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Stabilization of a Compliant Humanoid Robot Using Only Inertial
Measurement Units with a Viscoelastic Reaction Mass Pendulum Model

Alexis Mifsud1,2, Mehdi Benallegue1,2 and Florent Lamiraux1,2

Abstract— To guarantee its balance, a humanoid robot has
to respect some contact force constraints. Therefore, traditional
controllers generate motions complying with these constraints,
but they usually consider the robot as stiff and the joint position
perfectly known. However, several robots contain compliant
parts in their structure. This flexibility modifies the forces at
contacts and endangers balance. However, most solutions to
stabilize the robot rely on force sensors. But several humanoid
robots aren’t equipped with these sensors. This paper has two
aims. The first one is to develop a compliance stabilizer using
the center of mass position and upper-body orientation through
a viscoelastic reaction mass pendulum model. The second
objective is to show the performances of such a stabilizer when
relying only on an IMU-based state observer. Experimental
results on HRP-2 robot show that the stabilization successfully
rejects perturbations with high gains using only these IMU
signals. Moreover, the actuation of the upper-body orientation
provides redundancy, robustness and finally improved perfor-
mances to the stabilizer.

I. INTRODUCTION

A humanoid robot has the property to be underactuated.
The dynamics of the free-flyer can only be driven by
generating reaction contact forces with the environment. At
the same time, these forces are constrained by the nature
of the contact the robot has with its environment. These
constraints are particularly important in the case of upright
posture, such like during standing or walking, because con-
tacts only happen with relatively small areas on the ground.
Furthermore the height of the center of mass (CoM) reduces
the feasible accelerations of the floating base [1]. A common
criterion to respect these constraints is to ensure that the
position of the Center of Pressure (CoP) also called Zero
Moment Point (ZMP) always lies strictly inside the support
polygon of the robot [2]. This criterion is derived from the
unilaterality of the reactive contact forces, i.e. they must have
a positive vertical component.

However, other constraints can apply for contact reaction
forces. They can be due for example to geometry, friction
cones, underactuation or torque limits. Some constraints may
also be the consequence of the presence of compliant parts
in the structure of the robot. For instance, the presence of
elastic compliance creates a coupling between the reaction
forces and its geometric deformation. The reaction forces are
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Fig. 1. The foot of HRP-2. Between the ankle joint and the sole of the
robot, there is a rubber bush.

then limited by the kinematics constraints and variations of
theses forces are bounded by the velocity limits of the robot.

The humanoid robot HRP-2 contains a flexible compo-
nents between the ankle and the sole [3] (see Fig. 1). This
flexibility is used to absorb impacts and protect the force
sensors. It is not actuated and its deformations may lead
to modifications of the robot dynamics. These dynamics
may endanger the balance and lead to a fall. Therefore, the
flexibility requires to be precisely estimated and relevantly
compensated in order to absorb external perturbations.

In our research, we explore the possibilities of both esti-
mation and control for humanoid and legged robots without
using force sensors. In fact, force sensors are usually reliable
and play an important role in most stabilization techniques.
However, they are usually very expensive, fragile and require
fine calibration [4]. Furthermore, some humanoid robots
are not equipped with these sensors such as Aldebaran’s
Romeo [5].

From this viewpoint, we have already shown in previous
works that it is possible to design an estimator to reconstruct
the flexibility state using only an Inertial Measurement
Unit (IMU) and proprioceptive informations provided by
the embodied controller [6]. We have shown that using
a naive implementation of a CoM controller taking into
account the flexibility, we were able to show that this
estimation is reliable enough to drive a closed-loop control
and stabilization of the center of mass position in the world
reference frame [7]. We have also shown that by adding a
model of the flexibility dynamics we are able to not only
estimate and predict the flexibility state dynamics but also
the contact wrenches and thus the ZMP dynamics without
using any force sensor [8].

On the basis of the estimation provided by the IMU-based
observer, the aim of this paper is to design a novel stabilizer



for the flexibility able to reject external perturbations. The
novelty of this stabilizer is to use both linear and angular
momenta as actuation and to rely only on IMU sensors. To
do so, the robot is modeled as a rotating mass on top of an
inverted pendulum linked to the ground with a compliant
joint. We call this model the viscoelastic reaction mass
pendulum. As developed in Section V, unlike most current
stabilization approaches, which uses these two actuations,
they work together in our method in a unified controller and
guarantee the stabilization of the flexibility. This stabilizer
can also be considered as a validation of the IMU-based
estimator, since the angular momentum controller moves the
torso of the robot which contains the IMU. The stability of
the control is a good assessment that the state observer is able
to distinguish between the actuated motion, the deformation
of the flexibility and the external perturbations.

In section II we present our control model, to continue in
section III by showing how we use this model to construct
a stabilizer of the flexibility. We present then in section IV
experimental settings and results. And finally we discuss the
approach and conclude in section V.

II. MODELING

The flexibility of the HRP-2 robot lies between the ankles
and the sole of each foot. When subject to a deformation,
it creates additional torques on the foot and thus modifies
the position of the ZMP. However, in most applications,
this robot is modeled and controlled as a perfectly stiff
robot [9]. Therefore, a stable posture or a balanced movement
for the stiff robot may become unstable with the actual
HRP-2 robot. Moreover, external perturbations can induce
unpredicted excitations of the flexibility and endanger the
balance even more. The flexibility has to be controlled to
compensate and reject these disturbances.

To control the flexibility, a model of its dynamics has to
be designed. Hereinafter we define the flexibility as in our
precedent works [8]. We present then a simplified model of
its dynamics using a flexible inverted pendulum with a single
rigid-body on top of it. This model is similar as a reaction
mass pendulum model[10] but with flexible parts at the base
(see Figure 3).

A. Flexibility definition

HRP-2 is a position-controlled robot with an incompliant
actuation. Therefore, apart from the flexibility, we may
consider it as a moving but stiff multy-body. We assume
that, in the local frame of the robot Rl, we perfectly know
for each limb Bi its position cl,i and orientation Rl,i. We
call Rl the “control” frame. We note MBi

l the homogeneous
matrix representing the position and orientation of the body
Bi in Rl (see Figure 2).

Due to the flexible bush between the ankle and the sole
of each foot, we consider that the robot is connected to
its environment through a non-stiff contact. Therefore, this
flexibility moves the position of each limb to a position
ci and orientation Ri in the world reference frame R

R

Rl

MBi

l

MBi

Mflex

Fig. 2. Definition of the flexibility

represented by the homogeneous matrix MBi (see Figure
2).

Since the robot is considered as a stiff multi-body, the
flexibility modifies the configuration of all the bodies with
the same transformation: a rotation of matrix R and a
translation of vector t represented by the homogeneous
matrix Mflex such that

Mflex = MBi(MBi

l )−1 (1)

The flexible bushes are compliant along the 6 degrees
of freedom (DoF). In [8], we presented a model of the
flexibility which includes them all. Nevertheless, the flex-
ibility is much stiffer in translation and does not require
stabilization nor compensation in these DoF. Since this paper
deals with stabilization we neglect the translational part t of
this transformation. Hence, we consider that the robot has
one contact at the origin, and that the flexibility is only a
rotation of matrix R. The double support case can be reduced
to a single support by using a linearization of the elasticity
of translation.

We define then the following flexibility state:

xflex =
(
ΩT ωT

)T
(2)

where Ω is defined in such way that R = exp([Ω]×) with
[�]× the skew-symmetric operator such that:xy

z


×

=

 0 −z y
z 0 −x
−y x 0

 (3)

and ω is defined such that Ṙ = [ω]×R.

B. Contact torque modeling

We consider that the robot has one flexible contact with
the ground. This flexibility has a viscoelastic response to
deformations. In other words, the torque generated at the
contact is:

Tc = −KTsΩ−KTdω (4)



where KTs is the elasticity matrix and KTd is the damping
matrix. These matrices are both symmetric positive definite.

In the double support case, the flexibility has a different
behavior according to the axis of rotation of the deformation.
Around the axis which joins the contacts, the behavior
is similar as the simple support case, but with summed
stiffness and damping. In the other axes the deformation
depends on the linear elasticity and the distance between
the feet. A linearization of this dynamics can permit to
define an equivalent stiffness and damping which reflects
these phenomena. This allows to consider the double support
case as a single support case with equivalent stiffness and
damping matrices.

C. Newton-Euler dynamics

The external forces F are the weight and the contact forces
Fc. These external forces drive the modification of the linear
momentum as expressed in the following Newton’s equation:

F = Fc − gmuz =
d

dt
(mċ) (5)

with c the center of mass expressed in the world reference
frameR, m the total mass of the robot and uz =

[
0 0 1

]T
is the unit vector along the vertical z axis.

By expressing this linear momentum in Rl, using (1) for
the CoM position, and using two time-derivations we obtain:

Fc =m[ω̇]×Rcl +m[ω]
2
×Rcl + 2m[ω]×Rċl

+mRc̈l + gmuz (6)

The external moment T is composed of the moment of the
weight and the contact torque. According to Euler’s equation,
this external moment is equal to the time-variation of the total
angular momentum σ of the robot expressed in the world
reference frame R. This is summarized in the following
equation:

T = Tc − [Rcl]×gmuz = σ̇ (7)

If the robot didn’t have flexibility, the angular momentum
σ should have been equal to σl, the angular momentum
expressed in Rl. Because of the flexibility, σ can be divided
into the angular momentum σl in Rl but expressed in R and
the angular momentum due to the motion of the flexibility.
This is summarized in the following expression:

σ̇ =
d

dt

(
Rσl +RIlR

Tω
)

(8)

leading to:

Tc =
d

dt

(
Rσl +RIlR

Tω
)

+ [Rcl]×gmuz (9)

D. The viscoelastic reaction mass pendulum model

Controlling the contact torques Tc allows to drive the
flexibility. Equation (9) shows that for this purpose we need
to control the position of the CoM cl in Rl and the angular
momentum σl. More precisely, the angular momentum σl
can be rewriten as:

σl = σr +m[cl]×ċl, (10)

where we can distinguish (i) σr the angular momentum
around the CoM, due to the angular velocity of the rigid
body in Rl and (ii) the momentum due to its translational
velocity in Rl. We can also express the inertia matrix Il as:

Il = Ir −m[cl]
2
×, (11)

where we can distinguish between (i) Ir the inertia tensor
of the robot expressed in Rr, and (ii) the inertia due to the
mass m of the body with a center of mass cl. These two
similar decompositions make a convenient grounding for a
simplified model of the robot.

It consists in a rotating rigid body of mass m, that we call
the “trunk”, on the top of a massless inverted pendulum. This
model is similar to the reaction mass pendulum model [10],
except that the contact with the ground is a viscoelastic joint
(see Figure 3).

We denote by Rl the orientation of the trunk. The tensor
of inertia Ir is then expressed as:

Ir = RlI0R
T
l , (12)

where I0 is the inertia tensor of the trunk in its own local
frame. By derivation:

İr = [ωl]×RlI0R
T
l −RlI0R

T
l [ωl]×, (13)

where ωl the angular velocity of the trunk. Similarly we
express σr as:

σr = Irωl = RlI0R
T
l ωl (14)

By derivation we have:

σ̇r = [ωl]×RlI0R
T
l ωl +RlI0R

T
l ω̇l (15)

The dynamics of the flexibility is derived hereinafter. By
replacing (10) and (11) in (9) and by identifying Fc using
(5) we have:

Tc =
d

dt

(
Rσr +RIrR

Tω
)

+ [Rcl]×Fc (16)

Finally, by inverting (16) we are able to have a model of
the flexibility dynamics:

ω̇ = (RIrR
T −m[Rcl]

2
×)−1(Tc

− [Rcl]×

(
m[ω]

2
×Rcl + 2m[ω]×Rċl +mRc̈l + gmuz

)
−
(

[ω]×RIrR
Tω +RİrR

Tω + [ω]×Rσr +Rσ̇r

)
) (17)

Equations (4) and (17), provide us the dynamics at the
basis of our stabilization scheme that we describe hereinafter.
Note that this dynamics is a contribution of this paper since it
is different from the one presented in our previous work [8]
since the latter one was more general and does not allow the
simplifications provided by the reduced model.

III. STABILIZATION

The model developed in section II allows to predict the
flexibility dynamics given the center of mass dynamics in
Rl, the trunk angular dynamics in Rl and the flexibility state
xflex. In this section we show how we use it in a controller,
which aims to stabilize the flexibility around an equilibrium
state defined in section III-C with the control architecture
presented in section III-B.
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Fig. 3. 2D view of the control model

A. Observation of the flexibility

The flexibility state is estimated by using a state observer
based on an extended Kalman filter presented in [8]. The
Kalman filtering technique requires a prediction and an
update steps. The prediction is achieved through a model
of the flexibility dynamics. This model is very similar to the
dynamics of Equation (17), except that it is more complex
because we consider explicitly the case of multiple contacts,
the translation part is not neglected and the model takes into
account all the bodies of the robot. Therefore, this dynamics
also depends on the state of the robot expressed in the control
frame (e.g. acceleration of the CoM, variations of angular
momentum, etc.). These values are available at the control
level and are considered well known.

The prediction of the state is corrected using embedded
inertial measurement units. These usually include an ac-
celerometer and a gyrometer. These sensors together with the
predictor model provide the full observability of the system.
We have shown in [8] that besides the accurate observation
of the state dynamics, we were able to estimate with relative
accuracy the contact forces, without resorting to any force
estimator and to reconstruct the trajectory of the ZMP in
real-time.

B. Controlling the flexibility

The stabilization aims at using the CoM positions and
trunk orientations, to compensate the disturbances on the
flexibility. Even if the flexibility is a 3D rotation, only
horizontal axes x and y influence balance. In addition, the
perturbations faced by an upright standing humanoid robot
occur more intensely around the horizontal axes than the
vertical. Furthermore, the robot HRP-2 is stiffer around the
vertical axis of the foot and does not require stabilization.
Therefore, we consider that this part of the flexibility is not
relevant in the closed-loop control. Let’s define the following
state vector:

x =
(
cTl Ω̄l

T
Ω̄T ċTl ω̄l

T ω̄T
)T

(18)

and the following control vector:

u =
(
c̈Tl

¯̇ω
T
l

)T
(19)

where the barred vector ∗̄ represents the vector ∗ with
removed vertical component. The dynamical system

ẋ = f(x,u) (20)

is the combination of the dynamics of Equations (17), (12),
(13), (14) and (15) and the trivial dynamics of cTl and Ω̄l

T .
Since the aim of our approach is the stabilization around
the desired state, the local dynamics is approximated by
its linearization. The desired x∗ state is described in the
next subsection. The linearization and discretization of this
dynamics defines the matrices A and B such that:

δxk+1 = Aδxk +Buk (21)

with δxk = xk−x∗ and A and B are matrices of appropriate
dimensions.

To generate the control, we use a Linear Quadratic Regu-
lator (LQR) to minimize over the control space the following
quadratic cost L such that:

L =

N∑
k=0

xT
kQxk + uT

kRuk (22)

where N is the horizon of the prediction and Q and R are
respectively weight matrices on the state and the control.
Using the model of Equation (21), this problem boils down
to solving a Riccati Equation, which provides us with the
optimal gain matrix G such that uk = Gδxk induces the
minimum cost L. The tuning of the cost matrices Q and R
allows to modify the responsiveness and the stiffness of the
control.

C. Desired state

By setting ẋ = 0 in (17) we obtain the following equality
representing an equilibrium criterion which provide us with
all the equilibrium states of the system:

KTsΩ0 = [R0 (cl,0)]×gmuz (23)

where Ω0 and R0 equilibrium values for the flexibility and
cl,0 an equilibrium value for the position of the center of
mass.

To keep the best control on the system, we choose to min-
imize the energy stored on the flexibility and thus consider
the case where the flexibility is at rest. According to Equation
(4), this correspond to the null orientation of the flexibility
Ω0 = 0. The equilibrium criterion of Equation (23) gives
naturally that the CoM has to be above the contact point
(at the origin) cl,0 =

(
0 0 l

)T
where l is any height of

the CoM. Of course, the orientation of the trunk Rl can be
arbitrarily chosen, we set it to identity. This equilibrium point
is the point of the linearization of the model in Equation (20).

This equilibrium state is passively stable if and only if
the flexibility stiffness is higher than mgl. Nevertheless,
we have shown in [7] that the state is locally controllable
around this state using only CoM actuation. In this paper
we also add the actuation of the trunk orientation, and
thus we have redundancy in control and the controllability
cannot be altered. Therefore the controllability of our system



guarantees the stability of the closed-loop system around this
state.

IV. EXPERIMENTS

A. Experimental setting

The stabilizer of the previous section has been imple-
mented in a C++ real time framework. The humanoid used
for our experiments is HRP-2. For the wrench model we
use isotropic matrices KTs = ktsI33, KTd = ktdI33,
KFs = kfsI33 and KFd = kfdI33 with the following values:
kts = 400 n.m.rad−1, ktd = 10 n.m.s.rad−1, kfs = 40000
n.m−1 and kfd = 600 n.s.m−1. These values are inspired
from the identification made for a similar HRP-2 robot [11].

The robot is controlled at 200 Hz. Our control environment
is the Stack of Tasks framework [12] which is a task-based
hierarchical inverse kinematics solver. The tasks tracked by
the solver were set to keep (i) both feet on the ground at
20 cm distance, (ii) the center of mass above the middle
position of the line joining the two supports and (iii) the
upper-body to a zero orientation. This position respects the
equilibrium state describe in section III-C. The actuation acts
then on the position of the center of mass and the orientation
of the “trunk”. Here the trunk will be reduced to the upper-
body only because the legs are constrained to guarantee the
support tasks. The upper-body of HRP-2 contains most of
the mass and an important part of the moment of inertia.
Therefore, even if the influence of the degree of freedom is
smaller than the full body, it contributes to the stability and
performance of the controller as we show hereinafter.

For testing the performances of the stabilizer we perform
an experiment where a reproducible perturbation is given to
the robot. A constant >0.5 Kg mass is attached at the end
of a pendulum and released from an height of 1.25m to hit
the robot horizontally. As stated in [8], HRP-2 is relatively
stiff on sideways during double support, so we performed
the perturbations in the sagittal plane.

Four different scenarios were compared. The first one
is the robot without stabilization. The second one is the
robot with the closed-loop stabilizer coupled to the IMU
state observer. The third one uses the same gain matrix G
as the stabilizer, but with removing all the parts related to
the trunk actuation. The fourth setting is to keep only the
trunk actuation and to remove the actuation of the CoM. Of
course, the gains of the two last settings are not optimal for
the criterion (22). The purpose of testing them is to isolate
each actuation and watch in detail how it behaves against
excitation.

B. Results

We can see in Figure 4 the ZMP/CoP of the stabilized vs
non stabilized robot over time when the perturbation occurs.
This CoP is measured using the force sensors of the feet, but
they were not used for the closed-loop control. We first see
that the CoP is not exactly at zero at the beginning, this is
due to biased and errors in the kinematic model. We also see
that the stabilization improves significantly the disturbance
absorption time of the system. The oscillations are reduced
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Fig. 4. Response of the system to an impact at t=0s: (1) in bold blue with
the stabilizer and (2) in black without the stabilizer.

very quickly and the permanent mode is reached in a very
stable way.

In Figure 5 we show the response of the system when
we only use the CoM actuation and when we only use the
trunk angular actuation. We see first that the response to the
perturbations are comparable between the full stabilizer and
the CoM-actuated controller. However, we see the presence
of auto-oscillations before and after the perturbations. These
oscillations are the sign that the controller is reaching its
stability limits, i.e. if we increase the gains there is a risk
of instability and divergence of the control. This instability
is probably due to modeling errors of the flexibility and
the dynamics. We can see also that the static error of
the CoP is a bit higher with the CoM actuated controller.
These differences mean that the trunk actuation enables the
stabilizer to improve robustness to modeling errors and to
reach higher gains.

It is also interesting to see that even if the trunk actuation
alone has weaker impact on the angular momentum than
CoM displacements, it still has a visible stabilization effect.
Even when the orientations acts alone, the disturbance is
absorbed significantly faster than with the rigid robot.

Finally, it is worth to note that HRP-2 has the IMU in
the chest. That means that when the robot is rotating the
upper-body to stabilize the robot, it could create perturbations
on the measurement of the flexibility. The stability of these
results are a good assessment that the estimator presented
in our previous work [8] is able to distinguish between the
desired motion, the motion due to flexibility deformations
and the external perturbations.

All these experiments are shown in the attached video.

V. DISCUSSION AND CONCLUSION

We have seen through this paper the development of a
stabilizer based on a viscoelastic reaction mass pendulum
model. This model provides a simplified dynamics, yet still
taking into account the most important features of the mo-
tion: the linear and angular momenta. Thanks to this model,
we built a dynamical system with two kinds of actuation:
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Fig. 5. Response of the system to an impact at t=0s: (1) in bold green
using only the CoM actuation, (2) in red with only the trunk actuation and
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the position of the center of mass and the orientation of the
trunk. The linearization of this dynamical system enables
to compute the near optimal gains which drive the unified
controller of the flexibility with an optimal quadratic cost.

Several former works also exploited the orientation of the
robot for stabilization. This actuation is used to compensate
the angular momentum generated by the motion of the
center of mass [13], [14]. Nevertheless, this actuation is
able to provide more than a simple compensation. It enables
redundancy in the control of the angular momentum and
increases robustness to external perturbations similarly to
what is shown in [15] where a change of variable allows
to use the orientation of the torso together with a linear
inverted pendulum model. Other interesting results are pre-
sented in [16] and [17] where the contact forces are driven
to guarantee balance, the tracking of a reference position,
and postural control. These works are not designed for
robots with passive compliance, but they probably could be
adapted to take it into account. However they seem to require
accurate force and/or joint torque measurements, which are
not necessary with our method.

Our work also constitutes a validation of the state es-
timator developed in [8]: the estimation is accurate and
reactive enough to detect brutal disturbances and drive the
stabilization even if the rotations of the trunk influence the
signals (the IMU lies in the chest of the robot). Few works,
to our knowledge, address the issue of disturbance rejection
without the use of force sensors. Most works that don’t use
force sensors do use joint torque measurement either directly
or by using the electric current data [18], [16], [19]. We
must cite also the works of running robots which modify
the stepping position according to the orientation of the
robot [20], [21]. Finally it is worth to note the work by
Perrin et al. [22] which uses a clever estimation of the state
of the robot using the IMU for the postural control, however
they also use force measurements to estimate the deviation
of the CoP.

This work is only the first validation of the models we

developed. Several extensions have to be achieved to improve
the performances. For example, in the case of trajectory
tracking, the robot would have to leave the neighborhood
of the equilibrium state and the simple linearization would
be an insufficient model. In this case a non linear model
preview control can be introduced. This model could also
takes explicitly into account the constraints related to balance
and joint limits. Finally, the introduction of the force sensor
would enable us not only to have a more accurate estimation
as we have shown in [23], and therefore a more reactive
control. This addition should also allow to estimate ground
inclinations and external forces and generate more accurate
behavior.
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