJECTURAL. In each case,
they have been checked numerically, for p(n)e with n ≤ 5000.

We use the shorthand notation explained in Remark 41(2).

C.b. Some examples of the form p(3n+B)e ≡ 0 (mod 3).

p(3n+ 2)(1,1), (2,1,0,2), (2,1,0,1,2,110,120), (1,1,0,2,1,110,220) .
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C.c. Some examples of the form p(5n + B)e ≡ 0 (mod 5). For ℓ = 5 and
when ed = 0 for all d ≥ 3, we find the Ramanujan congruences

p(5n+ 2)(2), (3,1), (1,3), p(5n+ 3)(2), (4), (3,1), p(5n+ 4)(1), (2), (4), (2,2), (1,3) .

When ed = 0 for all d not dividing 4, we find moreover the Ramanujan congru-
ences

p(5n+ 2)(2,0,0,2), (3,1,0,2), (3,1,0,3), (2,0,0,4), (4,1,0,4) ,

p(5n+ 3)(1,2,0,1), (2,0,0,2), (4,0,0,2), (3,1,0,3), (1,2,0,3) ,

p(5n+ 4)(1,2,0,1), (3,2,0,1), (2,1,0,3), (3,1,0,3), (3,3,0,3), (4,1,0,4), (4,3,0,4) .

When ed = 0 for all d not dividing 6, we find moreover

p(5n+ 1)(0,2,2), (0,4,2), (0,2,3,0,0,1) ,

p(5n+ 2)(1,3,2), (1,3,4,0,0,1), (4,1,1,0,0,3), (4,1,3,0,0,3), (3,1,1,0,0,4), (3,1,3,0,0,4) ,

p(5n+ 3)(1,1,1,0,0,1), (1,4,3,0,0,1), (1,3,4,0,0,1), (3,3,4,0,0,1) ,

p(5n+ 3)(3,1,0,0,0,2), (2,3,4,0,0,2), (4,2,2,0,0,3), (3,2,2,0,0,4) ,

p(5n+ 4)(0,2,2), (0,2,4), (1,4,3,0,0,1), (3,4,3,0,0,1), (2,4,3,0,0,2) ,

p(5n+ 4)(4,1,1,0,0,3), (4,3,1,0,0,3), (1,4,3,0,0,3), (3,1,1,0,0,4), (3,3,1,0,0,4) .

When ed = 0 for all d not dividing 8, we find moreover

p(5n+ 2)(2,28), (1,3,28), (3,1,0,3,28), (4,1,0,4,28) ,

p(5n+ 3)(3,1,0,1,18), (2,0,0,3,18) ,

p(5n+ 4)(4,4,38), (1,1,0,1,38), (2,3,0,1,38), (3,4,0,4,38), (2,4,0,1,48), (3,0,4,48) .

C.d. Some examples of the form p(7n+B)e ≡ 0 (mod 7).

p(7n+ 2)(4), p(7n+ 3)(6), p(7n+ 4)(4), (6), p(7n+ 5)(1), (4), p(7n+ 6)(4), (6),

p(7n+ 2)(2,2), (1,5), (3,5), p(7n+ 3)(5,1), (2,2), p(7n+ 4)(1,2), (2,2), (4,4), (1,5),

p(7n+ 5)(5,1), (1,5), (5,5), p(7n+ 6)(2,1), (5,1), (2,2), (5,3),

p(7n + 2)(6,1,0,3), (3,5,0,3), (4,0,0,4), (1,5,0,4), (5,1,0,5), (6,1,0,6),

p(7n + 3)(1,4,0,1), (2,2,0,2), (5,1,0,4), (5,1,0,5), (2,2,0,6),

p(7n + 4)(1,4,0,1), (3,6,0,1), (3,2,0,3), (3,5,0,3), (4,1,0,5), (5,1,0,5), (6,1,0,6), (6,5,0,6),

p(7n + 5)(2,2,0,2), (2,6,0,2), (4,3,0,3), (3,5,0,3), (3,1,0,6), (6,1,0,6), (6,3,0,6),

p(7n + 6)(1,4,0,1), (4,5,0,1), (2,2,0,2), (6,2,0,2), (2,4,0,2), (3,5,0,3), (1,6,0,3), (3,3,0,4), (5,0,0,5), (5,1,0,5).
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C.e. Some examples of the form p(11n+B)e ≡ 0 (mod 11).

p(11n+ 2)(8), p(11n+ 3)(10), p(11n+ 4)(8),

p(11n+ 5)(8), p(11n+ 6)(1), (10),

p(11n+ 7)(3), (8), p(11n+ 8)(5), (8), (10),

p(11n+ 9)(7), (8), (10), p(11n+ 10)(10).

p(11n+ 2)(9,1), (2,6), (1,9), p(11n+ 3)(4,1), (6,2), (2,6), p(11n+ 4)(2,3), (2,6),

p(11n+ 5)(6,2), (7,7), (1,9), p(11n+ 6)(9,1), (6,2), (2,5), (2,6), (9,7),

p(11n+ 7)(9,1), (2,6), (1,9), (7,9), p(11n+ 8)(9,1), (6,2), (8,4), (1,9), (9,9),

p(11n+ 9)(3,2), (6,2), (2,6), (6,6), (1,9), p(11n+ 10)(9,1), (5,2), (6,2), (1,4), (4,8),

p(11n+ 2)(3,2,0,2), (2,6,0,2), (6,6,0,2), (3,2,0,3),

p(11n+ 2)(5,2,0,7), (9,1,0,9), (8,0,0,10), (10,1,0,10),

p(11n+ 3)(1,8,0,1), (5,9,0,4), (5,9,0,5), (7,2,0,7), (9,1,0,9), (6,2,0,10),

p(11n+ 4)(8,9,0,1), (3,2,0,3), (3,0,0,4), (9,2,0,7), (9,1,0,9), (2,7,0,9), (9,9,0,9).

p(11n+ 5)(6,0,0,1), (3,2,0,3), (10,5,0,3), (1,2,0,4),

p(11n+ 5)(4,6,0,4), (5,9,0,5), (5,7,0,6), (10,1,0,10),

p(11n+ 6)(4,2,0,1), (1,8,0,1), (2,1,0,2), (2,6,0,2), (8,7,0,3),

p(11n+ 6)(5,9,0,5), (3,9,0,6), (7,3,0,8), (9,0,0,9), (9,1,0,9), (10,3,0,10).

p(11n+ 7)(4,1,0,2), (2,6,0,2), (3,2,0,3), (6,9,0,3), (4,8,0,4), (10,3,0,5), (1,0,0,6),

p(11n+ 7)(8,2,0,6), (5,5,0,8), (8,9,0,8), (9,1,0,9), (7,2,0,9), (3,4,0,9), (10,1,0,10),

p(11n+ 8)(1,8,0,1), (2,3,0,2), (2,6,0,2), (4,0,0,3), (3,2,0,3), (3,6,0,3),

p(11n+ 8)(9,1,0,4), (8,5,0,5), (5,9,0,5), (10,2,0,6), (6,4,0,6),

p(11n+ 8)(2,6,0,6), (1,10,0,7), (3,7,0,8), (7,1,0,10), (10,1,0,10).

p(11n+ 9)(1,8,0,1), (9,8,0,1), (2,2,0,3), (3,2,0,3), (9,4,0,3),

p(11n+ 9)(4,10,0,4), (5,2,0,5), (6,7,0,5), (2,9,0,5), (5,9,0,5),

p(11n+ 9)(10,1,0,7), (8,0,0,8), (1,9,0,8), (9,1,0,9), (10,1,0,10), (5,3,0,10),

p(11n+ 10)(1,8,0,1), (7,10,0,1), (2,6,0,2), (9,7,0,2), (5,9,0,2), (2,1,0,4),

p(11n+ 10)(7,2,0,5), (4,9,0,5), (5,9,0,5), (6,6,0,6), (8,3,0,7), (7,9,0,7),

p(11n+ 10)(10,0,0,8), (6,2,0,8), (4,1,0,9), (1,8,0,9), (3,5,0,10), (10,7,0,10).
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C.f. Some examples of the form p(13n+B)e ≡ 0 (mod 13). An incomplete
list of (conjectural) primitive examples modulo 13 involving only unit-roots of
order at most 4 is given by:

p(13n+ 2)(11,1), (2,8), (2,8,0,2), (8,8,0,6), (11,1,0,11), (5,6,0,11),

p(13n+ 3)(12), (8,2), (1,10,0,1), (5,0,0,5), (10,6,0,6), (3,10,0,9),

p(13n+ 4)(10), (12), (8,2), (2,8), (1,11), (2,6,0,1), (1,10,0,1), (3,4,0,3), ...,

p(13n+ 5)(10), (11,1), (1,11), (6,1,0,2), (2,8,0,2), (3,4,0,3), ...,

p(13n+ 6)(12), (11,1), (8,2), (2,8), (1,10,0,1), (2,8,0,2), (8,12,0,2), ...,

p(13n+ 7)(10), (11,1), (8,2), (6,3), (1,11), (2,8,0,2), (10,10,0,2), (3,4,0,3), ...,

p(13n+ 8)(10), (12), (8,1), (11,1), (8,2), (1,10,0,1), (2,8,0,2), (12,8,0,2), (8,10,0,2), ...,

p(13n+ 9)(10), (2,8), (1,11), (10,12), (12,9,0,1), (1,6,0,2), (10,8,0,2), ...,

p(13n+ 10)(12), (8,2), (2,8), (12,10), (8,12), (1,7,0,1), (1,10,0,1), (5,1,0,3), ...,

p(13n+ 11)(10), (12), (11,1), (8,2), (1,8), (10,10), (1,11), (3,5,0,1), (2,8,0,2), ...,

p(13n+ 12)(10), (3,6), (2,8), (12,8), (1,11), (5,3,0,1), (1,5,0,1), (7,0,0,2), ....

C.g. Computational aspects. We outline here briefly the discovery of the (con-
jectural) generalized Ramanujan congruences previously described.

The computations where done in two steps. In a first step, we used series
expansions of

∑∞
n=0 p(n)q

n (with coefficients reduced modulo a small fixed prime
l) and its powers up to degree N ∼ 200 in order to guess them. In a second step,
we redid the computations up to degree N = 5000 for the discovered examples
(we did not encounter false positives, they should be rare since the probability for
a false positive should naively be close to l−N/l for examples of the kind considered
here.)

Conjectural examples where guessed by considering all possible exponents ei ∈
{0, . . . , p − 1} for i ranging over the set D(a) of all divisors of a small integer
a (we considered mainly a ∈ {2, 3, 4, 6, 8}). We wrote a small Maple-program
generating all l|D(a)| possible series

∏
i∈D(a)A

ei
i up to order N over Fl where Aj =∑∞

n=0 P (n)q
jn (with coefficients reduced modulo l and working only up to degree

N), and checking for generalized Ramanujan congruences up to order N .
Examples of generalized Ramanujan congruences seem surprisingly abundant,

it is not hard to find them, they come in large numbers and seem to be very
common.
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